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THE TORIC VARIETY ASSOCIATED
TO WEYL CHAMBERS

BY
C. PROCESI

SUMMARY

We study the action of the Weyl group on the cohomology of the toric variety
associated to the decomposition of Weyl chambers.

Introduction

Let V be a finite dimensional real Euclidean space, ® C V a root system, W
its Weyl group. In V' we have the lattice A = {v € V | (v,a) € Z, Va € &)}
which defines an integral structure and we can consider the rational polyhedral
decomposition of V' given by Weyl chambers, i.e. for each set A of simple roots
in ¢ we consider the cone Ca = {v € V | (v,a) >0 Va € A} and its faces.

According to the combinatorial theory of toric varieties this decomposition
defines a smooth projective torus embedding T of the torus“T having as
character group the lattice spanned by &.

In the cases of the root system of a semisingle Lie algebra or of the restricted
roots of a symmetric variety, T is a maximal split torus of the adjoint group and
the variety T plays a major role in the description of the “minimal wonderful
compactification” (cf. [3]).

The purpose of this paper is to deduce a formula for the characters of the
representations of W on the cohomology groups of T. The interest for this
motivation comes from the results of [2], [3] on the cohomology of complete
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symmetric varieties.
We give a general formula in paragraph 2 (THEOREM 2) and also a simpler
computation for type A, (following a suggestion of DE CoNCINI) in paragraph 3.
We illustrate the effectiveness of this method computing explicitely for n < 5.
This work was essentially done during the conference on the symmetric group
held in Durham in the summer 85 and it is the result of very useful discussions
had with C. DE Concini, A. Garsia, P. HanLon, R. STANLEY during this
meeting.

1. Toric varieties

We recall briefly the method used by Danilov to compute the cohomology
ring of toric varieties [1].

Let T be a torus, T its character group, V = homz(T, R). Let us also
give a smooth torus embedding T and its associated rational polyhedral
decomposition of V. Consider next the set of integral vectors {vq} generating
the 1 dimensional cones of the decomposition.

To each such vector vq is associated a divisor D, in T and we let [vq] €
H*(T,Q) be the class dual to D,.

Consider next the polynomial ring A = Q[z,] in variables z, corresponding
to the vectors v,.

In A we condiser two sets of polynomials :

I) The monomials Ms = z4,a, ... Zq, for each set

F R LTI R

of vectors which do not generate a cone in the given r.p.d. .
IT) The linear forms
B, = Z X(va)Za

where y varies in the character group P
The cohomology of T is given by the following THEOREM 1 (DaNiLov). The
map Q[za] — H*(T) given by 2, — [v4] induces an isomorphism

Qlza)/I ~ HY(T) :

where I is the ideal generated by all the relations of type I) and II).

In fact the theorem is more precise.

Let A be the quotient of Q[z4] modulo the relations of type I) only.

A is a Reisner- Stanley algebra associated to a simplicial decomposition of
a sphere. So A is Cohen ’\/Iacaulay and it has a canonical basis formed by the
monomials with support in a cone of the given decomposmon

Furthermore if x1, x2,... yXm are a basis of T the elements s Bsgy i,
R, . are a regular sequence in A.
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2. The Basic toric varieties

We now let T be the torus embedding associated to the decomposition into
Weyl chambers. We apply all the results of the previous section keeping also
the same notations. The computation follows the following steps :

a) Let B denote the subalgebra of A generated by the elements R, (or by
Ry.,..., Ry,.). Since these elements form a regular sequence B is isomorphic
to the symmetric algebra S[U] on the vector space spanned by the R s. Such
a space is W isomorphic to i Rz Q.

b) A is a free B module. A basis of 4 over B is obtained liftig a @ basis
of A/BtA (B* the augmentation ideal of B). Since W acts in a semisimple
way we can construct a W representation M in A which maps isomorphically
to A/BtA. Therefore the multiplication M - B induces a W isomorphism
A=M ®q B.

c) As a graded vector space H*(T,Q) = A/BT4 = M. Let us now
introduce a notation. If N = @ N; is a graded vector space define Py(t) =
> dim(N;)t* its Poincaré series. If each N; is a representation of a group W we

set
Ry(t) = ) [Nt

where [V;] is the class of N; in the character ring of W. The series Ry(t) has
his ccefficients in this ring.
The previous discussion gives immediately

LEMMA.

