Prova scritta di Geometria II, a.a. 2016-17 - Prof. P. Piccinni - 4 luglio 2016

- a. Scrivere subito Matricola (obbligatoria), Cognome e Nome.
- b. Utilizzare questi fogli per le risposte. I fogli protocollo sono invece per riflessioni o calcoli, e non vanno consegnati.
- c. Durante la prova non è consentito uscire dall'aula.

Tempo a disposizione: 2 ore esatte

Matricola.....Nome.....Nome....

Preferenza per la prova orale:

Primo appello

Secondo appello

1. Nello spazio topologico $M_n(\mathbb{R}) \approx \mathbb{R}^{n^2}$ delle matrici di ordine n ad elementi reali, con la topologia euclidea, si introduca la relazione di equivalenza

$$A \sim B \iff A = \pm B.$$

Siano $GL(n,\mathbb{R})$, O(n) i sottospazi topologici di $M_n(\mathbb{R})$ costituiti rispettivamente dalle matrici invertibili e dalle matrici ortogonali, e si noti che $A \in GL(n,\mathbb{R}) \Longrightarrow -A \in GL(n,\mathbb{R})$, e che $A \in O(n) \Longrightarrow -A \in O(n)$. Con riferimento ai quozienti, stabilire quali tra le seguenti affermazioni sono vere (anche più risposte):

- Il quoziente $GL(n,\mathbb{R})/\sim$ è compatto
- Il quoziente $GL(n,\mathbb{R})/\sim$ è connesso
- Il quoziente $O(n)/\sim$ è compatto
- Il quoziente $O(n)/\sim$ è connesso
- Nessuna delle precedenti
- 2. Siano X e Y spazi topologici e sia $X \times Y$ il loro prodotto. Stabilire quali tra le seguenti affermazioni sono vere (anche più risposte):
 - Se $X \times Y$ è compatto, allora almeno uno tra X e Y è compatto, ma l'altro può non esserlo
 - Se $X \times Y$ è compatto, allora entrambi X e Y sono compatti
 - Se $X \times Y$ è di Hausdoff, allora almeno uno tra X e Y è di Hausdoff, ma l'altro può non esserlo
 - Se $X \times Y$ è di Hausdorff, allora entrambi Xe Y sono di Hausdorff
 - Nessuna delle precedenti
- 3. Sia X un insieme, siano τ_1 e τ_2 topologie su X e si assuma che $\tau_1 \prec \tau_2$, ovvero che τ_1 sia meno fine di τ_2 . Stabilire quali tra le seguenti affermazioni sono vere (anche più risposte):
 - Se (X, τ_1) è di Hausdorff, anche (X, τ_2) lo è
 - 2 Se (X, τ_1) è compatto, anche (X, τ_2) lo è Se (X, τ_1) è connesso, anche (X, τ_2) lo è

 - Nessuna delle precedenti
- 4. Si consideri sul piano proiettivo $\mathbb{R}P^2$ (topologia indotta dalla topologia euclidea) la successione di punti

$$p_n = [1, \frac{1}{n}, n],$$

dove $[x_0, x_1, x_2]$ sono le coordinate projettive omogenee. Stabilire quali tra le seguenti affermazioni sono vere (anche più risposte):

- La successione $\{p_n\}$ non converge
- La successione $\{p_n\}$ converge al punto [1,0,0]
- La successione $\{p_n\}$ converge al punto [1,0,1]
- La successione $\{p_n\}$ converge al punto [0,0,1]
- Nessuna delle precedenti

- 5. Sia $\mathbb{R}^2 \to T^2$ il rivestimento universale del toro $T^2 = \mathbb{R}^2/\mathbb{Z}^2$. Stabilire quali tra le seguenti affermazioni sono vere (anche più risposte):
 - 1 La retta y = mx + q di \mathbb{R}^2 si proietta sempre ad una curva chiusa su T^2
 - La retta y = mx + q di \mathbb{R}^2 si proietta ad una curva chiusa su T^2 se e solo se m è razionale
 - 1 La retta y = mx + q di \mathbb{R}^2 si proietta ad una curva chiusa su T^2 se e solo se m, q sono razionali
 - La retta y = mx + q di \mathbb{R}^2 si proietta ad una curva chiusa su T^2 se e solo se m è intero
 - 5 La retta y = mx + q di \mathbb{R}^2 si proietta ad una curva chiusa su T^2 se e solo se m, q sono interi
 - 6 Nessuna delle precedenti
- 6. Si consideri il complementare X in \mathbb{R}^2 della parte S di piano occupato dalle siepi del seguente labirinto (di Hampton Court):

$$X = \mathcal{C}_{\mathbb{R}^2} S.$$

Stabilire quali tra le seguenti affermazioni sono vere (anche più risposte):

- 1 X è connesso per archi
- X è semplicemente connesso
- 3 X è contraibile
- 4 Nessuna delle precedenti
- 7. Si consideri il gruppo \mathbb{Z}_3 generato dalla rotazione di 120 gradi attorno all'asse verticale della sfera S^2 , e sia S^2/\mathbb{Z}_3 lo spazio delle orbite. Stabilire quali tra le seguenti affermazioni sono vere (anche più risposte):
 - \mathbb{Z}_3 agisce in modo propriamente discontinuo su S^2
 - 2 S^2/\mathbb{Z}_3 è uno spazio di Hausdorff
 - 3 S^2/\mathbb{Z}_3 è uno spazio compatto
 - 4 La proiezione $S^2 \to S^2/\mathbb{Z}_3$ è un rivestimento
 - 5 Nessuna delle precedenti