Geometria I - Canale M-Z - Prof. P. Piccinni

Risposte seconda prova in itinere - 5 giugno 2017

Esercizio 1. Siano $[x_0, x_1, x_2, x_3, x_4, x_5]$ coordinate omogenee nello spazio proiettivo $P^5_{\mathbb{R}}$. Si considerino in $P^5_{\mathbb{R}}$ i seguenti punti:

$$R_0 = [1, 0, 0, 1, 0, 0],$$
 $R_1 = [0, 1, 2, 0, 1, 1],$ $S_0 = [0, 0, 2, 0, 0, 1],$ $S_1 = [1, 1, 0, 1, 1, 0].$

- i) Scrivere le equazioni parametriche delle rette rispettivamente r passante per i punti R_0 e R_1 , e s passante per i punti S_0 e S_1 (si usino in entrambi i casi due parametri omogenei, denotandoli con λ , μ per la retta r e con λ' , μ' per la retta s).
 - ii) Verificare che le rette r e s si intersecano in un punto P e scrivere le coordinate omogenee di P.
- iii) Indicare un procedimento per scrivere (o scrivere direttamente) le equazioni cartesiane del piano proiettivo $\alpha \subset P^5_{\mathbb{R}}$ contenente le retta r e s.

Si considerino poi in $P^5_{\mathbb{R}}$ i seguenti iperpiani:

$$\rho_0: x_0 + x_3 = 0, \qquad \rho_1: x_1 + 2x_2 + x_4 + x_5 = 0, \qquad \sigma_0: 2x_2 + x_5 = 0, \qquad \sigma_1: x_0 + x_1 + x_3 + x_4 = 0,$$

e i fasci di iperpiani

$$\mathcal{F}_{\rho}: \lambda \rho_0 + \mu \rho_1, \qquad \qquad \mathcal{F}_{\sigma}: \lambda' \sigma_0 + \mu' \sigma_1.$$

iv) Verificare che i due fasci \mathcal{F}_{ρ} , \mathcal{F}_{σ} hanno un iperpiano π in comune. Scrivere l'equazione cartesiana di π .

Risposte: equazioni parametriche di r: $x_0 = \lambda, x_1 = \mu, x_2 = 2\mu, x_3 = \lambda, x_4 = \mu, x_5 = \mu$

equazioni parametriche di
$$s$$
 : $x_0 = \mu', x_1 = \mu', x_2 = 2\lambda', x_3 = \mu', x_4 = \mu', x_5 = \lambda'$

punto
$$P = \begin{bmatrix} [1, 1, 2, 1, 1, 1] \end{bmatrix}$$

equazioni cartesiane di
$$\alpha$$
 : $\boxed{x_0 = x_3, x_1 = x_4, x_2 = 2x_5}$

equazione cartesiana di
$$\pi$$
 : $\boxed{x_0 + x_1 + 2x_2 + x_3 + x_4 + x_5 = 0}$

Esercizio 2. Si considerino in $P_{\mathbb{R}}^2$, usando coordinate omogenee $[x_0, x_1, x_2]$, le seguenti coniche:

$$C_0: x_0^2 + 2x_0x_1 = 0, \quad C_1: x_1^2 + 2x_2^2 + 2x_0x_2 + 2x_1x_2 = 0, \quad D_0: 2x_2^2 + 2x_1x_2 = 0, \quad D_1: x_0^2 + x_1^2 + 2x_0x_1 + 2x_0x_2 = 0,$$

e i fasci di coniche

$$\mathcal{F}_{\mathcal{C}}: \lambda \mathcal{C}_0 + \mu \mathcal{C}_1, \qquad \mathcal{F}_{\mathcal{D}}: \lambda' \mathcal{D}_0 + \mu' \mathcal{D}_1.$$

i) Verificare che i due fasci hanno una conica \mathcal{E} in comune, scrivere l'equazione cartesiana di \mathcal{E} e stabilire il tipo proiettivo di \mathcal{E} tra i cinque possibili in $P^2_{\mathbb{R}}$.

1

- ii) Determinare le coniche degeneri del fascio $\mathcal{F}_{\mathcal{C}}$.
- iii) Determinare le coniche degeneri del fascio $\mathcal{F}_{\mathcal{D}}$.

