
Proper Orthogonal Decomposition:

Introductory Remarks 1

1 Generalities

Let X be a separable, real Hilbert space, and y ∈ L2(0, T ;X), typically the
trajectory of a differential equation, and typically X = L2(Ω), or X =
H1

0 (Ω), or X = H1(Ω). The POD-operator

R : X → X

associated to y is given by

(1.1) Rψ =

∫ T

0

〈y(t), ψ〉X y(t)dt.

Clearly R is a bounded selfadjoint, nonnegative, operator, which can be
expressed as

R = YY∗,

where
Y : L2(0, T ; R) → X

is given by

Yv =

∫ T

0

v(t)y(t)dt,

with adjoint Y∗ : X → L2(0, T ; R)

Y∗z(t) = 〈y(t), z〉X .

We further define
K : L2(0, T ) → L2(0, T )

by K = Y∗Y , i.e.

(Kv)(t) =

∫ T

0

〈y(t), y(s)〉X v(s)ds.
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Note that K is a bounded, nonnegative selfadjoint operator. Moreover for
the kernel of the integral operator K we have∫ T

0

∫ T

0

|〈y(t), y(s)〉X |2ds dt =

∫ T

0

|y(t)|2dt
∫ T

0

|y(s)|2ds <∞,

hence K is a Hilbert-Schmidt operator, in particular K is a compact operator
with eigenvalues λ1 ≥ λ2 ≥ λ3 . . . ≥ 0.

Theorem 1.1. Let y ∈ L2(0, T ;X). Then the operator K is compact. More-
over, except for possibly 0, K and R possess the same eigenvalues which are
positive with identical multiplicities and ψ is eigenvector of R if and only if
Y∗ψ = 〈y(t, ·), ψ〉X y(t, ·) is an eigenvector of K.

Proof. Since the kernel of K is square integrable on (0, T )×(0, T ) the integral
operator K is Hilbert-Schmidt and therefore compact. Its non-zero spectral
values are necessarily eigenvalues with finite multiplicity and their only pos-
sible accumulation point is 0. If ϕ is an eigenvector of K with eigenvalue
λ 6= 0 then Y∗Yϕ = λϕ and thus Yϕ is an eigenvector of R. Analogously, if
ψ is an eigenvector of R with eigenvalue λ 6= 0 then Y∗ψ is an eigenvector
of K. Let λ 6= 0 be an eigenvalue of K and let ker{K − λI} = span{ϕi}ri=l,
with {ϕi}ri=l linearly independent. Then {Yϕi}ri=l are linearly independent.
If not, then there exist αi with Πr

i=l αi 6= 0 such that
∑r

i=l αi Yϕi = 0. This
implies

0 =
r∑
i=l

αiKϕi = λ
r∑
i=l

αi ϕi,

which is impossible, since λ 6= 0 and {ϕi}ri=l are linearly independent. Hence
dimker{R− λI} ≥ dimker{K−αI}. The converse inequality follows anal-
ogously and hence

dimker{R − λI} = dimker{K − λI}.

Definition 1.1. The nontrivial, decreasing eigenvalues of R are called the
POD eigenvalues associated to y. The corresponding orthonormalized eigen-
vectors are called the POD eigenvectors.
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Remark 1.1. The POD eigenvectors depend on X. - If y ∈ L2(0, T ;H) ∩
L2(0, T ;V ) then X = Hand X = V lead to different POD bases.

Remark 1.2. (Method of snapshots). Let y ∈ C(0, T ;X) ⊂ L2(0, T ;X) and
choose time instances 0 ≤ t1 ≤ . . . ≤ tn = T. Set

yi = y(ti),

R : X → X

(1.2) Rψ =
n∑
i=1

〈yi, ψ〉yi

If X = RN , and yi ∈ RN , column vectors, then

R = Y Y ∗, where

Y = (y1, . . . , yn) ∈ RN×n.

In fact,

(Rψ)k =
∑
i

∑
j

〈yji, ψj〉yki =
∑
j

∑
i

yki yji ψj.

=⇒ Rfinite = Y Y ∗ ∈ RN×N .

