Corso di Geometria II, a. a. 2015-16

Soluzione esercizi del foglio n. 4

1. Sia $I = [0, 1] \subset \mathbf{R}$ con topologia euclidea indotta. Sia F l'insieme delle funzioni continue di I in \mathbf{R} .

i) Verificare che $d: F \times F \to \mathbf{R}$, definita ponendo

$$d(f,g) = \sup_{x \in I} |f(x) - g(x)|$$

è una distanza su F.

Sia τ_d la topologia indotta da d su F.

- ii) Provare che per ogni $f, g \in F$ l'applicazione $\alpha: I \to F$, con $\alpha(t) = f + t(g f)$ è continua.
- iii) Dimostrare che (F, τ_d) è connesso per archi.

Soluzione. i) Si verifica facilmente che $d(f,g) \ge 0$ e che d(f,g) = d(g,f) per ogni $f,g \in F$. Proviamo la disuguaglianza triangolare. Risulta per ogni $f,g,h \in F$

$$\sup |f(x) - h(x)| = \sup |f(x) - g(x) + g(x) - h(x)| \le \sup |f(x) - g(x)| + \sup |g(x) - h(x)|.$$

Dimostriamo infine che se d(f,g)=0 allora f=g. Infatti se fosse $f\neq g$, allora $|f(x)-g(x)|\neq 0$, per qualche $x\in I$.

ii) Se è f=g allora $\alpha(t)=f$, per ogni t. Dunque α è una funzione costante, ed è continua. Sia allora $f\neq g$ e sia $t_0\in I$. Si osservi preliminarmente che per ogni $t\in I$ risulta $f+t(f-g)\in F$. Dato comunque un disco aperto $D_{\epsilon}(\alpha(t_0))$, determiniamo $\delta_{\epsilon}>0$ tale che $t\in (t_0-\delta_{\epsilon},t_0+\delta_{\epsilon})$ implichi $\alpha(t)\in D_{\epsilon}(\alpha(t_0))$. L'ultima relazione equivale a

$$f + t(g - f) \in D_{\epsilon}(\alpha(t_0)),$$

cioè

$$\sup |f(x) + t(g(x) - f(x)) - f(x) - t_0(g(x) - f(x))| < \epsilon,$$

ovvero

$$\sup |(t - t_0)(g(x) - f(x))| < \epsilon.$$

Basta allora che

$$\delta_{\epsilon} < \frac{\epsilon}{\sup |g(x) - f(x)|}.$$

- iii) Per ogni $f, g \in F$ l'applicazione α prima definita è un arco di estremi f e g tutto contenuto in F.
- **2.** Nel piano euclideo \mathbb{R}^2 si consideri il sottoinsieme $D = (0, +\infty) \times [0, +\infty)$.
 - i) Determinare Int(D), \overline{D} , Fr(D), Est(D).

Sia ρ la relazione di equivalenza di ${f R^2}$ ottenuta identificando D ad un punto.

- ii) Sia $X = \mathbf{R}^2/\rho$ lo spazio topologico quoziente e sia ξ il punto di X che è immagine di D tramite la proiezione canonica $p: \mathbf{R}^2 \to X$. Determinare la chiusura in X, del sottoinsieme costituito dal solo punto ξ .
 - iii) Stabilire se X è connesso e se è compatto.

Soluzione. i) Risulta:

$$Int(D) = (0, +\infty) \times (0, +\infty); \quad \overline{D} = [0, +\infty) \times [0, +\infty);$$

$$Est(D) = \left[(-\infty, 0) \times \mathbf{R} \right] \cup \left[(0, +\infty) \times (-\infty, 0) \right]; \quad Fr(D) = \left[[0, +\infty) \times \{0\} \right] \cup \left[\{0\} \times [0, +\infty) \right].$$

ii) Osserviamo che gli aperti saturi di \mathbf{R}^2 sono quelli contenenti D e quelli disgiunti da D. Inoltre, se $\vec{x} = (x, y) \notin D$, identificheremo \vec{x} con la sua immagine $p(\vec{x}) \in X$. Dimostriamo che

$$\overline{\xi} = \xi \cup \{(0, y), y \ge 0\} = p(\overline{D}).$$

Infatti $p(\overline{D})$ è chiuso in X in quanto $p^{-1}(p(\overline{D})) = \overline{D}$ è chiuso in \mathbf{R}^2 . Infine ogni $\vec{y} = (0, y) \in \overline{\xi}$: se infatti W è un intorno aperto di \vec{y} in X, $p^{-1}(W)$ è un intorno aperto di \vec{y} in \mathbf{R}^2 e $p^{-1}(W)$ interseca D. Dunque $W = p(p^{-1}(W)) \ni \xi$.