Risposte: equazione cartesiana di \mathcal{E} : $x_0^2 + x_1^2 + 2x_2^2 + 2x_0x_1 + 2x_0x_2 + 2x_1x_2 = 0$

tipo proiettivo di \mathcal{E} : $x_0^2 + x_1^2 = 0$ (conica semplicemente degenere con un solo punto reale)

coniche degeneri in $\mathcal{F}_{\mathcal{C}}$: $\boxed{\mathcal{C}_0, \mathcal{E}, \mathcal{C}_0 + 2\mathcal{C}_1}$

coniche degeneri in $\mathcal{F}_{\mathcal{D}}$: $\boxed{\mathcal{D}_0, \mathcal{E}}$

Esercizio 3. Sia E^2 il piano euclideo, e siano (xy) coordinate cartesiane su di esso relative ad un riferimento cartesiano ortonormale. Si ricordi che le isometrie dirette si esprimono analiticamente in E^2 mediante sistemi del tipo:

(1)
$$\begin{cases} x = c_{11}x' + c_{12}y' + b_1 \\ y = c_{21}x' + c_{22}y' + b_2 \end{cases}$$

essendo $C=(c_{\alpha\beta})$ una matrice ortogonale con de
tC=1,e $\vec{b}=(b_1,b_2)\in\mathbb{R}^2$

Si considerino in \mathbf{E}^2 le seguenti iperboli:

$$\mathcal{I}: x^2 - y^2 = 1,$$
 $\mathcal{I}': xy = 1,$ $\mathcal{I}'': y^2 - x^2 = 1,$ $\mathcal{I}''': xy = -1,$

e le seguenti parabole:

$$\mathcal{P}: x = y^2, \qquad \mathcal{P}': y = x^2 + 1, \qquad \mathcal{P}'': x = -y^2 - 1, \qquad \mathcal{P}''': y = -x^2 + 1.$$

- i) Scrivere le due isometrie di tipo (1) che consentono di trasformare rispettivamente $\mathcal{I} \to \mathcal{I}''$, $\mathcal{I}' \to \mathcal{I}'''$.
- ii) Scrivere le tre isometrie di tipo (1) che consentono di trasformare rispettivamente $\mathcal{P} \to \mathcal{P}', \, \mathcal{P} \to \mathcal{P}'', \, \mathcal{P} \to \mathcal{P}'''$.
- iii) Scrivere, in coordinate omogenee $[x_0, x_1, x_2]$, attraverso le trasformazioni $x = x_1/x_0, y = x_2/x_0$ e moltiplicando per x_0^2 , le equazioni delle chiusure proiettive $\overline{\mathcal{I}}$, $\overline{\mathcal{P}}$ rispettivamente di \mathcal{I} e di \mathcal{P} .
 - iv) Ricordando l'espressione analitica delle proiettività

(2)
$$\begin{cases} x_0 = a_{00}x'_0 + a_{01}x'_1 + a_{02}x'_2 \\ x_1 = a_{10}x'_0 + a_{11}x'_1 + a_{12}x'_2 \\ x_2 = a_{20}x'_0 + a_{21}x'_1 + a_{22}x'_2 \end{cases}$$

(con $(a_{\alpha\beta})$ non singolare), scrivere infine le equazioni di una proiettività che manda $\overline{\mathcal{I}} \to \overline{\mathcal{P}}$.

Risposte: $\mathcal{I} \to \mathcal{I}''$: x = y', y = -x'

$$\mathcal{I}' \to \mathcal{I}'''$$
: $x = y', y = -x'$

$$\mathcal{P} \to \mathcal{P}' : \boxed{x = y' - 1, y = -x'}$$

$$\mathcal{P} \to \mathcal{P}''$$
: $x = -x' - 1, y = -y'$

$$\mathcal{P} \to \mathcal{P}'''$$
: $x = -y' + 1, y = x'$

$$\overline{\mathcal{I}}: \left[x_1^2 - x_2^2 - x_0^2 = 0 \right]$$

$$\overline{\mathcal{P}}: \boxed{x_0 x_1 - x_2^2 = 0}$$

$$\overline{\mathcal{I}} \to \overline{\mathcal{P}}: \left[x_0 = \frac{x_0' - x_1'}{2}, x_1 = \frac{x_0' + x_1'}{2}, x_2 = x_2' \right]$$