Geometria I (Canale I-Z)

Esercitazione del 1.12.2014 - Prof. P. Piccinni

Esercizio 1. Piano affine reale - Coordinate xy.

Sia assegnata la conica

$$C: 2x^2 - 2\sqrt{3}xy + 4x - 2y + 3 = 0.$$

- i) Determinare il tipo affine reale di \mathcal{C} ;
- ii) Determinare gli opportuni cambiamenti di coordinate affini che consentono di rappresentare \mathcal{C} con la sua equazione canonica affine e scrivere tale equazione.

Esercizio 2. (Curva algebrica in figura (d), Sernesi, Geometria I, p. 417). Si consideri in \mathbb{CP}^2 la quartica \mathcal{C} di equazione affine

$$C: (x^2 + y^2)^2 + 3x^2y - y^3 = 0.$$

- i) Stabilire la natura dell'origine O per \mathcal{C} (punto semplice, doppio, triplo, ...) e determinare in O la tangente o le tangenti principali, precisando per ognuna di esse la molteplicità di intersezione in O con \mathcal{C} .
- ii) Stabilire se \mathcal{C} è riducibile.

Esercizio 3. (Curva algebrica in figura (e), Sernesi, Geometria I, p. 417). Si consideri in \mathbb{CP}^2 la sestica $\mathcal C$ di equazione affine

$$C: (x^2 + y^2)^3 - 4x^2y^2 = 0.$$

- i) Verificare che l'origine O è un punto singolare per \mathcal{C} , precisando se si tratta di un punto doppio, triplo, ecc. Scrivere le equazioni delle tangenti principali a \mathcal{C} in O, e stabilire per ognuna di esse la molteplicità di intersezione in O con \mathcal{C} .
- ii) Stabilire se $\mathcal C$ ammette altri punti singolari al finito o all'infinito.

Esercizio 4. Si considerino in \mathbb{CP}^2 le cubiche \mathcal{C}_1 , \mathcal{C}_2 di equazioni affini

$$C_1: \quad x^3 - y^3 - 3x^2y + 3xy^2 - 2x^2 - 2y^2 = 0,$$

$$C_2: \quad x^3 + 8y^3 + 6x^2y + 12xy^2 - 4x^2 - y^2 + 4xy = 0.$$

- i) Determinare gli eventuali punti doppi di C_1 e C_2 con le rispettive tangenti principali, e stabilire se C_1 e C_2 sono irriducibili.
- ii) Determinare i punti impropri di C_1 e C_2 e stabilire se essi sono semplici.
- iii) Determinare i flessi di C_1 e C_2 .