Geometria I. a.a. 2017-18. Proff. Paolo Piazza e Paolo Piccinni

Foglio di Esercizi n.2. Consegna il 28/3/2018 in Aula IV e in Aula V, ore 14.

Esercizio 1. Spazio vettoriale \mathbb{R}^4 con base canonica $\mathcal{E} = \{\underline{e}_1, \underline{e}_2, \underline{e}_3, \underline{e}_4\}$ fissata e prodotto scalare canonico <, >.

Sia $b(\,,\,)$ la forma bilineare simmetrica definita in coordinate da

$$b(\underline{v}, \underline{u}) = u_1 v_1 - u_2 v_2 + u_3 v_4 + u_4 v_3$$

Abbiamo incontrato questa forma bilineare nel Foglio n. 1.

1.1. Si consideri la matrice A associata a b nella base \mathcal{E} e l'operatore $T: \mathbb{R}^4 \to \mathbb{R}^4$ \mathbb{R}^4 definito da A.

Trovare una base ortonormale di \mathbb{R}^4 costituita da autovettori per T.

1.2. Determinare una base ortonormale di \mathbb{R}^4 che diagonalizzi b. È possibile dedurre dal segno degli autovalori non nulli di T la forma di Sylvester di b?

Esercizio 2. Sia (V, <, >) uno spazio vettoriale euclideo. Sia T un endomorfismo. Fissiamo una base \mathcal{B} . Sia A la matrice associata a T in questa base, $A = M_{\mathcal{B},\mathcal{B}}(T)$, e sia S la matrice associata a < , > in questa base. Completare la seguente Proposizione e dimostrarla:

Proposizione. T è un operatore simmetrico se e solo se per le matrici A ed Svale la relazione.....

Esercizio 3. Sia $V=\mathbb{R}^2$ e sia $S=\left|\begin{array}{cc} 5 & 2\\ 2 & 1 \end{array}\right|$ 3.1 Verificare che l'applicazione $<\ ,\ >:\ \mathbb{R}^2\times\mathbb{R}^2\to\mathbb{R}$ definita da $<\underline{x},\underline{y}>=$

 $\underline{x}^T S y$ è un prodotto scalare.

3.2 Sia $T: \mathbb{R}^2 \to \mathbb{R}^2$ l'operatore L_A con $A=\begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix}$. Stabilire se T è simmetrico rispetto al prodotto scalare definito in 3.1.

Esercizio 4. Consideriamo $V = \mathbb{C}^2$ e sia

$$A = \left| \begin{array}{cc} 1 & 1+i \\ 1-i & -1 \end{array} \right| \, .$$

Consideriamo

$$h(\mathbf{x}, \mathbf{y}) := \mathbf{x}^T A \overline{\mathbf{y}}$$
.

Stabilire se h(,) è una forma hermitiana. Stabilire se h(,) è un prodotto scalare hermitiano.