Singular perturbations and Aubry-Mather theory

F. Camilli (Univ. dell’Aquila),
A. Cesaroni (Univ. di Padova),
A. Siconolfi (Univ. di Roma)

July 1, 2006
Aim:

- To show the relation between singular perturbations problems arising in Large Deviations theory and the Aubry-Mather theory for Hamilton-Jacobi equations
- To reprove by simple PDE (viscosity) methods, some singular perturbation results which require hard probabilistic proofs

Plan of the talk:

- What is a Large Deviations result?
- The PDE approach to Large Deviations and when it fails
- The Aubry-Mather theory of Hamilton-Jacobi equations
- Improving the PDE approach to Large Deviations via Aubry-Mather theory
Aim:

• To show the relation between singular perturbations problems arising in Large Deviations theory and the Aubry-Mather theory for Hamilton-Jacobi equations

Plan of the talk:
Aim:

- To show the relation between singular perturbations problems arising in Large Deviations theory and the Aubry-Mather theory for Hamilton-Jacobi equations
- To reprove by simple PDE (viscosity) methods, some singular perturbation results which require hard probabilistic proofs

Plan of the talk:
Aim:

- To show the relation between singular perturbations problems arising in Large Deviations theory and the Aubry-Mather theory for Hamilton-Jacobi equations
- To reprove by simple PDE (viscosity) methods, some singular perturbation results which require hard probabilistic proofs

Plan of the talk:

- What is a Large Deviations result?
Aim:

• To show the relation between singular perturbations problems arising in Large Deviations theory and the Aubry-Mather theory for Hamilton-Jacobi equations

• To reprove by simple PDE (viscosity) methods, some singular perturbation results which require hard probabilistic proofs

Plan of the talk:

• What is a Large Deviations result?

• The PDE approach to Large Deviations and when it fails
Aim:

- To show the relation between singular perturbations problems arising in Large Deviations theory and the Aubry-Mather theory for Hamilton-Jacobi equations
- To reprove by simple PDE (viscosity) methods, some singular perturbation results which require hard probabilistic proofs

Plan of the talk:

- What is a Large Deviations result?
- The PDE approach to Large Deviations and when it fails
- The Aubry-Mather theory of Hamilton-Jacobi equations
Aim:

- To show the relation between singular perturbations problems arising in Large Deviations theory and the Aubry-Mather theory for Hamilton-Jacobi equations
- To reprove by simple PDE (viscosity) methods, some singular perturbation results which require hard probabilistic proofs

Plan of the talk:

- What is a Large Deviations result?
- The PDE approach to Large Deviations and when it fails
- The Aubry-Mather theory of Hamilton-Jacobi equations
- Improving the PDE approach to Large Deviations via Aubry-Mather theory
Large Deviations

Aim of Large Deviations theory is to gives estimates of events with exponentially small probability or expectation.
Aim of Large Deviations theory is to gives estimates of events with exponentially small probability or expectation. Consider

\[
\begin{align*}
 dX_\varepsilon(t) &= b(X_\varepsilon(t))dt + \sqrt{\varepsilon}dW(t), \\
 X(0) &= x \in D
\end{align*}
\]
Large Deviations

Aim of Large Deviations theory is to give estimates of events with exponentially small probability or expectation. Consider

\[
\begin{aligned}
\quad dX_\varepsilon(t) &= b(X_\varepsilon(t))dt + \sqrt{\varepsilon}dW(t), \\
\quad X(0) &= x \in D
\end{aligned}
\]

\(E_\varepsilon\): a functional depending on the sample paths \(X_\varepsilon\) (f.e. \(E_\varepsilon(x) = \mathbb{E}[X_\varepsilon(\tau_\varepsilon)]\) or \(E_\varepsilon(x) = \mathbb{P}[X_\varepsilon(\tau_\varepsilon) \in \Gamma]\) with \(\Gamma \subset \partial D\)).
Large Deviations

Aim of Large Deviations theory is to gives estimates of events with exponentially small probability or expectation. Consider

\[
\begin{align*}
\left\{ \begin{array}{l}
dX_\epsilon(t) = b(X_\epsilon(t))dt + \sqrt{\epsilon}dW(t), \\
X(0) = x \in D
\end{array} \right.
\end{align*}
\]

\(E_\epsilon: a \) functional depending on the sample paths \(X_\epsilon\)
(f.e. \(E_\epsilon(x) = \mathbb{E}[X_\epsilon(\tau_\epsilon)]\) or \(E_\epsilon(x) = \mathbb{P}[X_\epsilon(\tau_\epsilon) \in \Gamma]\) with \(\Gamma \subset \partial D\).

