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Outline

Our aim is to present a combination of recent and past technics
in order to approximate a nonlinear PDE problem arising in
Finance.

o A super replication problem
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e Approximation scheme
@ Abstract scheme
@ Howard algorithm
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A super replication problem

A super replication problem arising in Finance

Let T > 0 be a fixed finite time horizon.

Let a given progressively measurable control process

(p, &) :=={(p(t),&(t)); 0 <t < T} with values in [-1, 1] x R and
such that [ £(t)2dt < oo.
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A super replication problem arising in Finance

Let T > 0 be a fixed finite time horizon.

Let a given progressively measurable control process

(p, &) :=={(p(t),&(t)); 0 <t < T} with values in [-1, 1] x R and
such that [ £(t)2dt < oo.

We consider the controled 2-dimensional (positive) process
(X,Y) = (X5, YE,) solution for t € [0, T] of:

t,X,y?
dX(s) = o(s,Y(s))X(s) dWi(s)
{ dY(s) = —pu(s,Y(s)) ds + £(s)Y (s) dW?(s),
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A super replication problem

A super replication problem arising in Finance

Let T > 0 be a fixed finite time horizon.

Let a given progressively measurable control process

(p, &) :=={(p(t),&(t)); 0 <t < T} with values in [-1, 1] x R and
such that [ £(t)2dt < oo.

We consider the controled 2-dimensional (positive) process
(X,Y) = (X2, YL E ) solution for t € [0, T] of:

tx,y? ' t,8,x
dX(s) = o(s,Y(s))X(s) dWi(s)
{ dY(s) = —pu(s,Y(s)) ds + £(s)Y (s) dW?(s),

X: "underlying" asset, Y : "derivative" asset (i.e., volatility);
p: dividend; o volatility (typicaly: o(t,Y) = VY).
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A super replication problem

o and p satisfy the following assumptions:

(Al) 0 > 0and 02 : [0,T] x Ry is a locally Lipschitz
function, Lipschitz in time, with linear growth with
respect to the second argument, and s.t.

o(t,0)=0, Wtel0,T]

(A2) 1:(0,T) x RT — R is a positive Lipschitz
function, with

p(t,0)=0, te[0,T]
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A super replication problem

We consider also a (Payoff) function g : R, — R, and assume
(A3) g is a bounded, Lipschitz function.
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A super replication problem

We consider also a (Payoff) function g : R, — R, and assume
(A3) g is a bounded, Lipschitz function.
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A super replication problem

We consider also a (Payoff) function g : R, — R, and assume
(A3) g is a bounded, Lipschitz function.

We consider the following stochastic unbounded control
problem:

v(tx.y) = supE g (X5, (7)) 1)
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A super replication problem

A first HIB equation

Leta = (p,§) € [-1,1] x Ry and

2 2
Ho(v) = u Y — 152070 i

0°v 1,0
Fax ~ 27 oxz U(pg)axay €

82y

with 7 ;= xo.

v given by (1) is a viscosity solution of

moin{—gt+H (v )}:O 2)
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A super replication problem

A first HIB equation

Leta = (p,§) € [-1,1] x Ry and

2 2
Ha(v) = p Y — 1520V o

0°v 1,0
Fax ~ 27 oxz U(pg)axay €

82y

with 7 ;= xo.

v given by (1) is a viscosity solution of

moin{—gt+H (v )}:O 2)

Some difficulties:
@ discretisation of the controls
@ scheme definition
@ error estimates
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A super replication problem

A first HIB equation

... revisited

Let H(v) = min, H, (V). In fact, we have only (2) if H(v) > —oo,
and only get in general —%‘t’ + H(v) > 0. Then, the exact sense
for the HIB equation (2) should be the following (see [Pham
05’], [Soner & Touzi 027).

Let G(v) := G(t, x, Dyv, D2v), continuous, be such that

H(v) > —co < G(v) > 0.

