Scritto di Analisi Matematica 2, 17/02/2012 aa 2011-2012

COGNOME:	NOME:	MATRICOLA:	

Mettere tra parentesi il proprio nome e cognome se non si vuole che il voto e il proprio nominativo compaiano sulla pagina dei risultati dello scritto.

Nei seguenti quesiti a risposta multipla si indichi se le affermazioni fatte sono vere o false (indicando in modo chiaro con V le affermazioni vere, e con F quelle false)

Quesito A1 Sia $\|\cdot\|$ la norma euclidea in \mathbb{R}^2 , $X := B_1(\vec{0}) = \{\vec{x} \in \mathbb{R}^2 : \|\vec{x}\| < 1\}$ e consideriamo la funzione $d: X \times X \to [0, +\infty)$ data da $d(\vec{x}, \vec{y}) := \|\vec{x} - \vec{y}\|$. Allora

- 1) (X, d) è uno spazio metrico.
- 2) (X, d) è uno spazio metrico completo. . . .
- 3) Per ogni $x, y \in B_1(\vec{0})$ si ha d(x, y) < 2. ...

Quesito A2 Siano $f, g \in C^1(\mathbb{R}^2)$ e assumiamo che g(0) = 2, $\lim_{|(x,y)| \to \infty} g(x,y) = +\infty$. Sia infine $Z := \{(x,y) \in \mathbb{R}^2 : g(x,y) = 3\}$. Allora

- 1) Z è chiuso e limitato \dots
- 3) f ristretta a Z ha massimo e minimo assoluti. . . .

Quesito A3 Sia $f(x,y) = \frac{e^{-x^2-y^2}}{x^2+y^2}$ $((x,y) \in \mathbb{R}^2 \setminus \{(0,0)\})$. Allora

- 1) f è sommabile su $B_1(0,0) \setminus \{(0,0)\}.$...
- 2) f è sommabile su $\mathbb{R}^2 \setminus B_1(0,0)$
- 3) f è sommabile su $B_2(0,0) \setminus B_1(0,0)$

COGNOME: NOME: MATRICOLA:

Esercizio B1 Consideriamo il campo di forze definito da

$$F(x,y) := \left(\frac{x}{x^2 - y^2 + 4}, \frac{-y}{x^2 - y^2 + 4}\right).$$

- i) Determinare il dominio di F e stabilire se la forma differenziale associata a F è chiusa;
- ii) Dire qual è l'insieme connesso piú ampio contenente il punto (0,3) in cui F è dotata di primitiva.
- iii) Calcolare il lavoro compiuto da F lungo la circonferenza $\partial B_2((3,0))$ percorsa in senso antiorario.
- iv) Determinare se il flusso di F uscente dalla circonferenza $\partial B_2((3,0))$ è negativo, positivo, o nullo.

(Si suggerisce di usare, dove opportuno, i teoremi della divergenza e di Stokes, al fine di evitare conti di integrali particolarmente laboriosi.)

COGNOME: NOME: MATRICOLA:	
---------------------------	--

Esercizio B2 Sia $f\in C^0(\mathbb{R}^2\setminus(0,0);\mathbb{R})$ definita da

$$f(x,y) := \frac{x^2y^2 + x^2 + y^2 - 2x^3}{(x^2 + y^2)}$$

- i) Stabilire se f può essere estesa ad una funzione continua su tutto $\mathbb{R}^2.$
- ii) Nel caso di risposta affermativa al punto (i) stabilire se la funzione cosí ottenuta è derivabile su tutto \mathbb{R}^2 .
- iii) Nel caso di risposta affermativa al punto (i) stabilire se la funzione cosí ottenuta è differenziabile su tutto \mathbb{R}^2 .

COGNOME:	NOME:	MATRICOLA:	
COGITOMIL.	TIONIE.	WITH THE OBTA.	

Esercizio B3 Sia $f(x,y) := (x+y)^3 - 6(x+y) - x^2$ per $(x,y) \in \mathbb{R}^2$.

- i) Trovare i punti stazionari (ossia critici) di f, e per ognuno di essi stabilire se si tratti di punto di massimo relativo, di massimo assoluto, di minimo relativo, di minimo assoluto o punto di sella.
- ii) Determinare se f ristretta all'insieme $D:=\{(x,y)\in\mathbb{R}^2:\ x=y\}$ ammette massimo e minimo assoluti, e in caso affermativo trovare tali punti.
- ii) Determinare se f ristretta all'insieme $D:=\{(x,y)\in\mathbb{R}^2:\ x\geq 0,\ y\geq 0,\ 3\leq x+y\leq 4\}$ ammette massimo e minimo assoluti, e in caso affermativo trovare tali punti.

COGNOME:	NOME:	MATRICOLA:	

Esercizio B4 Sia D il dominio di \mathbb{R}^3 definito da

$$D := \{(x, y, z) \in \mathbb{R}^3 : 0 \le z \le 3, \ 0 \le \sqrt{x^2 + y^2} \le z^2 + 2\}.$$

Calcolare

$$\int_{\mathbb{D}} |x| \, dx \, dy \, dz.$$

Esercizio Facoltativo Sia l^1 lo spazio delle successioni $\{a_n\}_{n\in\mathbb{N}}$ tali che $\sum_n |a_n| < \infty$ e sia

$$T: l^1 \mapsto l^1$$
, definita da $T(\{a_n\}) = \{1, a_1, a_2, \dots\},\$

ossia $T(\{a_n\})$ è la successione che ad ogni $n \geq 2$ associa a_{n-1} , a che ad 1 associa 1. Si stabilisca se T ammette un punto fisso, ossia se esiste $\{a_n\} \in l^1$ tale che $T\{a_n\} = \{a_n\}$.

Si ripeta l'esercizio nel caso in cui

$$T: l^1 \mapsto l^1$$
, sia definita da $T(\{a_n\}) = \{7, \frac{a_2}{2}, \frac{a_3}{3}, \ldots\},$

ossia $T(\{a_n\})$ sia la successione che ad ogni $n \geq 2$ associa a_n/n , a che ad 1 associa 7. [Suggerimento: se il punto fisso $\{a_n\}$ esiste si ha $T^k(\{a_n\}) = \{a_n\}$ per ogni $k \in \mathbb{N}$]