Geometria 1

Proff. Paolo Piazza - Paolo Piccinni

Prova scritta del 6.9.2018.

Nome e Cognome:	
Numero di Matricola:	

Esercizio	Punti totali	Punteggio
1	8	
2	8	
3	7	
4	7	
Totale	30	

ATTENZIONE:

- I COMPITI DISORDINATI O POCO LEGGIBILI NON SARANNO NEANCHE CORRETTI
- GIUSTIFICATE LE VOSTRE ARGOMENTAZIONI
- SCRIVETE LE RISPOSTE NEGLI APPOSITI RIQUADRI
- I FOGLI DI BRUTTA NON SARANNO ACCETTATI
- $\bullet~$ TUTTI I DISPOSITIVI ELETTRONICI (SMARTPHONES, TABLETS, TELEFONINI ETC ...) DEVONO ESSERE ${\bf SPENTI}$ E IN BORSA
- NON SONO AMMESSI LIBRI O APPUNTI.

Esercizio 1. Sia $V = \mathbb{R}_2[X]$ con base standard $\{1, X, X^2\}$ fissata. Consideriamo l'applicazione bilineare simmetrica

$$< p, q > := p(0)q(0) + p(1)q(-1) + p(-1)q(1) + 3p'(0)q'(0)$$

dove p' denota la derivata.

1. Verificare che <,>è definita positiva e definisce quindi un prodotto scalare.

2. Sia $T: \mathbb{R}_2[X] \to \mathbb{R}_2[X]$ l'operatore lineare definito da T(p)(t) = p(t+1).

Stabilire se T è simmetrico rispetto al prodotto scalare considerato.

Stabilire se T è unitario rispetto al prodotto scalare considerato.

Soluzione. (viene determinato l'aggiunto.....)

La matrice associata alla forma bilineare simmetrica nella base standard è

$$A = \left| \begin{array}{ccc} 3 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 2 \end{array} \right|$$

Il criterio di Cartesio applicato al polinomio caratteristico di A, che è il polinomio $-\lambda^3 + 6\lambda^2 - 11\lambda + 2$, dimostra che <, > è definita positiva. La matrice associata all'operatore T nella base standard è

$$M = \left| \begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 1 \end{array} \right|$$

Per determinare l'aggiunto di T, T^* , basta determinare la matrice M^* associata a T^* nella base standard. Si ha, come al solito, che T^* è l'operatore aggiunto di T se e solo se $\forall p, q$:

$$< Tp,q> = < p,T^*q> \text{ se e solo se } (M \left| \begin{array}{c} p_0 \\ p_1 \\ p_2 \end{array} \right|)^TA \left| \begin{array}{c} q_0 \\ q_1 \\ q_2 \end{array} \right| = (\left| \begin{array}{c} p_0 \\ p_1 \\ p_2 \end{array} \right|)^TA(M^* \left| \begin{array}{c} q_0 \\ q_1 \\ q_2 \end{array} \right|) \text{ se e solo se } M^TA = AM^*$$

Quindi $M^* = A^{-1}M^TA$ da cui

$$M^* = \left| \begin{array}{rrrr} -2 & -2 & -2 \\ 3 & 1 & 2 \\ 9/2 & 3 & 4 \end{array} \right|$$

Rispost	a:

Esercizio 2. Si risponda ai seguenti quesiti (reciprocamente indipendenti).

1. Piano proiettivo numerico $P^2(\mathbb{R})$ con coordinate proiettive omogenee X_0, X_1, X_2 . Consideriamo i punti

$$P'_0 = [1, 2, 1], P'_1 = [2, 0, 1], P'_2 = [1, -2, 0], U' = [1, 0, 0].$$

Stabilire se esistono coordinate proiettive omogenee (Y_0, Y_1, Y_2) tali che i 4 punti dati abbiano coordinate rispettivamente (1,0,0), (0,1,0), (0,0,1), (1,1,1).

