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A super replication problem arising in Finance

Let T > 0 be a fixed finite time horizon.
Let a given progressively measurable control process
(ρ, ξ) := {(ρ(t), ξ(t)); 0 ≤ t ≤ T} with values in [−1, 1]×R+ and
such that

∫ T
0 ξ(t)2dt < ∞.

We consider the controled 2-dimensional (positive) process
(X , Y ) = (X ρ,ξ

t ,x ,y , Y ρ,ξ
t ,s,x) solution for t ∈ [0, T ] of:{

dX (s) = σ(s, Y (s))X (s) dW 1(s)
dY (s) = −µ(s, Y (s)) ds + ξ(s)Y (s) dW 2(s),

〈dW 1(s), dW 2(s)〉 = ρ(s)

X (t) = x , Y (t) = y

X : "underlying" asset, Y : "derivative" asset (i.e., volatility);
µ: dividend; σ: volatility (typicaly: σ(t , Y ) =

√
Y ).
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σ and µ satisfy the following assumptions:

(A1) σ ≥ 0 and σ2 : [0, T ]× R+ is a locally Lipschitz
function, Lipschitz in time, with linear growth with
respect to the second argument, and s.t.

σ(t , 0) = 0, ∀t ∈ [0, T ]

(A2) µ : (0, T )× R+ → R+ is a positive Lipschitz
function, with

µ(t , 0) = 0, t ∈ [0, T ].
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We consider also a (Payoff) function g : R+ → R, and assume

(A3) g is a bounded, Lipschitz function.

We consider the following stochastic unbounded control
problem:

v(t , x , y) = sup
(ρ,ξ)

E
[
g
(

X ρ,ξ
t ,x ,y (T )

)]
(1)
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A first HJB equation

Let α = (ρ, ξ) ∈ [−1, 1]× R+ and

Hα(v) := µ
∂v
∂x

− 1
2
σ̄2 ∂2v

∂x2 − σ̄(ρξ)
∂2v

∂x∂y
− 1

2
ξ2 ∂2v

∂2y

with σ̄ := xσ.

Theorem

v given by (1) is a viscosity solution of

min
α

{
−∂v

∂t
+ Hα(v)

}
= 0 (2)

Some difficulties:
discretisation of the controls
scheme definition
error estimates
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A first HJB equation
... revisited

Let H(v) = minα Hα(v). In fact, we have only (2) if H(v) > −∞,
and only get in general −∂v

∂t + H(v) ≥ 0. Then, the exact sense
for the HJB equation (2) should be the following (see [Pham
05’], [Soner & Touzi 02’]).
Let G(v) := G(t , x , Dxv , D2

x v), continuous, be such that

H(v) > −∞⇔ G(v) ≥ 0.

Eq. (2) must be replaced by

min
{
−∂v

∂t
+ H(v), G(v)

}
= 0. (2’)
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Here

H(v) > −∞ ⇔
(
− ∂2v

∂y2 ≥ 0, and − ∂2v
∂y2 = 0 ⇒ − ∂2v

∂x∂y
= 0

)
⇔ Λ−

(
0 − ∂2v

∂x∂y

− ∂2v
∂x∂y

∂2v
∂y2

)
≥ 0

where Λ−(M) is the smallest eigenvalue of M.
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A second HJB equation (case µ = 0)

On the other hand, for v regular, let M(v) :=

(
a11 a12

a12 a22

)
where

a11(v) := −∂v
∂t −

1
2 σ̄2 ∂2v

∂x2 , a12(v) := σ̄ ∂2v
∂x∂y , and a22(v) := −1

2
∂2v
∂y2 .

Λ−(M) = 0 ⇔ inf
α2

1+α2
2=1

{(
α1 α2

)(a11 a12

a12 a22

)(
α1

α2

)}
= 0

⇔ min
{

inf
α1>0,α2=±

√
1−α2

1

(
a11(v) + 2

α2

α1
a12(v) + (

α2

α1
)2a22(v)

)
,

a22(v)

}
= 0

...

⇔ (2′)
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Boundary conditions

Proposition. v satisfies
(i) The terminal condition

v∗(T , x , y) = g(x), (x , y) ∈ (R+)2.

(ii) The boundary condition on y = 0:

v(t , x , 0) = g(x), t > 0, x ∈ R+.

(iii) v is bounded (using g bounded).