Eq. (2) must be replaced by

min{—g\t/vLH(v), G(v)} =0. 2)
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A super replication problem

Here
9%v 9%v 9%v
H - ———=>0 d-—=0= — =0
(V) > -0 & ( ayz 20 an ay2 = Xy >
0 — v
A S
OXoy oy?

where A_(M) is the smallest eigenvalue of M.
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A super replication problem

A second HJB equation (case i = 0)

On the other hand, for v regular, let M(v) := ( 11 812 > where
ajp A2
9

- _ 2
all(V) = 5t %O’ X2 alz(V) = Uﬁ, and a22(V) = —zw
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A super replication problem

A second HJB equation (case i = 0)

On the other hand, for v regular, let M(v) := ( 11 812 > where
ajp A2
62

all(V) = 5t %5’ X2 alz(V) = 5%, and a22(V) = —2?

. aj1 A2 ag
AL(M)=0<« inf o] « =0
(M) a2 +ad= {( ! 2) <312 azz) ( a2 )}
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A super replication problem

A second HJB equation (case i = 0)

On the other hand, for v regular, let M(v) := ( :11 212 > where
12 @22

_ 52
all(v) = _%t/ — %O’ axz, alz( ) = O'ac?(iavy, and a22(V) = ~2oy2

. aj1 A2 (o%]
AL(M)=0<« inf o] « =0
M) ai+a§1{( 1 o2) <a12 a22> ( a2 >}

& min { inf (all(v) +2%2a5,(v) + (az)zazz(v)>,
a1>0,a=+4/1—0a? g %1
azz(V)} =0
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A super replication problem

A second HJB equation (case i = 0)

On the other hand, for v regular, let M(v) := ( 11 812 > where

iz Az
- 2 —_ 92 2
all(v) = _%t/ — %O’ZBT\é, alz(V) = O'ac?(iavy, and a22(V) = —%W\é
. a1 a2 g
ALM)=0« inf a1« =0
(M) a§+a§1{( ! 2) <312 azz) ( Qap )}
. . Q (6%
& min { inf (all(v) +222a5,(v) + (2)2a22(v)>,
a1>0,a=+4/1—0a? g %1
azz(V)} =0

<:.> (2
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A super replication problem

Boundary conditions

Proposition. v satisfies
(i) The terminal condition

VI(Tx,y) =9(x),  (x,y) € (Ry)%
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A super replication problem
Boundary conditions

Proposition. v satisfies
(i) The terminal condition

V*(T,X,y):g(X), (X7y) € (R+)2'
(i) The boundary condition ony = 0:

v(t,x,0) =g(x), t>0,xeRy.

Olivier Bokanowski Numerical discretisation for a stochastic control problem



A super replication problem
Boundary conditions

Proposition. v satisfies
(i) The terminal condition

V*(T,X,y):g(X), (X7y) € (R+)2'
(i) The boundary condition ony = 0:
v(t,x,0) =g(x), t>0,xeRy.

(iii) v is bounded (using g bounded).
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A super replication problem
Boundary conditions

Proposition. v satisfies
(i) The terminal condition

VAT xy) =g(x),  (x.y) € (Re)%

(i) The boundary condition ony = 0:
v(t,x,0) =g(x), t>0,xeRy.

(iii) v is bounded (using g bounded).

Remark. With these conditions, it is possible to obtain a
comparison result.
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Abstract scheme
Approximation scheme Howard algorithm

approximation scheme
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Abstract scheme
Approximation scheme Howard algorithm

approximation scheme

We rewrite the problem for v(T —t) intead of v(t). The
equation is similar, with a reversed sign for %—‘t’ and an initial
condition instead of a terminal one.
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Approximation scheme Howard algorithm

approximation scheme

We rewrite the problem for v(T —t) intead of v(t). The
equation is similar, with a reversed sign for %‘t’ and an initial
condition instead of a terminal one.

Letdt = T /N, N integer.

We look for an approximation scheme for A_(M) = 0, that will
compute successive approximation VO, V1, ... VN of the value
function at timest, = nAt,n=0,...,N.
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function at timest, = nAt,n=0,...,N.