iii) X è connesso in quanto è quoziente di un connesso. Verifichiamo che X non è compatto. Consideriamo in \mathbb{R}^2 il ricoprimento formato dai seguenti aperti:

$$H_n = \{(x, y) \in \mathbf{R}^2 : x > -n, y > -n\}, n \ge 1.$$

Si tratta di aperti saturi di \mathbb{R}^2 . Si verifica subito che la famiglia $\{p(H_n)\}_{n\geq 1}$ è un ricoprimento aperto di X privo di sottoricoprimenti finiti.

3. Sia $\varphi: \mathcal{M}_2(\mathbf{R}) \to \mathbf{R}^4$ l'applicazione:

$$\varphi: \left(\begin{array}{cc} a & b \\ c & d \end{array} \right) \to (a,b,c,d).$$

Sia $\varphi^{-1}\mathcal{E}$ la topologia su $\mathcal{M}_2(\mathbf{R})$ immagine inversa della topologia euclidea. Sia

$$S = \{ A \in \mathcal{M}_{2}(\mathbf{R}) : A = A^{t} = A^{-1} \}$$

il sottoinsieme delle matrici simmetriche e ortogonali.

- i) Verificare che S è chiuso.
- ii) Verificare che S è compatto.
- iii) Determinare le componenti connesse di S.

Soluzione. i), ii), iii) φ è biiettiva e dunque la corrispondenza tra aperti la rende un omeomorfismo. Sia $A = \begin{pmatrix} x_1 & x_2 \\ x_3 & x_4 \end{pmatrix}$. Si ha: $A \in S$ se e solo se $x_2 = x_3$ e

$$\left(\begin{array}{cc} x_1 & x_2 \\ x_2 & x_4 \end{array}\right) \left(\begin{array}{cc} x_1 & x_2 \\ x_2 & x_4 \end{array}\right) = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right).$$

Dunque $A \in S$ se e solo se

$$x_2 = x_3$$
, $x_1^2 + x_2^2 = x_2^2 + x_4^2 = 1$, $x_1x_2 + x_2x_4 = 0$.

Ne segue che necessariamente $x_2(x_1 + x_4) = 0$. Pertanto, se $x_2 = 0$, le uniche possibilità sono le quattro matrici

$$I=\left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right), \ -I=\left(\begin{array}{cc} -1 & 0 \\ 0 & -1 \end{array}\right), \ J=\left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array}\right), \ -J=\left(\begin{array}{cc} -1 & 0 \\ 0 & 1 \end{array}\right).$$

Se invece $x_2 \neq 0$ è necessariamente $x_1 = -x_4$ e pertanto det $A = -x_4^2 - x_2^2 = -1$. Ne segue che

$$S = O^{-}(2) \cup \{I\} \cup \{-I\}$$

è unione del chiusi $O^-(2) = O(2) - SO(2)$ di ${\bf R^4}$ con i due punti I e -I. Ne segue che S è chiuso, ed essendo limitato, anche compatto. S non è invece connesso, avendo le tre componenti connesse $S = O^-(2)$, $\{I\}$, $\{-I\}$

4. Nel piano euclideo \mathbb{R}^2 è assegnata la curva \mathcal{C} , parametrizzata da

$$\alpha(t) = (t^2 - 1, t(t^2 - 1)), \quad t \in \mathbf{R}$$

- i) Verificare che \mathcal{C} è un chiuso, connesso e non compatto in \mathbb{R}^2 (rispetto alla topologia euclidea)
- ii) Posto $X = \mathcal{C} \{O\}$, verificare che X ha tre componenti connesse, tutte non compatte.