Y : Rn → X , Y(v) =
n∑
i=1

vi yi

Y∗ : X → RN , Y∗z = col〈z, yi〉 , R = YY∗.

K = Y∗Y : Rn → Rn

(Kv)j =
n∑
i=1

vi〈yi, yj〉X , correlation matrix.

If X = RN then Kfinite = Y ∗Y ∈ Rn×n.
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In numerical practice the POD eigenvalues/eigenvectors are calculated
from Kfinite respectively Rfinite, whichever has smaller dimension. From the
proof of Theorem 1.1 we can transfer between them. In fact, if

Kvk = λkvk,

then

RYvk = λkYvk , i.e.

ψ̃k = Yvk =
n∑
i=1

(vk)i yi

satisfies
Rψ̃k = λk ψ̃k,

i.e. ψ̃k is a POD-eigenvector with POD-eigenvalue λk.
If |vk|Rn = 1 then

|ψk|2X = |Yvk|2 = (Y∗Yvk, vk)Rn = (Kvk, vk) = λk|vk|2 = λk,

and hence ψk = 1√
λk
Yvk is a normalized eigenvector. Note that the method

of snapshots coincides with the ”continuous POD” calculations explained
above, if y is piecewise constant.

For reasons of scaling
∫ T

0
in (1) is sometimes replaced by 1

T

∫ T
0

, and
∑n

i=1

in (1.2) by 1
n

∑n
i=1 . Some authors investigate ”weighted POD”, i.e. (1.1) is

replaced by

(1.3) Rw(ψ) =

∫ T

0

〈y(t), ψ〉X y(t)w(t) dt,

for a nonnegative weight function w. If one admits distributions for w, then
(1.2) can be considered as a special case of (1.3).

Remark 1.3. Consider the linear control system

(1.4) ẋ = Ax+Bu , A ∈ Rn×n , B ∈ Rn×1,

For u = δ, the Delta-distribution with weight at 0, xδ = etAB is the input
response. The associated POD operator is

R = Wc =

∫ T

0

etABB∗etA
∗
dt ∈ Rn×n,
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which in control theory is referred to as the controllability matrix. System
(1.4) is controllable if rank(Wc) = n .

In the following plot the decay of the POD eigenvalues is plotted. We
point at the rapid decay of these values which is typical for many POD-
computations.
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2 Properties of POD

Theorem 2.1. The POD-eigenvectors associated to y ∈ L2(0, T ;X) are
characterized by

(2.1)

∫ T

0

〈y(t), ψ〉2X
〈ψ, ψ〉X

dt = max
ϕ∈X\{0}

∫ T

0

〈y(t), ϕ〉2X
〈ϕ, ϕ〉X

dt.

For l ≥ 1 the vector ψl+1 is the solution to

(2.2)

∫ T

0

〈y(t), ψ〉2X
〈ψ, ψ〉X

dt = max
ϕ∈ span(ψ1,...,ψl)⊥

∫ T

0

〈y(t), ϕ〉X
〈ϕ, ϕ〉X

dt.

Proof. Note that (2.1) (equivalently (2.2)) is equivalent to

(2.3)
〈Rψ,ψ〉X
〈ψ, ψ〉X

= max
ϕ∈X\{0}

〈Rϕ,ϕ〉X
〈ϕ, ϕ〉X

.
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Clearly ψ1 solves (2.3). Alternatively, if ψ is solution to (2.3), then for
ϕ ∈ X \ {0}

fϕ(s) =
〈R(ψ + sϕ), ψ + sϕ〉X
〈ψ + sϕ, ψ + sϕ〉X

.

Note that fϕ(s) ≥ fϕ(0), for all s, and hence, since fϕ is differentiable,

f ′ϕ(0) = 0,

which can equivalently be expressed as

〈Rψ, ϕ〉〈ψ, ψ〉 = 〈Rψ, ψ〉〈ψ, ϕ〉, for all ϕ ∈ X.

Thus λ = 〈Rψ,ψ〉
〈ψ,ψ〉 is an eigenvalue of R with associated eigenvector ψ. More-

over ψ solves (2.3), so λ is the largest eigenvalue.

