Geometria (Corso di laurea in Fisica, Canali A-C e D-O)

Prof. Barucci e Piccinni 9 luglio 2012

a. Scrivere subito canale, cognome e nome.

- b. Utilizzare questi fogli per le risposte. I fogli protocollo distribuiti a parte sono invece per eventuali riflessioni o calcoli, e non vanno consegnati.
- c. Durante la prova non si possono consultare testi e appunti né usare fogli diversi da quelli distribuiti.
- d. Durante la prova non è consentito uscire dall'aula.

Tempo a disposizione: 2 ore		
	CanaleNomeNome	
1	. Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ l'endomorfismo tale che $T(x,y,z) = (-2x+y+z,x-2y+z,x+y-2z)$. Stabilire quali tra le seguenti affermazioni sono vere (eventualmente anche più risposte)	
	$\boxed{1} T$ è rappresentato rispetto alla base canonica da una matrice diagonale	
	$\fbox{2}$ T è diagonalizzabile	
	3 per ogni autovalore, la molteplicità algebrica coincide con la molteplicità geometrica	
	$\boxed{4}$ T ha tre autovalori distinti	
	$\fbox{5}$ Ker T è un autospazio di T	
2	. Sia r la retta di \mathbb{R}^3 di equazioni	
	$\begin{cases} x - y = 0 \\ 2x - y = 0 \end{cases}$	
	Stabilire quali tra le seguenti affermazioni sono vere (eventualmente anche più risposte)	
	$\boxed{1}$ Esiste un unico piano contenente la retta r e il punto $P=(3,4,0)$ ed ha equazione $4x-3y=0$	
	$\fbox{2}$ Non esiste alcun piano contenente la retta r e il punto $P=(3,4,0)$	
	$\boxed{4}$ Esistono infiniti piani contenenti la retta r e il punto $Q=(0,0,-2)$	
	$\boxed{5}$ Esiste un unico piano contenente la retta r e il punto $Q=(0,0,-2)$ ed ha equazione $x+2y=0$	
3	. Siano $\vec{v}_1 = (0, 1, 1, 0), \ \vec{v}_2 = (1, 1, 1, 0), \ \vec{v}_3 = (0, 1, 0, 0), \ \vec{v}_4 = (1, 0, 1, 0) \in \mathbb{R}^4$. Siano inoltre $U = \operatorname{Span}(\vec{v}_1, \vec{v}_2)$ e $W = \operatorname{Span}(\vec{v}_3, \vec{v}_4)$. Rispondere nei riquadri alle seguenti domande:	
	Estrarre da $\{\vec{v}_1,\ \vec{v}_2,\ \vec{v}_3,\ \vec{v}_4\}$ una base per Span $(\vec{v}_1,\ \vec{v}_2,\ \vec{v}_3,\ \vec{v}_4)$:	
	Determinare $\dim(U+W) = $	
	Determinare $\dim(U \cap W) = $	

