ERC-2017-StG
Higher Co-dimension Singularities: Minimal Surfaces and the Thin Obstacle Problem
M. Focardi, E. Spadaro.
Emanuele On the measure and the structure of the free boundary of the lower dimensional obstacle problem.
Arch. Ration. Mech. Anal. 230 (2018), no. 1, 125-184. link
C. De Lellis, A. Marchese, E. Spadaro, D. Valtorta.
Rectifiability and upper Minkowski bounds for singularities of harmonic Q-valued maps.
Comment. Math. Helv. 93 (2018), no. 4, 737-779. link
M. Focardi, F. Geraci, E. Spadaro.
Quasi-monotonicity formulas for classical obstacle problems with Sobolev coefficients and applications.
J. Optim. Theory Appl. 184 (2020), no. 1, 125-138. link
E. Spadaro.
Mean-convex sets and minimal barriers.
Matematiche (Catania) 75 (2020), no. 1, 353-375. link
M. Focardi, E. Spadaro.
How a minimal surface leaves a thin obstacle.
Ann. Inst. H. Poincaré Anal. Non Linéaire 37 (2020), no. 4, 1017-1046. link
M. Focardi, E. Spadaro.
The local structure of the free boundary in the fractional obstacle problem.
Adv. Calc. Variations (to appear). link
M. Morini, M. Ponsiglione, E. Spadaro.
Long time behaviour of discrete volume preserving mean curvature flows.
Submitted. link