By [Souganidis- Barles], under a comparison result, we have a
general convergence result if the scheme is
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approximation scheme

We rewrite the problem for v(T —t) intead of v(t). The
equation is similar, with a reversed sign for %‘t’ and an initial
condition instead of a terminal one.

Letdt = T /N, N integer.

We look for an approximation scheme for A_(M) = 0, that will
compute successive approximation VO, V1, ... VN of the value
function at timest, = nAt,n=0,...,N.

By [Souganidis- Barles], under a comparison result, we have a
general convergence result if the scheme is

@ (i) Monotone (i.e. V" > U" = v+l > yntl),
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We rewrite the problem for v(T —t) intead of v(t). The
equation is similar, with a reversed sign for %‘t’ and an initial
condition instead of a terminal one.

Letdt = T /N, N integer.

We look for an approximation scheme for A_(M) = 0, that will
compute successive approximation VO, V1, ... VN of the value
function at timest, = nAt,n=0,...,N.

By [Souganidis- Barles], under a comparison result, we have a
general convergence result if the scheme is

@ (i) Monotone (i.e. V" > U" = v+l > yntl),
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approximation scheme

We rewrite the problem for v(T —t) intead of v(t). The
equation is similar, with a reversed sign for %‘t’ and an initial
condition instead of a terminal one.

Letdt = T /N, N integer.

We look for an approximation scheme for A_(M) = 0, that will
compute successive approximation VO, V1, ... VN of the value
function at timest, = nAt,n=0,...,N.

By [Souganidis- Barles], under a comparison result, we have a
general convergence result if the scheme is

@ (i) Monotone (i.e. V" > U" = v+l > yntl),
@ (ii) Regular / Bounded
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Abstract scheme
Approximation scheme Howard algorithm

approximation scheme

We rewrite the problem for v(T —t) intead of v(t). The
equation is similar, with a reversed sign for %‘t’ and an initial
condition instead of a terminal one.

Letdt = T /N, N integer.

We look for an approximation scheme for A_(M) = 0, that will
compute successive approximation VO, V1, ... VN of the value
function at timest, = nAt,n=0,...,N.

By [Souganidis- Barles], under a comparison result, we have a
general convergence result if the scheme is

@ (i) Monotone (i.e. V" > U" = v+l > yntl),
@ (ii) Regular / Bounded
@ (iii) Consistent
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Abstract scheme
Approximation scheme Howard algorithm

Markov chains approximation methods
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Abstract scheme
Approximation scheme Howard algorithm

Markov chains approximation methods

method 1: Semi Lagrangian method
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Abstract scheme
Approximation scheme Howard algorithm

Markov chains approximation methods

method 1: Semi Lagrangian method

method 2: Generalized finite differences

@ Generalized finite differences in space [Bonnans,
Ottenwalter, Zidani]
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Markov chains approximation methods

method 1: Semi Lagrangian method

method 2: Generalized finite differences

@ Generalized finite differences in space [Bonnans,
Ottenwalter, Zidani]

@ Euler Implicit (or better) in time
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Markov chains approximation methods

method 1: Semi Lagrangian method

method 2: Generalized finite differences

@ Generalized finite differences in space [Bonnans,
Ottenwalter, Zidani]

@ Euler Implicit (or better) in time
This method is
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Markov chains approximation methods

method 1: Semi Lagrangian method

method 2: Generalized finite differences

@ Generalized finite differences in space [Bonnans,
Ottenwalter, Zidani]

@ Euler Implicit (or better) in time

This method is
- local: utilizes close neighboring mesh points (ORDER)
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Abstract scheme
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Markov chains approximation methods

method 1: Semi Lagrangian method

method 2: Generalized finite differences

@ Generalized finite differences in space [Bonnans,
Ottenwalter, Zidani]
@ Euler Implicit (or better) in time
This method is