The classical LD result is

\[-\epsilon \log(E_\epsilon(x)) \longrightarrow l(x) \quad \epsilon \to 0\]

where \(l > 0\) in \(D\) is the rate function, i.e.

\[E_\epsilon(x) = e^{-\frac{l(x)+O(1)}{\epsilon}} \quad \epsilon \to 0\]
Large Deviations

Aim of Large Deviations theory is to give estimates of events with exponentially small probability or expectation. Consider

\[
\begin{aligned}
 dX_\varepsilon(t) &= b(X_\varepsilon(t))dt + \sqrt{\varepsilon}dW(t), \\
 X(0) &= x \in D
\end{aligned}
\]

\(E_\varepsilon: \) a functional depending on the sample paths \(X_\varepsilon\) (f.e. \(E_\varepsilon(x) = \mathbb{E}[X_\varepsilon(\tau_\varepsilon)]\) or \(E_\varepsilon(x) = \mathbb{P}[X_\varepsilon(\tau_\varepsilon) \in \Gamma]\) with \(\Gamma \subset \partial D\)).

The classical LD result is

\[-\varepsilon \log(E_\varepsilon(x)) \longrightarrow I(x) \quad \varepsilon \to 0\]

where \(I > 0\) in \(D\) is the rate function, i.e.

\[
E_\varepsilon(x) = e^{-\frac{I(x)+O(1)}{\varepsilon}} \quad \varepsilon \to 0
\]

- Varadhan: Large deviations and applications, SIAM, 1984
The PDE approach to Large Deviations

Log-transforming $I_\epsilon(x) = -\epsilon \log(E_\epsilon(x))$ and interpreting I_ϵ as a solution of the singular perturbation problem

$$-\epsilon \Delta u + H(x, Du) = 0$$

$x \in D$

Boundary condition on ∂D

Pass to the limit for $\epsilon \to 0$ in the previous problem. If $I_\epsilon \to I$ for some subsequence, then I solves the Hamilton-Jacobi equation (HJ)

$$H(x, Du) = 0$$

$x \in D$

Boundary condition on ∂D

Show uniqueness for (HJ). Then $I_\epsilon \to I$ and we have the large deviations result

$$-\epsilon \log(E_\epsilon(x)) \to I(x)$$

for $\epsilon \to 0$.

Interpreting (HJ) as a control problem, we also have a representation formula for I.

The PDE approach to Large Deviations

- Perform the log-transform $I_\varepsilon(x) = -\varepsilon \log(E_\varepsilon(x))$ and interpret I_ε as a solution of the singular perturbation problem

\[
\begin{cases}
-\varepsilon \Delta u + H(x, Du) = 0 & x \in D \\
\text{boundary condition on } \partial D
\end{cases}
\]

- Pass to the limit for $\varepsilon \to 0$ in the previous problem. If $I_\varepsilon \to I_k$, for some subsequence, then I solves the Hamilton-Jacobi equation \((HJ)\)

\[
\begin{cases}
H(x, Du) = 0 & x \in D \\
\text{boundary condition on } \partial D
\end{cases}
\]

- Show uniqueness for \((HJ)\). Then $I_\varepsilon \to I$ and we have the large deviations result

\[-\varepsilon \log(E_\varepsilon(x)) \to I(x) \quad \text{for } \varepsilon \to 0. \]

Interpreting \((HJ)\) as the a control problem, we also have a representation formula for I.
The PDE approach to Large Deviations

- Perform the log-transform $I_\varepsilon(x) = -\varepsilon \log(E_\varepsilon(x))$ and interpret I_ε as a solution of the singular perturbation problem

$$\begin{cases}
-\varepsilon \Delta u + H(x, Du) = 0 & x \in D \\
\text{boundary condition on } \partial D
\end{cases}$$

