Esercitazione di Algebra Lineare - 30/10/2013

Paolo Piccinni - Alessia Nota

Esercizio 1

Si consideri lo spazio vettoriale

$$V = \mathbb{R}_{\le 3}[x] = \{p(x) = a + bx + cx^2 + dx^3 \text{ t.c. } a, b, c, d \in \mathbb{R}\}\$$

dei polinomi a coefficienti reali nell'indeterminata x che hanno grado al più 3.

i) Determinare una base e la dimensione di V.

Stabilire se i seguenti sono sottospazi vettoriali di V. Se lo sono, trovare una base e la dimensione.

- i) $S = \{p(x) \in V \text{ t.c. } p(0) = 0\}.$
- ii) $T = \{ p(x) \in V \text{ t.c. } p(1) = 1 \}.$
- iiii) $U = \{p(x) \in V \text{ t.c. } p(2) = p'(2)\}$ (dove p'(x) è la derivata di p(x), pensata come funzione di x).

Esercizio 2

Siano Ue Vi sottospazi di \mathbb{R}^4 rappresentati rispettivamente dai seguenti sistemi lineari

$$U := \begin{cases} x_1 + x_2 + x_3 + x_4 = 0, \\ x_1 + x_2 + x_3 - x_4 = 0, \\ x_1 + x_2 + x_3 = 0, \end{cases} \qquad V := \begin{cases} x_1 + 3x_2 - x_3 + x_4 = 0, \\ x_1 + 4x_2 - 2x_3 + 2x_4 = 0, \\ x_2 - x_3 + x_4 = 0. \end{cases}$$

Determinare una rappresentazione cartesiana per U+V.

Esercizio 3

Siano U e V i sottospazi di \mathbb{R}^3 che ammettono le seguenti rappresentazioni cartesiane:

$$U := \begin{cases} 3x_1 - x_2 - 2x_3 = 0, \\ x_1 - x_3 = 0, \end{cases} \qquad V := \begin{cases} 3x_1 + 2x_2 + 2x_3 = 0, \\ x_1 + x_2 + x_3 = 0. \end{cases}$$

- i) Calcolare una base e la dimensione per $U, V, U \cap V, U + V$.
- ii) Calcolare una rappresentazione cartesiana per U+V.

- iii) Determinare un sottospazio W di \mathbb{R}^3 di dimensione 2, contenente U ma non V.
- iv) Al variare del parametro $h \in \mathbb{R}$, si consideri il sottospazio $W_h = \operatorname{Span}((1,1+h,0),(1,h,1))$. Determinare i valori di h per cui si ha $W_h = U + V$.

Esercizio 4 Sia V lo spazio vettoriale reale di dimensione 4. Base $B_V = (v_1, v_2, v_3, v_4)$. Siano $u_1 = v_1 - v_2 + v_3 - v_4$, $u_2 = v_1 + v_2$. Si consideri il sottospazio $U = \text{Span}(u_1, u_2)$.

- i) Determinare una base B_U di U.
- ii) Considerato il vettore $u(k) = 2v_1 + kv_2 v_3 + v_4$, $k \in \mathbb{R}$, si determini il valore del parametro k per cui $u(k) \in U$.
- iii) Completare la base B_U in una base di V.

Esercizio 5

Si consideri lo spazio vettoriale $V=M_3(\mathbb{R})$ delle matrici 3×3 a coefficienti reali. Siano S e T i sottoinsiemi di V costituiti, rispettivamente, dalle matrici simmetriche (cioè tali che $A^t=A$) e dalle matrici antisimmetriche (cioè tali che $A^t=-A$). Dimostrare che V è somma diretta di S e T.