4.	Sia $A \in M_{m,n}(\mathbb{R})$ (una matrice con m righe ed n colonne), e sia S una sua riduzione a scala. Stabilire quali tra le seguenti affermazioni sono vere (eventualmente anche più risposte)
	$\boxed{1} \mathrm{Ker} \ A = \mathrm{Ker} \ S$
	$\boxed{2} \dim \text{ Ker } A = \dim \text{ Ker } S$
	$\boxed{3} \text{Im } A = \text{Im } S$
	$\boxed{4} \dim \text{ Im } A = \dim \text{ Im } S$
	$\boxed{5}$ Im A è un sottospazio di $\mathbb{R}^n e$ Ker A è un sottospazio di \mathbb{R}^m
	$\boxed{6}$ Im A è un sottospazio di $\mathbb{R}^m e$ Ker A è un sottospazio di \mathbb{R}^n
5.	Sia $T: \mathbb{R}^3 \to \mathbb{R}^3$ la rotazione di un angolo π intorno all'asse x . Stabilire quali tra le seguenti affermazioni sono vere (eventualmente anche più risposte):
	$oxed{1}$ T non è un endomorfismo
	$\boxed{2} T$ è un endomorfismo ma non è diagonalizzabile
	$\fbox{3}$ T è un endomorfismo diagonalizzabile
	4 esiste una base di \mathbb{R}^3 formata da autovettori di T
	$\boxed{5}$ l'unico autovalore di T è 1
6.	Sia $f: \mathbb{C} \to \mathbb{C}$ l'applicazione che associa a ogni numero complesso $a+ib$ il suo coniugato $a-ib$. Stabilire quali tra le seguenti affermazioni sono vere (eventualmente anche più risposte):
	$oxed{1}$ f è un'applicazione iniettiva ma non suriettiva
	$\boxed{2}$ f è un'applicazione suriettiva ma non iniettiva
	$\boxed{3}$ f è un'applicazione biiettiva
	$\boxed{4} f$ è un'applicazione lineare di $\mathbb C$ in $\mathbb C$ come spazio vettoriale su se stesso
	$\boxed{5} f$ è un'applicazione lineare di $\mathbb C$ in $\mathbb C$ come spazio vettoriale su $\mathbb R$
7.	Sia $T:M_2(\mathbb{R}) \to M_2(\mathbb{R})$ l'applicazione lineare definita dalla formula:
	$T(A) = (A \cdot A^t),$
	essendo $M_2(\mathbb{R})$ lo spazio vettoriale delle matrici reali 2×2 , A^t la trasposta di A ed essendo \cdot il prodotto righe per colonne. Stabilire quali tra le seguenti affermazioni sono vere (anche più risposte):
	$\fbox{1}$ T è lineare e il nucleo di T è costituito dalle matrici simmetriche
	$\fbox{2}$ T è lineare e il nucleo di T è costituito dalle matrici antisimmetriche
	$\fbox{3}$ T non è lineare ma è iniettiva
	$\fbox{4}$ T non è lineare ma è suriettiva
	5 Nessuna delle precedenti.

- 8. Si considerino nello spazio \mathbb{R}^3 i seguenti quattro vettori (necessariamente linearmente dipendenti $\vec{v}_1 = (1,1,1), \vec{v}_2 = (1,2,2), \vec{v}_3 = (0,-1,1), \vec{v}_4 = (3,1,1)$, Stabilire quali tra le seguenti affermazioni è vera:
 - ognuno tra i vettori $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ è combinazione lineare dei rimanenti
 - $\boxed{2}$ uno solo tra i vettori $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ è combinazione lineare dei rimanenti
 - due e non più di due tra i vettori $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ sono combinazioni lineari dei rimanenti
 - $\boxed{4}$ tre e non più di tre tra i vettori $\vec{v}_1, \vec{v}_2, \vec{v}_3, \vec{v}_4$ sono combinazioni lineari dei rimanenti
- 9. Si considerino in $M_2(\mathbb{C})$ le seguenti matrici:

$$J_1=\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right) \ , \qquad J_2=\left(\begin{array}{cc} 0 & -i \\ i & 0 \end{array}\right) \ , \qquad J_3=\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right) \ ,$$

Stabilire quali tra le seguenti affermazioni sono vere (anche più risposte):

- $\boxed{1}$ J_1,J_2,J_3 sono diagonalizzabili, ma hanno autovalori diversi
- $\boxed{2}$ J_1,J_2,J_3 sono diagonalizzabili, e hanno gli stessi autovalori
- $\fbox{3} \quad J_1,J_2,J_3 \ \, \text{non sono diagonalizzabili}$
- $\boxed{4} \quad J_1, J_2, J_3 \text{ sono matrici simili}$
- 10. Si consideri il sistema lineare a coefficienti reali:

$$\begin{cases}
-x + 4y + 2z + 1 &= 0 \\
2x + 5y + 4z - 2 &= 0 \\
4x - 3y - 1 &= 0
\end{cases}$$

e siano α, α', α " i tre piani di \mathbb{R}^3 rappresentati ordinatamente dalla prima, seconda e terza equazione. Stabilire quale tra le seguenti affermazioni è vera:

- $\boxed{1}$ α, α', α "sono paralleli
- $\boxed{2}$ α, α', α "si intersecano in un punto
- $\boxed{3} \quad \alpha,\alpha',\alpha"$ si intersecano in una retta, e appartengono quindi a uno stesso fascio
- 4 Nessuna delle precedenti.