- Pass to the limit for $\varepsilon \to 0$ in the previous problem. If $I_{\varepsilon_k} \to I$, for some subsequence, then I solves the Hamilton-Jacobi equation

$$\begin{cases}
H(x, Du) = 0 & x \in D \\
\text{boundary condition on } \partial D
\end{cases}$$ (HJ)
The PDE approach to Large Deviations

- Perform the log-transform \(I_\varepsilon(x) = -\varepsilon \log(E_\varepsilon(x)) \) and interpret \(I_\varepsilon \) as a solution of the singular perturbation problem

\[
\begin{aligned}
-\varepsilon \Delta u + H(x, Du) &= 0 \\
\text{boundary condition on } \partial D
\end{aligned}
\]

- Pass to the limit for \(\varepsilon \to 0 \) in the previous problem. If \(I_{\varepsilon_k} \to I \), for some subsequence, then \(I \) solves the Hamilton-Jacobi equation

\[
\begin{aligned}
H(x, Du) &= 0 \\
\text{boundary condition on } \partial D
\end{aligned}
\]

- Show uniqueness for (HJ). Then \(I_\varepsilon \to I \) and we have the large deviations result \(-\varepsilon \log(E_\varepsilon(x)) \to I(x) \) for \(\varepsilon \to 0 \).
The PDE approach to Large Deviations

- Perform the log-transform $I_\varepsilon(x) = -\varepsilon \log(E_\varepsilon(x))$ and interpret I_ε as a solution of the singular perturbation problem

$$\begin{cases}
-\varepsilon \Delta u + H(x, Du) = 0 & x \in D \\
\text{boundary condition on } \partial D
\end{cases}$$

- Pass to the limit for $\varepsilon \to 0$ in the previous problem. If $I_{\varepsilon_k} \to I$, for some subsequence, then I solves the Hamilton-Jacobi equation

$$(\text{HJ}) \quad \begin{cases}
H(x, Du) = 0 & x \in D \\
\text{boundary condition on } \partial D
\end{cases}$$

- Show uniqueness for (HJ). Then $I_\varepsilon \to I$ and we have the large deviations result $-\varepsilon \log(E_\varepsilon(x)) \to I(x)$ for $\varepsilon \to 0$. Interpreting (HJ) as the control problem, we also have a representation formula for I.

• W. Fleming ('81): logarithmic transformation and stochastic control methods
• Kamin, Eizenberg: classical solutions and strong convergence of I_ε, $D I_\varepsilon$ (estimates for $\|I_\varepsilon\|$, $\|D I_\varepsilon\|$, $\|D^2 I_\varepsilon\|$)
• Evans-Ishii ('85): continuous viscosity solutions and uniform convergence of I_ε (estimates for $\|I_\varepsilon\|_\infty$, $\|D I_\varepsilon\|_\infty$)
• Barles-Perthame ('90): discontinuous viscosity solutions and half-relaxed limits (estimates for $\|I_\varepsilon\|_\infty$)
• W.Fleming (’81): logarithmic transformation and stochastic control methods
• W.Fleming ('81): logarithmic transformation and stochastic control methods

• Kamin, Eizenberg: classical solutions and strong convergence of I_ε, $D I_\varepsilon$ (estimates for $\| I_\varepsilon \|$, $\| D I_\varepsilon \|$, $\| D^2 I_\varepsilon \|$)
• W. Fleming (’81): logarithmic transformation and stochastic control methods

• Kamin, Eizenberg: classical solutions and strong convergence of I_ε, $D I_\varepsilon$ (estimates for $\|I_\varepsilon\|$, $\|D I_\varepsilon\|$, $\|D^2 I_\varepsilon\|$)

• Evans-Ishii (’85): continuous viscosity solutions and uniform convergence of I_ε (estimates for $\|I_\varepsilon\|_\infty$, $\|D I_\varepsilon\|_\infty$)
• W.Fleming ('81): logarithmic transformation and stochastic control methods