Remark 2.1. Thus, among all normalized vectors, ψ1 is in average most
aligned to y.

Theorem 2.2. Let {ψk} be the POD-vectors associated to R in X. Then,
for all l ≥ 0 and all orthonormal families {ϕk} we have

(2.4)

∫ T

0

|y(t)−
l∑

k=1

〈y(t), ψk〉X ψk|2dt ≤
∫ T

0

|y(t)−
l∑

k=1

〈y(t), ϕk〉X ϕk|2dt,

and

(2.5)

∫ T

0

|y(t)−
l∑

k=1

〈y(t), ψk〉Xψk|2dt =
∞∑

k=l+1

λk l→∞−−−−→ 0

Proof. Let vk = 1√
λk
Y∗ψk denote the POD-vectors of K. From Hilbert-

Schmidt theory the kernel k̃(t, s) = 〈y(t), y(s)〉X can be expressed as

k̃(t, s) =
∞∑
k=1

λk vk(t) vk(s).
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Therefore

|y|2L2(0,T ;X) =

∫ T

0

〈y(t), y(t)〉X dt =

∫ T

0

k̃(t, t)dt

=
∞∑
k=1

λk

∫ T

0

v2
k(t)dt =

∞∑
k=1

λk,

and thus
∑∞

k=1 λk <∞. Moreover

∫ T

0

|y(t)−
l∑

k=1

〈y(t), ψk〉X ψk|2dt =

∫ T

0

|y(t)|2dt−
l∑

k=1

∫ T

0

〈y(t), ψk〉2Xdt

=

∫ T

0

|y(t)|2dt−
l∑

k=1

〈Rψk, ψk〉X =

∫ T

0

|y(t)|2dt−
l∑

k=1

λk,

(2.6)

so that (2.5) follows, and

(2.7) y(t) =
∞∑
k=1

〈y(t), ψk〉X ψk for a.e. t ∈ (0, T ).

Let Y = cl span{ψk}, and X = Y
⊕

Y ⊥.

Now let {ϕk} be an arbitrary orthonormal family in X. Then

(2.8)

∫ T

0

|y(t)−
l∑

k=1

〈y(t), ϕk〉ϕk|2Xdt = |y(t)|2L2 −
l∑

k=1

∫ T

0

〈y(t), ϕk〉2X dt.

Since y(t) ∈ Y we henceforth assume that {ϕk} ⊂ Y. For all k there exists
{ϕnk}∞n=1 ⊂ span{ϕk} such that

ϕnk → ϕk in X as n→∞,

and w.l.o.g, for all n

{ϕnk}1≤k≤l is an orthonormal set.

We can then pass to the limit

lim
n→∞

∫ T

0

〈y(t), ϕnk〉2Xdt =

∫ T

0

〈y(t), ϕk〉2X dt
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and (2.4) follows, provided (2.4) is verified for orthonormal sets {ϕk}1≤k≤l ⊂
span{ψk}∞k=1. Thus let {ϕk}1≤k≤l be an orthonormal set in span{ψk}∞k=1.
Then there exists n0 ≥ l , such that ϕk ∈ span{ψi}n0

i=1, for 1 ≤ k ≤ l. We
complete {ϕk}lk=1 to an ONB {ϕk}n0

k=1 of span{ψi}n0
i=1. Let [Rψ] (resp. [Rϕ])

denote the matrix representation of R|span{ψi}n0
i=1 with respect to the basis

{ψ}n0
k=1 (resp. {ϕ}n0

k=1). Then

[Rψ] =



λ1

. . . 0
λl

λl+1

0
. . .

λn0


.

Then

[Rψ] = A−1[Rϕ]A =:

(
P Q

R S

)
,

where P is of dimension l × l and A is the orthogonal matrix characterizing
the change of basis. Note that

(2.9)
l∑

k=1

∫ T

0

〈y(t), ϕk〉2X dt =
l∑

k=1

(Rϕk, ϕk)X = trace(P ),

(2.10)
l∑

k=1

∫ T

0

〈y(t), ψk〉X dt =
l∑

k=1

(Rψk, ψk)X =
l∑

k=1

λk.