R=(t) = RH‘(T,Q)(t) - Rp(t).
Proof. — From the formulas 4 ~ M ®q B
M ~ H(T, Q).

We make now some further remarks.

Since B ~ S[U] and U is isomorphic to the reflection representation of W
we can apply Chevalley’s theorem and we have : g

S[U] is a free module over S[U]W.
The same analysis as before gives

S[U] ~ N @q S[U]™,
for a representation N of W and hernce :
RB(t) = RN(t) - RS[U] Wi(t).

In the case of a semisimple Lie algebra NV is isomorphic, as graded representa-
tion, to the cohomology of the flag variety.
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Next we wish to sompute R (t) in a different way as done by GaRrsia,
STANTON [6].

The set X of vectors {vq} is the set of fundamental weights. Fix a Weyl
chamber and its weights w;,ws,...,wn. Then X is the union of the disjoint
orbits

Wuw,, Wws,..., Wwp,.

Any set of vectors vq,,...,Vs, Which is contained in a closed chamber is in the
W orbit of a subset of wy,...,wn.

Thus A has, as basis, the union of the W orbits of the monomials in
W1, W2yeeoyWpp.

For every subset {w;,,...,wi,} = J of wy,ws,...,wnm we collect all the
monomials involving the elements of J exactly and let C; be the span of all
such monomials. If W; is the subgroup of W fixing all elements in J (or J
equivalently by general facts) we have that as representation

A=, md¥ (C))

where W acts trivially on C}.

C is just the monomial in the elements {w;,,...,w;, } multiplied by the
polynomial ring in these elements, thus setting as usual |J| = &, the number of
elements of J, we have.

Setting also My = Ind{“fj (1)

Rz(t)=) Rnay (1)
7

1
= Z[_ijltl'” (_1-—t—)|‘71—

i

= f;IT);Z[MJ]tU‘(l e
J

Now we can view 1/(1 — t)™ as the Poincaré series of S[U] thought as a
graded vector space.

So s

(—1—:1"”—,,, = Pn(t) - Pgyyw (1)

Since
Pgyyw (t) = Rgyyw (1)
we have the identity

o M - g Py (t) - P ()
JC{1,2,...,m}
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hence THEOREM 2.

Y Mt = ™ Pae) = By ) (8) - Rov(t).
JE{ L, om}

Since Ry(t) has constant term 1 it is invertible in the ring of power series
and this given a formula for Ry 7.0)(t) in terms of Ry(t), Py(t) and the
[M]'s.

Alternatively one can view the identity of THEOREM 2 as defining R H+(T.Q) (t)l
recursively. As in [6] one can see immediately, setting ¢ = 1 that the polynomial

3 My T2 — gyl
x

is associated to a graded form of the regular representation of W.

3. Type Ap+1

In this case we can follow a more direct approach which is also more effective
for the computations. Let T,, denote the variety in consideration (type Any1).
We give a formula for its cohomology recursively on n.

It is easily verified that T, can be obtained from projective space P™ in a
simple way.

Solet X = P" = {(ao,...,a,) in homogeneous coordinates}. The symmetric
group Snp+1 acts on P" by permuting the coordinates.

For each subset I of {0,1,...,n} we can consider the subspace m; of P™
given by the vanishing of the coordinates in I.

We refer to such a subspace as a coordinate plane. Clearly if 0 € Sy we
have

o(m1) = To(n)

and the stabilizer of 7; equals the stabilizer of I.
If I ={0,1,2,... k} this stabilizer is the subgroup Sk4+1 X Sp—x embedded
in Sn41 in the obvious way. -

Let
X = U I
[ Il=n—k

X} is the union of (711 k-dimensional coordinate planes permuted transitively
k+1

by Sn+1. We want to define a sequence of (n — 1) blow ups of P* which we
denote

Pn‘_}fohyl(_“_(_yn-il'