Soluzione. i) α è continua, essendolo le sue componenti. \mathcal{C} è un insieme connesso perchè immagine tramite α del connesso \mathbf{R} . Per verificare che \mathcal{C} è chiuso, consideriamo l'equazione cartesiana implicita $y^2 = x^3 + x^2$ di \mathcal{C} , ottenuta eliminando il parametro t tra le due equazioni parametriche, e la relativa funzione polinomiale $\phi(x,y) = y^2 - x^3 - x^2$ da \mathbf{R}^2 a \mathbf{R} . Risulta: $\mathcal{C} = \phi^{-1}(0)$. Dunque \mathcal{C} è chiuso. Infine \mathcal{C} non è limitato, e dunque \mathcal{C} non è compatto. Infine \mathcal{C} è immagine mediante la α continua di \mathbf{R} , che è connesso. Pertanto \mathcal{C} è connesso

- ii) Si ha: $X = \mathcal{C} \{O\} = \alpha(\mathbf{R} \{\pm 1\}) = \alpha((-\infty, -1)) \cup \alpha((-1, 1)) \cup \alpha((1, +\infty))$. Si tratta di tre connessi a due a due disgiunti: dunque sono le tre componenti connesse di X. La prima e la terza sono insiemi non limitati e dunque non sono compatti in \mathcal{C} . La seconda è un insieme limitato ma non chiuso, essendo $\overline{\alpha((-1, 1))} = \alpha[[-1, 1]] = \alpha((-1, 1)) \cup \{O\}$.
- **5.** Nello spazio topologico $X = \{(x, y) \in \mathbf{R}^2 : xy > 0\}$, dotato di topologia euclidea, si consideri la seguente relazione di equivalenza $(x, y) \rho(x', y')$ se e solo se

$$\det \left(\begin{array}{cc} x & y \\ x' & y' \end{array} \right) = 0.$$

- i) Descrivere gli aperti saturi di X e determinare la saturazione dell'aperto $U = \{(x, y) \in X : x > 1, y > 1\}$.
- ii) Verificare che lo spazio topologico quoziente $X/_{\rho}$ non è compatto, determinandone un ricoprimento aperto privo di sottoricoprimenti finiti.
 - iii) Verificare che $X/_{\rho}$ è connesso per archi.

Soluzione. i) Posto $P = (x, y), P' = (x', y') \in X$, si ha: $P \rho P' \Leftrightarrow P, P'$ sono allineati con l'origine O. Ne segue che la saturazione di ogni punto $P \in X$ è la retta r per O e P, privata dell'origine O. Gli aperti saturi di X sono quindi gli aperti di X ottenibili come unione insiemistica di rette per l'origine.

La saturazione di U coincide con X. Per dimostrarlo basterà verificare che ogni retta per O e per un generico punto $P=(x,y)\in X$ interseca U. Assumiamo x,y>0 (altrimenti basta sostituire P con P'=(-x,-y) ad esso equvalente). La retta r per O, P ha equazioni parametriche X=xt,Y=yt. Se $x\geq y$, intersecando r ad esempio con la retta Y=2, si ottiene il punto $(2^{\frac{x}{y}},2)\in U$; se invece $y\geq x$, basta intersecare r con la retta X=2, e si ottiene il punto $(2,2^{\frac{y}{x}})\in U$.

- ii) Per ogni $n \geq 1$ si consideri il punto $P_n = (\frac{1}{n}, 1)$ e la retta r_n per O e P_n . Sia E_n l'aperto (saturo) ottenuto ruotando in verso antiorario una retta per O dall'asse x sino a r_n . Si ha $E_1 \subset E_2 \subset ... \subset E_n \subset ...$ Indicata con $p: X \to X/_{\rho}$ la proiezione canonica, la famiglia $\{p(E_n)\}$ è un ricoprimento aperto di $X/_{\rho}$ privo di sottoricoprimenti finiti.
- iii) Presi \overline{P} , $\overline{Q} \in X/_{\rho}$, possiamo assumere che i punti P, Q si trovino sulla circonferenza unitaria S^1 e nel primo quadrante. Sia \mathcal{C} l'arco di S^1 di estremi P, Q ed $\alpha:[0,1]\to\mathcal{C}$ una funzione continua che descrive tale arco. Allora $p\circ\alpha:[0,1]\to X/_{\rho}$ è una funzione continua di estremi \overline{P} , \overline{Q} .