• Kamin, Eizenberg: classical solutions and strong convergence of I_ε, $D I_\varepsilon$ (estimates for $\| I_\varepsilon \|$, $\| D I_\varepsilon \|$, $\| D^2 I_\varepsilon \|$)

• Evans-Ishii ('85): continuous viscosity solutions and uniform convergence of I_ε (estimates for $\| I_\varepsilon \|_\infty$, $\| D I_\varepsilon \|_\infty$)

• Barles-Perthame ('90): discontinuous viscosity solutions and half-relaxed limits (estimates for $\| I_\varepsilon \|_\infty$)
There exists a strict subsolution to the Hamilton-Jacobi (i.e. $H(x, D\psi) < 0$ in D).

Levinson's condition: If $dX_{\varepsilon}(t) = b(X_{\varepsilon}(t))\, dt + \sqrt{\varepsilon}\, dW(t)$, then the trajectories of $\dot{x}(t) = b(x(t))$ must exit in a (uniformly bounded) finite time out of D.

b cannot have equilibria inside $D \Rightarrow$ interesting problems in Large Deviation theory (e.g. Wentzell-Freidlin's theory) are excluded by the viscosity solution approach (Perthame (TAMS '90): the case of a single equilibrium point for b).
Uniqueness for the Hamilton-Jacobi equation $H(x, Du) = 0 + (BC)$
Uniqueness for the Hamilton-Jacobi equation $H(x, Du) = 0+(BC)$

\[\uparrow \]

There exists a strict subsolution to the Hamilton-Jacobi (i.e. $H(x, D\psi) < 0$ in D)
Uniqueness for the Hamilton-Jacobi equation $H(x, Du) = 0+(BC)$

\[\uparrow \]

There exists a strict subsolution to the Hamilton-Jacobi (i.e. $H(x, D\psi) < 0$ in D)

\[\uparrow \]

Levinson’s condition: If $dX_\varepsilon(t) = b(X_\varepsilon(t))dt + \sqrt{\varepsilon}dW(t)$, then the trajectories of $\dot{x}(t) = b(x(t))$ must exit in a (uniformly bounded) finite time out of D.
Uniqueness for the Hamilton-Jacobi equation $H(x, Du) = 0 + (BC)$

\[\uparrow \]

There exists a strict subsolution to the Hamilton-Jacobi (i.e. $H(x, D\psi) < 0$ in D)

\[\uparrow \]

Levinson’s condition: If $dX_\varepsilon(t) = b(X_\varepsilon(t))dt + \sqrt{\varepsilon}dW(t)$, then the trajectories of $\dot{x}(t) = b(x(t))$ must exit in a (uniformly bounded) finite time out of D.

b cannot have equilibria inside $D \Rightarrow$ interesting problems in Large Deviation theory (e.g. Wentzell-Freidlin’s theory) are excluded by the viscosity solution approach (Perthame (TAMS ’90): the case of a single equilibrium point for b)
A basic problem (Wentzell-Freidlin’s book, Ch. IV)

\[
\begin{align*}
&dX_\varepsilon(t) = b(X_\varepsilon(t))dt + \sqrt{\varepsilon}dW(t) \\
&X(0) = x \in D
\end{align*}
\]

in bounded domain \(D\). Assume
A basic problem (Wentzell-Freidlin’s book, Ch. IV)

\[
\begin{align*}
\left\{ \begin{array}{l}
\quad dX_\varepsilon(t) &= b(X_\varepsilon(t))dt + \sqrt{\varepsilon}dW(t) \\
\quad X(0) &= x \in D
\end{array} \right.
\]

in bounded domain D. Assume

- $b(x) \cdot n_{ext}(x) < 0$ for $x \in \partial D$ (D is invariant)
A basic problem (Wentzell-Freidlin’s book, Ch. IV)

\[
\begin{cases}
 dX_\varepsilon(t) = b(X_\varepsilon(t))dt + \sqrt{\varepsilon}dW(t) \\
 X(0) = x \in D
\end{cases}
\]

in bounded domain \(D\). Assume

- \(b(x) \cdot n_{\text{ext}}(x) < 0\) for \(x \in \partial D\) (\(D\) is invariant)
- the set \(\Omega_b\) of the \(\omega\)-limits of \(\dot{x}(t) = b(x(t))\) is a \textit{class of equivalence} for the quasi-potential

\[
V(y, x) = \inf \{ \int_0^T \frac{1}{2} |\dot{\phi}(s) - b(\phi(s))|^2 ds : \\
\phi(0) = y, \phi(T) = x, T > 0 \}.
\]