By definition ¥ is the blow up of P" along X, while Y**! is the blow up of
Y along the proper transform X;;, of Xitiin Y?,
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It is easy to verify that (cf. [8], [9]) :
1) )?,-.H is the disjoint union of the proper transforms #; of the i + 1-
dimensional coordinate planes.
2) Each 71(]I| = i+1) is smooth and isomorphic to the toric variety Ty .
3) The action of S;43 X Sh_;—; on T{0,1,...,i+1} 18 only via the first factor
and for S;4+2 coincides, in the isomorphism of part 2, with the standard action.
4) Y™~? is isomorphic to T,,.
We can visualize the sequence of operations in the combinatoric of torus
embedding :
We start with a polyhedral decomposition of R® in n + 1 cones which
combinatorially induces on the unit sphere the structure of a standard simplex
and the we stepwise construct the baricentric subdivision

g n=2

The computation of the cohomology-of Zp =~ Y"=2 can then be done
inductively by the following remarks :
1) In general if we blow up a smooth subvariety 4 of codimension k in

a smooth complete variety B the cohomology of the blow up B is additively
isomorphic to

H*(B)® H*(A) @ HT(p*)

where P*~1 is projective space and H* denotes the strictly positive cohomol-
ogy.

2) If a group G acts on B preserving A the previous isomorphism is
compatible with the natural group actions of G on H*(B), H*(B) and the
trivial action on H*(P*~1). The fact that G acts trivially a P*~ follows from
the fact that G acts linearly on the natural boundle N of 4 in B and so fixes
the Chern class of the tautological bundle on the projectification of N.

In our case we have therefore :

H*(Y')= H*(P")@H*(X,) ® H*(P* 1)
DH(X1) @ HY (P 2)@ .-
@H* (X)) @ HH(Pr-i-1),
By the previous analysis we get furthermore that as Sn+1 representation

H*(X;) ~ Ind 3™+ xS, HY(T).
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This gives the required inductive formula for T, = Y2

n—2

HYTn) = H*(P")@ Y (Indg™* Sisy x Suci H*(T:)) @ HH(P™—1),

1=0

The most convenient way to treat this formula is obtained using the coding of
representations of the symmetric groups S,4; by Schur symmetric functions
(in > n + 1 variables). In this coding the representation associated to a Young
diagram A with n+1 boxes is given by the corresponding Schur function Sy, the
convertion is that if A = n 4 1 the representation is the trivial representation
and Sp41 is the sum of all monomials of degree n + 1.

The convenience of this coding is given by the well known fact [7].

If we are given two representations Va, W, of Sy and S,11_4 corresponding
to Young diagrams and g then the symmetric function corresponding to

Ind§:+1 Xsn+1_kVA ® VV‘,

1895 - 5

This is a particularly effective rule in many cases where the multiplication
of Schur functions is easy to understand.

In our case we will need multiplications of type Sx - Sk, h a number (S
corresponds to the trivial representation).

This is given by the simple rule : If |A| = &

Sy By=3 8,

where )\; runs over all diagrams with A + k boxes which are contained in the
diagram

(2.e. if A has m rows and are obtained by removing m boxes from the rim (), 4)
is obtained from A by adding a first column of length m + h).

We now write the graded character series with coefficients symmetric func-
tions associated to our varieties. Since the cohomology is all even we give degree
2 to the variable ¢. (Writing ' instead of ¢2%).
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Let A, denote the series corresponding to H*(T,). The basic formula is

A n—2 n—i—1
A, = n+1 Zt' * Z Sn-niAi( Z tk)-
=0 1=0 k=1
We can explicit easily for n < 5 we use starter notations indicating simply
by [kik2...] = Sk,k,.. or the corresponding representation of the symmetric
group :
Ay =[1]
A =2](1+¢)

Ay = [3)(1 + 2t + 1) 4 [21]¢

Az = [4](1 +3t +3¢% + %) + [31](2¢t + 2¢6) + [22](¢ + )

Ag = [5](1+)* + [41]3¢(1 + 2t + £7) + [32]¢(2 + 5t + 212)
+ [311]¢% + [221)¢?

As = [6](1+1)° + [51]4t(1 + ¢)° + [42]3¢(1 + 4¢ + 442 + t*)
+ [33]¢(1 + 5t + 5¢° + #7)
+[321]4¢%(1 + ¢) + [411]¢%(1 + ¢) + [222]¢%(1 + ).
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