2. Spazio proiettivo numerico $P^3(\mathbb{R})$ con coordinate proiettive omogenee x_0, x_1, x_2, x_3 . Consideriamo lo spazio affine $\mathcal{A}^3(\mathbb{R})$ e l'applicazione di passaggio a coordinate omogenee:

$$\mathcal{A}^3(\mathbb{R}) \ni (x_1, x_2, x_3) \xrightarrow{j_0} [1, x_1, x_2, x_3] \in P^3(\mathbb{R}) \setminus H_0 \subset P^3(\mathbb{R})$$

con H_0 il piano proiettivo di equazone $X_0 = 0$. Si considerino le rette affini r e s di equazioni

$$r: x_1 + 2x_2 + x_3 = x_1 - x_3 + 5 = 0$$
, $s: 2x_1 - x_2 + 3 = x_1 - x_2 + 2 = 0$.

Determinare l'equazione cartesiana del piano proiettivo passante per il punto [1,0,0,1] e per i punti impropri di r e s.

Soluzione: 1. Falso: i primi tre punti sono allineati e quindi non sono linearmente indipendenti. Ne segue che i quattro punti non sono in posizione in generale e non possono essere assunti come punti fondamentali e punto unità di un nuovo riferimento.

2. Basta scrivere l'equazione cartesiana del piano proiettivo per il punto assegnato e per i punti impropri di r ed s. I parametri direttori di r sono $\ell=1, m=-1, n=1$ e quindi il punto improprio di r è [0,1,-1,1]. Analogamente il punto improprio di s è [0,0,0,1] e l'equazione del piano è quindi

$$\det \left| \begin{array}{cccc} X_0 & X_1 & X_2 & X_3 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & -1 & 1 \\ 0 & 0 & 0 & 1 \end{array} \right| = 0$$

e facendo i conti si ottiene $X_1 + X_2 = 0$.

Risposta:			

Esercizio 3. Si consideri nel piano euclideo \mathbf{E}^2 , con coordinate cartesiane (x,y) la famiglia di coniche \mathcal{C}_k di equazione

$$C_k$$
: $f(x,y) = kx^2 - 2kxy + ky^2 + 2x + 2y + 1 = 0$,

essendo k un numero reale non nullo.

- 1. Stabilire per quali valori di k C_k è non degenere e per quali è un'ellissi, un'iperbole e una parabola.
- **2.** Determinare, in funzione di k, i parametri metrici di C_k (semiassi per ellissi e iperboli, parametro per la parabola).

Svolgimento (anche sul retro!):

Risposte:		٦		
\mathcal{C}_k non deg. per	<i>k</i> :	\mathcal{C}_k ellissi per k :		C_k iperbole per k :
C_k	$_k$ parabola per k :	Para	metri metrici:	

Esercizio 4. Sia $V=\mathbb{C}^3$ con il prodotto hermitiano canonico. Consideriamo gli operatori lineari $L_j:=L_{A_j}:\mathbb{C}^3\to\mathbb{C}^3,\,j\in\{1,2,3\}$, definiti dalle seguenti matrici:

$$A_1 = \left| egin{array}{ccc|c} -i & 0 & 0 & \ 0 & 0 & i & \ 0 & i & 0 & \ \end{array}
ight| \;, \quad A_2 = \left| egin{array}{ccc|c} 0 & 0 & 1 & \ 0 & -i & 0 & \ -1 & 0 & 0 & \ \end{array}
ight| \;, \quad A_3 = \left| egin{array}{ccc|c} -i & 0 & 0 & \ 0 & i & 0 & \ 0 & 0 & -i & \ \end{array}
ight|$$

- 1. Stabilire quali fra questi operatori sono hermitiani.
- 2. Stabilire quali fra questi operatori sono unitari.
- 3. Stabilire quali fra questi operatori sono diagonalizzabili.
- 4. Vero o Falso: esistono matrici invertibili $M_1,\,M_2$ e M_3 tali che

$$M_1 A_1 (M_1)^{-1} = M_2 A_2 (M_2)^{-1} = M_3 A_3 (M_3)^{-1}.$$

Soluzione:

Risposta:			