- local: utilizes close neighboring mesh points (ORDER)
- can treat non-diagonal dominant diffusion matrices (in 2d)
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Abstract scheme
Approximation scheme Howard algorithm

Markov chains approximation methods

method 1: Semi Lagrangian method

method 2: Generalized finite differences
@ Generalized finite differences in space [Bonnans,
Ottenwalter, Zidani]
@ Euler Implicit (or better) in time
This method is
- local: utilizes close neighboring mesh points (ORDER)

- can treat non-diagonal dominant diffusion matrices (in 2d)
- can be adapted to treat border conditions
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Abstract scheme
Approximation scheme Howard algorithm

Let o = (a1, ) and

—2 5%y Y
— az‘l" }( v ay ) ~7 g7 7oy a1
ot " 2 —52v v a

oxoy oy?
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Abstract scheme
Approximation scheme Howard algorithm

Let o = (a1, ) and

Aav) = (a1 az) (anW)alz(v))(al)

aia(v) az(v)) \ a2
2 2
w1 520 s N
= aia* + E( a; ap) B(ZXZ d)gz)y < ! >
t Toxdy " oy? a2

The spatial approximation for one given control « at time t, is of

the form
Vn+1 _yn
Aa(v) =~ a%T + A(a)V" —a(a)
~ B(a)V™ —bY"(a)

A1+ A(a) and b(a) := a(a) + % 1Vn

D‘H N

where V" vector, B(«) :
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Abstract scheme
Approximation scheme Howard algorithm

The scheme in abstract form

@ The scheme writes (without control discretisation):
min(B(u)v"*! —b¥"(u)) =0, n=0,...,N—1
u
where

ueS? :={(ag,a2), a1 >0, ap €[0,1], a? + a3 = 1} (the
right half unit circle).
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Abstract scheme
Approximation scheme Howard algorithm

The scheme in abstract form

@ The scheme writes (without control discretisation):
min(B(u)v"*! —b¥"(u)) =0, n=0,...,N—1
u

where
uc Si = {(a1,02), a1 >0, ap € [0,1], a% + a% =1} (the
right half unit circle).

@ After the control discretisation, the scheme reads

. min_ BU )Vt —bY"(u)) =0, n=0,...,N—1,

where (Uk )k=1,...n, IS chosen uniformly on the half-circle,
with Ny controls, and with u; = (0, 1).
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Abstract scheme
Approximation scheme Howard algorithm

Convergence and error control

Proposition The scheme is convergent (when Ny, — oo,
hy,hy — 0, At — 0, order p — o0).
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Abstract scheme
Approximation scheme Howard algorithm

Convergence and error control

Proposition The scheme is convergent (when Ny, — oo,
hy,hy — 0, At — 0, order p — o0).

Remark 1. Assume (A3). Then it is possible to derive explicit
lower bound estimate. (Refs: [Barles-Jackobsen], [Krylov],
[Maroso, Zidani, Bonnans]).
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Abstract scheme
Approximation scheme Howard algorithm

Convergence and error control

Proposition The scheme is convergent (when Ny, — oo,
hy,hy — 0, At — 0, order p — o0).

Remark 1. Assume (A3). Then it is possible to derive explicit
lower bound estimate. (Refs: [Barles-Jackobsen], [Krylov],
[Maroso, Zidani, Bonnans]).

Remark 2. However, for the Financial problem, the upper
bound would be more interesting !
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Abstract scheme
Approximation scheme Howard algorithm

An Howard algorithm

Find a solution X € RY of min, B(a)X — b(a) = 0, with oo € K4
where K = {uy,...,uy,} finite.
Let «(%) given, and consider for iterations k = 0,1,2, .. .:

@ Find X(®) such that B(a®))X &) —b(ak)) =0
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Abstract scheme
Approximation scheme Howard algorithm

An Howard algorithm

Find a solution X € RY of min, B(a)X — b(a) = 0, with oo € K4
where K = {uy,...,uy,} finite.
Let «(%) given, and consider for iterations k = 0,1,2, .. .:
@ Find X(®) such that B(a®))X &) —b(ak)) =0
o If X(®) £ X &=1) take a(k+1) .= argmin,B(a)X®) — b(a),
otherwise stop.
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Abstract scheme
Approximation scheme Howard algorithm