Remark. With these conditions, it is possible to obtain a
comparison result.
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Abstract scheme
Howard algorithm

approximation scheme

We rewrite the problem for v(T − t) intead of v(t). The
equation is similar, with a reversed sign for ∂v

∂t and an initial
condition instead of a terminal one.
Let dt = T/N, N integer.
We look for an approximation scheme for Λ−(M) = 0, that will
compute successive approximation V 0, V 1, . . . , V N of the value
function at times tn = n∆t , n = 0, . . . , N.
By [Souganidis- Barles], under a comparison result, we have a
general convergence result if the scheme is

(i) Monotone (i.e. V n ≥ Un ⇒ V n+1 ≥ Un+1).

(ii) Regular / Bounded

(iii) Consistent
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Markov chains approximation methods

method 1: Semi Lagrangian method

method 2: Generalized finite differences

Generalized finite differences in space [Bonnans,
Ottenwalter, Zidani]

Euler Implicit (or better) in time

This method is
- local: utilizes close neighboring mesh points (ORDERp)
- can treat non-diagonal dominant diffusion matrices (in 2d)
- can be adapted to treat border conditions
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Let α = (α1, α2) and

Aα(v) :=
(
α1 α2

)(a11(v) a12(v)
a12(v) a22(v)

)(
α1

α2

)
= α2

1
∂v
∂t

+
1
2

(
α1 α2

)( −σ̄2 ∂2v
∂x2 −σ̄ ∂2v

∂x∂y

−σ̄ ∂2v
∂x∂y −∂2v

∂y2

)(
α1

α2

)
The spatial approximation for one given control α at time tn is of
the form

Aα(v) ' α2
1

V n+1 − V n

∆t
+ A(α)V n+1 − a(α)

' B(α)V n+1 − bV n
(α)

where V n vector, B(α) :=
α2

1
∆t I + A(α) and b(α) := a(α) +

α2
1

∆t V
n.
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The scheme in abstract form

The scheme writes (without control discretisation):

min
u

(B(u)V n+1 − bV n
(u)) = 0, n = 0, . . . , N − 1

where
u ∈ S2

+ := {(α1, α2), α1 ≥ 0, α2 ∈ [0, 1], α2
1 + α2

2 = 1} (the
right half unit circle).

After the control discretisation, the scheme reads

min
k=1,...,Nu

(B(uk )V n+1 − bV n
(uk )) = 0, n = 0, . . . , N − 1,

where (uk )k=1,...,Nu is chosen uniformly on the half-circle,
with Nu controls, and with u1 = (0, 1).
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Convergence and error control

Proposition The scheme is convergent (when Nu →∞,
hx , hy → 0, ∆t → 0, order p →∞).

Remark 1. Assume (A3). Then it is possible to derive explicit
lower bound estimate. (Refs: [Barles-Jackobsen], [Krylov],
[Maroso, Zidani, Bonnans]).

Remark 2. However, for the Financial problem, the upper
bound would be more interesting !
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An Howard algorithm

Find a solution X ∈ Rq of minα B(α)X − b(α) = 0, with α ∈ K q

where K = {u1, . . . , uNu} finite.
Let α(0) given, and consider for iterations k = 0, 1, 2, . . . :

Find X (k) such that B(α(k))X (k) − b(α(k)) = 0

If X (k) 6= X (k−1), take α(k+1) := argminαB(α)X (k) − b(α),
otherwise stop.

Theorem (Convergence of the Howard algorithm)

Suppose ∀α, B(α) monotonous (B(α)X ≥ 0 ⇒ X ≥ 0). Then
there exists a unique solution X and the Howard Algorithm
converges to X with a finite number of iterations.

Remark. Neuman-type boundary conditions for large x , y , still
monotonicity properties.
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Numerical results
cpu time / error test

M1 ×M2 = 1002 space discretisation points
Nu = 10 controls
N = 20 time steps
Neighborhing order = 4.
On a 1.6 MHz cpu desktop computer

Fast initialisation of a sparse generalized differences matrix

An howard iteration : 2-4s (using a sparse solver)

One time step: from 2 to 10 Howard iterations.

Complete computation: ≤ 5 minutes

Error test on Λ−(M(v)(t , x , y)) = f (t , x , y):
relative L∞ error ' 5× 10−3.

That’s all folks !
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