Let

A =

(
A1 A2

A3 A4

)
,

where A1 is l × l. Since A−1 = AT we find

P = AT1


λ1 0

. . .

0 λl

+


λl+1 0

. . .

0 λn0

A3.
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For each 1 ≤ i ≤ l, noting that
∑n0

k=1 a
2
ki = 1,

pii =

n0∑
k=1

λk a
2
ki ≤

l∑
k=1

λk a
2
ki + λl(1−

l∑
k=1

a2
ki)

≤
l∑

k=1

(λk − λl)a
2
ki + λl,

and thus

trace(P ) ≤
l∑

i=1

l∑
k=1

(λk − λl)a
2
ki + lλl

≤
l∑

k=1

(λk − λl)
l∑

i=1

a2
ki + lλl ≤

l∑
k=1

(λk − λl) + lλl =
l∑

k=1

λk.

This inequality, together with (2.8)-(2.10), imply (2.4).

Inequality (2.4), in fact, characterizes the POD-vectors. We have

Theorem 2.3. Let {ψk}k≥1 be an orthonormal family in X so that (2.4)
holds for all l ≥ 1 and all orthonormal families {ϕk}k≥1 . Then {ψk}k≥1 is
a family of POD-vectors associated to y.

Proof. Let {ψ̂k}k≥1 be a family of POD-vectors. Then by (2.4) and (2.6) we
find that

〈Rψ1, ψ1〉X = 〈Rψ̂1, ψ̂1〉X .

By induction we deduce that

〈Rψk, ψk〉X = 〈Rψ̂k, ψ̂k〉X ,

for all k = 1, . . . . The claim now follows from the proof of Theorem 2.2, see
(2.3).
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3 Galerkin-POD Approximation

Let V and H be real separable Hilbert spaces with V densely embedded in
H, and V ⊂ H ⊂ V ∗ the usual Gelfand triple. Let a : V × V → R be a
bilinear continuous elliptic form satisfying for positive constants β and κ

|a(ϕ, ψ)| ≤ β |ϕ|V |ψ|V

κ |ϕ|2V ≤ a(ϕ, ϕ)

for all ϕ, ψ ∈ V . For y0 ∈ H and f ∈ L2(0, T ;V ∗) consider

(E)

{
d
dt

(y(t), v)H + a(y(t), v) = 〈f(t), v〉V ∗,V , t ∈ (0, T ]

(y(0), v)H = (y0, v), for all v ∈ V.

It is known that (E) admits a solution y ∈ W (0, T ) =
= {y ∈ L2(0, T ;V ) : yt ∈ L2(0, T ;V k)}.

(3.1) Choose X as V or H.

Let {ψk} denote the POD-family associated to y. Using (1.1), note that
{ψk} ⊂ V regardless of the choice of X. Let V l = span{ψk}lk=1 ⊂ X ,with
P l : X → V l the orthogonal projection We consider the Galerkin approxi-
mation to (E)

(El)

{
d
dt

(yl(t), v)H + a(y, v) = 〈f(t), v〉V ∗,V , t ∈ (0, T ]

(yl(0), v)H = (y0, v)H , for all v ∈ V l.

Theorem 3.1. yl → y in W (0, T ) as l→∞.

Note that the basis elements depend on the solution y.- We next turn
to rate of convergence results and consider first the method of snap-shots.
Let ti = iT

n
define an equidistant grid in [0, T ] and take snapshot {y(ti)}.

They generate a POD space of dimension d ≤ n. Consider an implicit Euler
scheme for the time discretization of (El). Here for simplicity of presentation
the grid for the time-discretization is taken identical with the snap-shot grid.
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Theorem 3.2. Let X = V and denote by Yi the solution to the implicit
Euler POD-Galerkin approximation to (E). If y ∈ W 2,2(0, T ;V ), then there
exists C independent of l such that for ∆t = T

n

1

n

n∑
i=1

|Yi − y(ti)|2H ≤ C(|y0 − P l
y0
|2H + (∆t)2 + (

1

(∆t)2
+ 1)

d∑
i=l+1

λi).

