Geometria I. Proff. P. Piazza e P. Piccinni a.a. 2017-18. Tutoraggio del 2 Maggio 2018

Esercizio 1.

Sia **A** un piano affine e siano A, B, C tre suoi punti non allineati. È definito allora T_{ABC} , il triangolo di vertici A, B, C:

$$T_{ABC} = \{ P \in \mathbf{A} \mid \exists t \ge 0, u \ge 0, t + u \le 1 \text{ tali che } \overrightarrow{AP} = t\overrightarrow{AB} + u\overrightarrow{AC} \}.$$

Fate una figura.

Sia $f \in \text{Aff}(\mathbf{A})$. Dimostrare che è ben definito il triangolo $T_{f(A)f(B)f(C)}$ e che $f(T_{ABC}) \subset T_{f(A)f(B)f(C)}$. Utilizzando f^{-1} dimostrate che si ha $f(T_{ABC}) = T_{f(A)f(B)f(C)}$.

Esercizio 2.

1. Consideriamo lo spazio euclideo numerico E^2 e l'affinità $T_{A,c}$, $T_{A,c}(\underline{x}) := A\underline{x} + \underline{c}$, con

$$A = \left| \begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array} \right| \quad \text{e} \quad \underline{c} = \left| \begin{array}{c} 2 \\ 3 \end{array} \right|$$

Verificare che $T_{A,\underline{c}}=T_1\circ T_2\circ T_3$ con T_1 una traslazione, T_2 un'omotetia e T_3 un'isometria che lascia fissa l'origine.

2. Sappiamo dall'esercizio precedente che un'affinità trasforma triangoli in triangoli.

Vero o Falso (argomentate in dettaglio le vostre risposte):

- (a). $T_{A,c}$ trasforma triangoli rettangoli in triangoli rettangoli
- (b). $T_{A,\underline{c}}$ trasforma triangoli isosceli in triangoli isosceli
- (e). $T_{A,c}$ è un'isometria

Esercizio 3.

Sia **A** uno spazio affine e siano Q_1 e Q_2 due suoi punti distinti. I punti del segmento Q_1Q_2 sono, per definizione, i punti Q(s), $s \in [0,1]$, univocamente determinati dalla relazione: $\overline{Q_1Q(s)} = s\overline{Q_1Q_2}$. Fate una figura. Un sottoinsieme C di **A** è convesso se contenendo due punti contiene tutto il segmento che li congiunge. Dimostrare che se $C \subset \mathbf{A}$ è un insieme convesso e $f \in \mathrm{Aff}(\mathbf{A})$ allora $f(C) \subset \mathbf{A}$ è anche convesso.

Esercizio 4. Piano affine reale $\mathbf{A}_{\mathbf{R}}^2$ con coordinate affini (x,y). Si considerino i seguenti quadrilateri:

$$\mathcal{Q} = \{|x| \le 1, \ |y| \le 1\}, \qquad \mathcal{Q}' = \{|y - 2x| \le 2, \ |y + 2x| \le 2\}, \qquad \mathcal{Q}'' = \{|y| \le 1, \ y + 2|x| \le 3\}.$$

- (i) Si trovino i vertici P, Q, R, S; P', Q', R', S'; P'', Q'', R'', S'' rispettivamente di Q; Q'; Q''. (Nota: per semplicità, si chiamino P, P', P'' i vertici nel primo quadrante, Q, Q', Q'' quelli nel secondo, R, R', R'' quelli nel terzo, S, S', S'' quelli del quarto).
- (ii) Si determini (se esiste) un'affinità f che porta \mathcal{Q} in \mathcal{Q}' .
- (iii) Si determini (se esiste) un'affinità q che porta \mathcal{Q} in \mathcal{Q}'' .