An Howard algorithm

Find a solution X € RY of min, B(a)X — b(a) = 0, with oo € K4
where K = {uy,...,uy,} finite.
Let «(%) given, and consider for iterations k = 0,1,2, .. .:
@ Find X(®) such that B(a®))X &) —b(ak)) =0
o If X(®) £ X &=1) take a(k+1) .= argmin,B(a)X®) — b(a),
otherwise stop.

Theorem (Convergence of the Howard algorithm)

Suppose Vo, B(a) monotonous (B(a)X > 0= X > 0). Then
there exists a unique solution X and the Howard Algorithm
converges to X with a finite number of iterations.
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An Howard algorithm

Find a solution X € RY of min, B(a)X — b(a) = 0, with oo € K4
where K = {uy,...,uy,} finite.
Let «(%) given, and consider for iterations k = 0,1,2, .. .:
@ Find X(®) such that B(a®))X &) —b(ak)) =0
o If X(®) £ X &=1) take a(k+1) .= argmin,B(a)X®) — b(a),
otherwise stop.

Theorem (Convergence of the Howard algorithm)

Suppose Vo, B(a) monotonous (B(a)X > 0= X > 0). Then
there exists a unique solution X and the Howard Algorithm
converges to X with a finite number of iterations.
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Abstract scheme
Approximation scheme Howard algorithm

An Howard algorithm

Find a solution X € RY of min, B(a)X — b(a) = 0, with oo € K4
where K = {uy,...,uy,} finite.
Let «(%) given, and consider for iterations k = 0,1,2, .. .:
@ Find X(®) such that B(a®))X &) —b(ak)) =0
o If X(®) £ X &=1) take a(k+1) .= argmin,B(a)X®) — b(a),
otherwise stop.

Theorem (Convergence of the Howard algorithm)

Suppose Vo, B(a) monotonous (B(a)X > 0= X > 0). Then
there exists a unique solution X and the Howard Algorithm
converges to X with a finite number of iterations.

Remark. Neuman-type boundary conditions for large x,y, still
monotonicity properties.
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Abstract scheme
Approximation scheme Howard algorithm

Numerical results
cpu time / error test

M; x M, = 1002 space discretisation points
N, = 10 controls

N = 20 time steps

Neighborhing order = 4.

On a 1.6 MHz cpu desktop computer
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Numerical results
cpu time / error test

M; x M, = 1002 space discretisation points

N, = 10 controls

N = 20 time steps

Neighborhing order = 4.

On a 1.6 MHz cpu desktop computer
@ Fast initialisation of a sparse generalized differences matrix
@ An howard iteration : 2-4s (using a sparse solver)

@ One time step: from 2 to 10 Howard iterations.
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Abstract scheme
Approximation scheme Howard algorithm

Numerical results
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Neighborhing order = 4.
On a 1.6 MHz cpu desktop computer
@ Fast initialisation of a sparse generalized differences matrix
@ An howard iteration : 2-4s (using a sparse solver)
@ One time step: from 2 to 10 Howard iterations.
@ Complete computation: < 5 minutes

@ Errorteston A_(M(v)(t,x,y)) = f(t,x,y):
relative L* error ~ 5 x 1073.
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cpu time / error test

M; x M, = 1002 space discretisation points
N, = 10 controls
N = 20 time steps
Neighborhing order = 4.
On a 1.6 MHz cpu desktop computer
@ Fast initialisation of a sparse generalized differences matrix
@ An howard iteration : 2-4s (using a sparse solver)
@ One time step: from 2 to 10 Howard iterations.
@ Complete computation: < 5 minutes

@ Errorteston A_(M(v)(t,x,y)) = f(t,x,y):
relative L* error ~ 5 x 1073.

@ That's all folks !
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