Similar results can be obtained for other time-discretizations.- To avoid
the factor 1

(∆t)2
one can take a different snapshot set, namely

(3.2) {yi,
1

∆t
(yi − yj−1)}ni=1.

Note that, despite linear dependence of these snapshots, they lead to a dif-
ferent POD family than {yi}! (Note also, that we have not addressed the
choice of l in applications, so far).

Theorem 3.3. If the snapshots are taken according to (3.2), and otherwise
the same assumptions as in Theorem 3.2 hold, then

1

n

n∑
k=1

|Yi − y(ti)|2H ≤ C(|y0 − P ly0|2 + (∆t)2 +
d∑

i=l+1

λi).

Theorem 3.4. If X = H and the snapshots are taken as in (3.2), then we
have for the implicit Euler POD-Galerkin approximation to (E):

1

n

n∑
i=1

|Yi − y(ti)|2H ≤ C(‖S‖2 |y0 − P ly0|2H + (∆t)2 +
d∑

i=l+1

λi),

where S ∈ Rl×l denotes the stiffness matrix with elements a(ψi, ψj). For v

in the POD-subspace we have |y|V ≤
√
‖S‖2 |y|H , i.e. ‖S‖2 → ∞ if the

dimension of the POD-subspace →∞.
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Remark 3.1. Results analogous to Theorems 3.2- 3.4 also hold for certain
nonlinear equations, including e.g. the Burgers and Navier Stokes equations.

We now turn to rate of convergence for the semi-continuous Galerkin-
POD approximation (El), combined with ’continuous-POD’. Let

ỹl(t) =
∞∑

k=l+1

(y(t), ψk)V ψk.

From Theorem 3.1 we have that ỹl (t) → 0 as l → ∞ for t ∈ [0, T ]. Let α
denote the embedding constant of V → H.

Theorem 3.5. Choose X = V and ε > 0 such that K − α
2ε
− β/2 > 0,

ρl :=
1

k − α
2ε
− β

2

(
ε

2
|dỹl
dt
|2L2(H) +

1

2
|ỹl (0)|2H).

Then for the solution yl of (El) we have that

|y − yl|2L2(V ) ≤ ρl +
(κ− α

2ε
)T

κ− α
2ε
− β

2

∞∑
i=l+1

λi l→∞−−−−→ 0.

Remark 3.2. For a POD-scheme with respect to y and d
dt
y a similar result

as in Theorem 3.5 with smaller constants can be obtained.

Remark 3.3. The choice of l is frequently based on setting some percentage
δ ∈ [0, 1], typically δ ∈ (.95, .99) and determining l as the smallest integer
such that

l∑
k=1

λk /
∞∑
k=1

λk ≥ δ.

The motivation for this choice is that
∑∞

k=1 λk represents the ”total energy”
of the system (E).

12



Remark 3.4. Let y be a solution to (E), and let {ψk} be an associated
POD-family. By yi, i = 1, 2 , we denote the POD-Galerkin approximation
to (El) based on one basis element, ψ1, and ψ2, respectively. An example
can be constructed, such that

|y − y1|L2(V ) > |y − y2|L2(V ).

In the following figure the values of a cost-functional for an optimal con-
trol problem are plotted against time. The solid line gives the cost for the
uncontrolled problem, circles and crosses show the values for the open and
closed loop controls. The closed loop controls are obtained by means of solv-
ing the HJB-equation, with POP-model reduction of the underlying infinte-
dimensional dynamical system, which is the Burgers equation in this case. We
point out that it would be numerically infeasible to solve the HJB equation
for a standard finite-element or finite difference discretisation of the Burgers
equation. We further point to the fact that the values for the open and closed
loop solution are quite close. These are results without noise added to the
system. With noise the closed loop solutions are stable, whereas this may
not be the case for the open loop solutions.
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Most of these notes are based on parts of

T. Henri: Réduction de modèles par des méthodes de décomposition orthog-
onales propre, thesis, Rennes, 2004.

which in turn uses

K. Kunisch and S. Volkwein: Galerkin proper orthogonal decompostion for
a generalized equation in fluid dynamics, SIAM J. Numer. Anal., 40(2002),
492-512.
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