Corso di Geometria II, a. a. 2010-11

Foglio n. 2

- 1. Si consideri il sottospazio $S=\{(\frac{1}{n},\frac{1}{m})\in\mathbf{R}^2;n,m\in\mathbf{N}\}$ dell' \mathbf{R}^2 euclideo.
- i) Determinare la parte interna S^o , la parte esterna Est
 S, la frontiera ∂S , la chiusura \overline{S} .
 - ii) Confrontare le topologie indotte su S e su \overline{S} con la topologia discreta;
- **2.** Si considerino su $\mathbf{R}^2 = \mathbf{R} \times \mathbf{R}$ le seguenti topologie prodotto: $\tau_1 = \mathcal{E} \times \mathcal{Z}$, $\tau_2 = \mathcal{Z} \times \mathcal{Z}$, $\tau_3 = \tau_{\rm ban} \times \tau_{\rm discr}$, essendo $\mathcal{E}, \mathcal{Z}, \tau_{\rm ban}, \tau_{\rm discr}$ le topologie rispettivamente euclidea, cofinita, banale e discreta su \mathbf{R} .
 - i) Stabire quali relazioni d'ordine "di maggiore finezza" sussistono tra τ_1, τ_2, τ_3 .
- ii) Per ognuna delle topologie τ_1, τ_2, τ_3 stabilire quali tra i seguenti sottoinsiemi di ${\bf R}^2$ sono aperti:
 - a) il quadrato $I^2 = \{(x, y) \in \mathbf{R}^2, \ 0 < x < 1, 0 < y < 1\}$,
 - b) il disco $B^2 = \{(x, y) \in \mathbf{R}^2, x^2 + y^2 < 1\}$,
 - c) $\mathbf{R}^2 (0,0)$.
- iii) Si considerino infine le coppie $(\tau_i, \tau_j)(i, j = 1, 2, 3)$, di topologie che, secondo la risposta data al quesito i) sono non confrontabili. Costruire esempi di sottoinsiemi di \mathbf{R}^2 che siano aperti in τ_i ma non in τ_j e viceversa.
- 3. Si considerino i seguenti sottospazi dell' \mathbb{R}^2 euclideo:

$$A = \{(x,y) \in \mathbf{R}^2 : \frac{1}{4} \le x^2 + y^2 \le 4\}; \qquad B = \{(x,y) \in \mathbf{R}^2 : \frac{1}{4} < x^2 + y^2 < 4\};$$

$$C = \{(x,y) \in \mathbf{R}^2 : \frac{1}{4} < x^2 + y^2 \le 4\}; \qquad D = \{(x,y) \in \mathbf{R}^2 : \frac{1}{4} \le x^2 + y^2 < 4\};$$

$$E = \{(x,y) \in \mathbf{R}^2 : \frac{1}{2} \le |x| \le 2, \ \frac{1}{2} \le |y| \le 2\};$$

$$F = \{(x,y) \in \mathbf{R}^2 : \frac{1}{4} \le |x| \le 4, \ \frac{1}{2} \le |y| \le 2\}; \quad G = \{(x,y) \in \mathbf{R}^2 : x^2 + y^2 > 0\}.$$

- i) Tracciare un disegno approssimativo dei sottospazi A,B,C,D,E,F,G e stabilire quali tra essi sono aperti in ${\bf R}^2$, quali sono chiusi, quali aperti e chiusi, quali ne' aperti ne' chiusi.
- ii) Determinare quali tra i sottospazi A, B, C, D, E, F, G sono tra loro omeomorfi, costruendo esplicitamente un omeomorfismo.
- iii) Determinare quali tra i sottospazi A,B,C,D,E,F,G non sono tra loro omeomorfi, e precisare quali propriet topologiche permettono di escludere l'esistenza di un omeomorfismo .
- **4.** Sia $f: X \to Y$ un'applicazione tra spazi topologici (in X e in Y sono fissate topologie risp. τ_1 e τ_2). Verificare che f è continua se e solo se per ogni sottoinsieme S di Y risulta soddisfatta la seguente inclusione $f^{-1}(S^o) \subset (f^{-1}S)^o$ tra le parti interne indicate.