Prova scritta di Geometria II, a.a. 2016-17 - Prof. P. Piccinni - 26 settembre 2016

- a. Scrivere subito Matricola (obbligatoria), Cognome e Nome.
- b. Utilizzare questi fogli per le risposte. I fogli protocollo sono invece per riflessioni o calcoli, e non vanno consegnati.
- c. Durante la prova non è consentito uscire dall'aula.

Tempo a disposizione: 2 ore esatte

Matricola	.Cognome	.Nome

- 1. Sia $\mathcal{P}(\mathbb{R}^2) = \{X \subseteq \mathbb{R}^2\}$ l'insieme dei sottoinsiemi X di \mathbb{R}^2 , e su ognuno di tali X la topologia euclidea indotta. Stabilire quali tra le seguenti proprietà sono invarianti per omeomorfismi tra sottoinsiemi di \mathbb{R}^2 (anche più risposte):
 - 1 X è chiuso in \mathbb{R}^2
 - X è limitato in \mathbb{R}^2
 - X è chiuso e limitato in \mathbb{R}^2
 - 4 X è connesso ma non connesso per archi in \mathbb{R}^2
 - 5 Nessuna delle precedenti
- 2. Si ricordi che se X è uno spazio di Hausdorff e $K \subseteq X$ un suo sottospazio compatto, allora K è chiuso in X. Se X non è di Hausdorff l'implicazione $K \subseteq X$ compatto $\Rightarrow K \subseteq X$ chiuso può non valere. Stabilire, nello spazio topologico (\mathbb{R}, i_d) , dove

$$i_d = \{\emptyset, \mathbb{R}, (a, +\infty), a \in \mathbb{R}\}$$

- è la topologia della semicontinuità inferiore (non di Hausdorff), quali tra le seguenti affermazioni sono vere (anche più risposte):
 - 1 K = [0, 1] (intervallo con gli estremi) è compatto ma non chiuso in (\mathbb{R}, i_d)
 - |2| K = (0,1) (intervallo senza gli estremi) è compatto ma non chiuso in (\mathbb{R}, i_d)
 - $K = \{0, 1\}$ (solo due punti) è compatto ma non chiuso in (\mathbb{R}, i_d)
 - 4 Nessuna delle precedenti
- 3. Sia X uno spazio topologico con la seguente proprietà: ogni aperto di X è anche chiuso. Stabilire quali tra le seguenti affermazioni sono vere (anche più risposte):
 - 1 Se la topologia non è la topologia banale, allora X è sconnesso
 - 2 Se la topologia non è la topologia banale, allora X è totalmente sconnesso
 - 3 | Se la topologia non è la topologia banale, allora X è sconnesso per archi
 - 4 Nessuna delle precedenti

- 4. Sia X uno spazio topologico connesso per archi e si supponga che $\pi_1(X) \cong \mathbb{Z}$. Stabilire quali tra le seguenti affermazioni sono vere (anche più risposte):
 - X è omeomorfo a S^1
 - Ogni rivestimento di X è regolare X non è contraibile
- 5. Nello spazio topologico $M_n(\mathbb{R}) \approx \mathbb{R}^{n^2}$ delle matrici $n \times n$, con la topologia euclidea, si consideri il sottospazio

$$S = \{ A \in M_n(\mathbb{R}) \text{ con det } A = 1 \}$$

 $(S \text{ si denota spesso con il simbolo } SL(n,\mathbb{R})$ e si chiama "gruppo lineare speciale"). Stabilire quali tra le seguenti affermazioni sono vere (anche più risposte):

- 6. Siano

$$p_1: \widetilde{X}_1 \to X, \quad p_2: \widetilde{X}_2 \to X$$

due rivestimenti di uno spazio connesso per archi X, e si supponga che esista un'applicazione continua suriettiva $p: X_1 \to X_2$, che sia ancora un rivestimento e tale che $p_2 \circ p = p_1$. Sia $x_1 \in X_1$ e $x_2 = p(x_1)$. Stabilire quali tra le seguenti affermazioni sono vere (anche più risposte):

- $\begin{array}{|c|c|c|c|c|}\hline 1 & G_1=p_{1*}[\pi_1(\widetilde{X}_1,x_1)] \ \text{\`e} \ \text{un sottogruppo di} \ G_2=p_{2*}[\pi_1(\widetilde{X}_2,x_2)] \\\hline 2 & G_2=p_{2*}[\pi_1(\widetilde{X}_2,x_2)] \ \text{\`e} \ \text{un sottogruppo di} \ G_1=p_{1*}[\pi_1(\widetilde{X}_1,x_1)] \\\hline 3 & \text{Se } \pi(X) \ \text{\`e} \ \text{abeliano, allora} \ G_1=G_2 \\\hline 4 & \text{Nessuna delle precedenti} \\ \end{array}$

- 7. Si considerino gli spazi proiettivi reali $\mathbb{R}P^n$ e complessi $\mathbb{C}P^n$. Stabilire quali tra le seguenti affermazioni sono vere (anche più risposte):
 - $\mathbb{R}P^n$ è una varietà topologica di dimensione $\ n\in\mathbb{C}P^n$ è una varietà topologica di dimensione $\ 2n$
 - Non esiste un $n \geq 1$ tale che $\mathbb{C}P^n$ sia omeomorfo a $\mathbb{R}P^{2n}$
 - Non esiste un $n \ge 1$ tale che $\mathbb{C}P^n$ sia omeomorfo al rivestimento universale di $\mathbb{R}P^{2n}$
 - Nessuna delle precedenti