Γ	Calcolo Differenziale – Scritto del 12/1/2015	$oxed{A}$
	COGNOME: NOME: NOME:	
r	fei primi 3 esercizi mettete solo una croce su vero V, falso F o ?. In questo tipo di esercizi le risposte errate venalizzate. Nelle domande aperte l'esercizio va svolto in modo completo, in particolare indicate nello svolgime regomenti di teoria utilizzati.	
	Esercizio n. 1 – Siano f definita e derivabile due volte su tutto \mathbb{R} i) sia $f > 0$ e f convessa in \mathbb{R} allora la funzione f^2 è convessa in \mathbb{R} \boxed{Y} \boxed{F} ? ii) sia $f < 0$ e f concava in \mathbb{R} allora la funzione f^2 è concava in \mathbb{R} \boxed{V} \boxed{Y} ?	
	Esercizio n. 2 – Sia $f(x) = \frac{x}{x^2+1}\sin(x)$	
	i) La funzione f è limitata in \mathbb{R} \mathbf{X} \mathbf{F} ? ii) La funzione f è pari \mathbf{X} \mathbf{F} ?	?] [?]
i	Se (a_n) e (b_n) sono due successioni tali che $\lim_{n\to+\infty}a_n=-\infty$, $\lim_{n\to+\infty}b_n=-\infty$ allora $\lim_{n\to+\infty}(a_n^2b_n)=-\infty$ Se (a_n) e (b_n) sono due successioni tali che $\lim_{n\to+\infty}a_n=+\infty$, $\lim_{n\to+\infty}b_n=+\infty$ allora $\lim_{n\to+\infty}(a_n-b_n)=0$ V Domande aperte	?
	ESERCIZIO 4 Sia f la funzione definita in tutto $\mathbb R$ nel modo seguente	
	$f(x) = \begin{cases} \cos(Ax) + e^{-Bx^2} & \text{se } x \le 0 \\ x^2 + Bx + A & \text{se } x > 0 \end{cases}$	
;		
i	Determinare valori dei parametri $A, B \in \mathbb{R}$ per i quali la funzione risulti continua in $(-\infty, +\infty)$) Determinare valori dei parametri $A, B \in \mathbb{R}$ per i quali la funzione risulti derivabile in $(-\infty, +\infty)$ i) Determinare valori dei parametri $A, B \in \mathbb{R}$ per i quali la funzione risulti limitata in $(-\infty, 0)$	
	JUNICO PROPLEMA E' PFR X=0	
الم	$M = f(x) = \lim_{x \to b^+} x^2 + Bx + A = A \qquad \lim_{x \to a^-} f(x) = \lim_{x \to a^-} c_{D}(Ax) + e^{-Bx^2} = Z$	
U	UPI P E' CONTINUAS A=7 P∈R	
' 1	$f'(x) = \begin{cases} -A \sin(Ax) - zPx e^{-Px^2} & x < 0 \\ zx + P & x > 0 \end{cases}$	
	$\left\{ \left(\lambda \right) ^{2}\right\} =$	
	$(\chi_{\chi} + P)$	
è	(E' GNTINA E FINITS CIM FI(x) ALGORA & Z' DERIVA	WILE
=) SE lim f(x) + lim f(x) => f NON & DERITABILE (GNS)	(G, D)
	+ (1/x) = Lim - A sun (Ax) - 2 (2xe - 6x2 = 2), Lim (1/x) = B => B=0	
	ofriv. $\Leftrightarrow \beta = 0 A = 7$	
ii)	CD(AX) E LIMITATO Y A ER MENTRE L-BX2 E'	LIMIT
	t solo se -b <0 ontro b>0	
1_	17 17 17 0 0542 050 050 050 050 050 050 050 050 050 05	
	Um e'Bx2 = + = > f wow living => f rimitate is f	'❤),っ R R .

()

```
<sup>2</sup> ESERCIZIO 5 Sia f(x) = (1+x)^{1/3} - \frac{x}{3}
```

i) Dimostrare che per ogni $x \in [0,1]$ vale la disuguaglianza $f(x) \leq 1$

ii) Scrivere il polinomio di Taylor di secondo grado $P_2(x)$ di punto iniziale $x_0 = 0$ della funzione f(x)

$$\frac{1}{(1+\lambda)^{\frac{2}{3}}} < 1 \iff 1 < (1+\lambda)^{\frac{1}{3}} \iff 1 < 1+\lambda \iff \lambda > 0 \quad \text{form}$$

$$\frac{1}{(1+\lambda)^{\frac{2}{3}}} < 1 \iff 1 < (1+\lambda)^{\frac{1}{3}} \iff 1 < 1+\lambda \iff \lambda > 0 \quad \text{form}$$

$$\frac{1}{(1+\lambda)^{\frac{2}{3}}} < 1 \iff 1 < (1+\lambda)^{\frac{1}{3}} \iff 1 < 1+\lambda \iff \lambda > 0 \quad \text{form}$$

$$\frac{1}{(1+\lambda)^{\frac{2}{3}}} < 1 \iff 1 < (1+\lambda)^{\frac{1}{3}} = \frac{1}{3} \left[\frac{1}{(1+\lambda)^{\frac{2}{3}}} - \frac{1}{3} - \frac{1}{3} \right] = 0$$

$$\frac{1}{(1+\lambda)^{\frac{2}{3}}} < 1 \iff 1 < 1+\lambda \iff \lambda > 0 \quad \forall \lambda > 0$$

ESERCIZIO 6 Sia
$$f(x) = x^2 \exp(-x^2)$$

i) Calcolare $\lim_{x\to-\infty} f(x)$ e $\lim_{x\to+\infty} f(x)$

ii) Determinare eventuali punti di massimo relativo e di minimo relativo

iii) Dire se esistono massimi e minimi assoluti

I)
$$\lim_{x \to +\infty} x^2 e^{-x^2} = \lim_{x \to +\infty} x^{-x^2} = 0$$
 IJ FATTI $x^2 e^{-x^2} = \frac{x^2}{e^{x_2}}$ $\text{ output so } x^2 = 1$
 $\lim_{x \to +\infty} \frac{x^2}{e^{x_2}} = \lim_{x \to +\infty} \frac{1}{e^{x_2}} = 0$ $\text{ classe } x \text{ output so } x^2 = 1$

A JALOGANGJIE $\lim_{x \to +\infty} \frac{x^2}{e^{x_2}} = \lim_{x \to +\infty$