(i.e. \(V(y, x) = V(x, y) = 0\) for \(x, y \in \Omega_b\))
Consider LD functional $\varepsilon(x) = \phi(\tau_\varepsilon(\tau_\varepsilon(x)))$ where τ_ε is the exit-time from D and ϕ a given continuous function.

If there is a unique y s.t. $V(\Omega^b, y) = \min_{x \in \partial D} V(\Omega^b, x)$, then $\varepsilon(x) \to \phi(y)$ for $\varepsilon \to 0$. This means that the stochastic trajectories X_ε exit from D close to y.
Consider LD functional

\[E_\varepsilon(x) = \mathbb{E}_x[\varphi(X_\varepsilon(\tau_\varepsilon))] \]

where \(\tau_\varepsilon \) is the exit-time from \(D \) and \(\varphi \) a given continuous function.
Consider LD functional

\[E_\varepsilon(x) = \mathbb{E}_x[\varphi(X_\varepsilon(\tau_\varepsilon))] \]

where \(\tau_\varepsilon \) is the exit-time from \(D \) and \(\varphi \) a given continuous function.

If there a unique \(y \) s.t. \(V(\Omega_b, y) = \min_{x \in \partial D} V(\Omega_b, x) \), then

\[E_\varepsilon(x) \longrightarrow \varphi(y) \quad \text{for} \ \varepsilon \rightarrow 0 \]

This means that the stochastic trajectories \(X_\varepsilon \) exit from \(D \) close to \(y \).
The PDE approach (Kamin, Perthame)
The PDE approach (Kamin, Perthame)

\[E_\varepsilon(x) = \mathbb{E}_x[\varphi(X_\varepsilon(T_\varepsilon))] \] is a solution of

\[
\begin{cases}
 -\frac{\varepsilon}{2} \Delta u_\varepsilon + b(x) \cdot Du_\varepsilon = 0 & x \in D \\
 u_\varepsilon(x) = \varphi(x) & x \in \partial D
\end{cases}
\]
The PDE approach (Kamin, Perthame)

\[E_\varepsilon(x) = \mathbb{E}_x[\varphi(X_\varepsilon(\tau^\varepsilon))] \] is a solution of

\[
\begin{cases}
-\frac{\varepsilon}{2} \Delta u_\varepsilon + b(x) \cdot Du_\varepsilon = 0 & x \in D \\
 u_\varepsilon(x) = \varphi(x) & x \in \partial D
\end{cases}
\]

The invariant measure \(\nu^\varepsilon \) associated to the process satisfies the adjoint equation

\[
\begin{cases}
-\frac{\varepsilon}{2} \Delta \nu^\varepsilon + div(b(x)\nu^\varepsilon) = 0 & x \in D \\
\frac{\varepsilon}{2} \frac{\partial \nu^\varepsilon}{\partial n}(x) + b(x) \cdot n(x) \nu_\varepsilon = 0 & x \in \partial D
\end{cases}
\]
Set \(V_\varepsilon = -\varepsilon \log(v_\varepsilon) \), then \(V_\varepsilon \) is a solution of the singular perturbation problem

\[
\begin{cases}
-\varepsilon^2 \Delta V_\varepsilon + H(x, D_1 V_\varepsilon) = \varepsilon \text{div}(b) \\
\quad \quad \quad \quad \quad \quad \quad \quad \quad x \in D \\
\quad \partial V_\varepsilon \partial n(x) + 2b(x) \cdot n(x) = 0 \\
\quad \quad \quad \quad \quad \quad \quad \quad \quad x \in \partial D
\end{cases}
\]

where \(H(x, p) = |p|^2 + b(x) \cdot p \) is the Hamiltonian associated to the Lagrangian \(L(x, q) = |q - b(x)|^2 \) in the quasi-potential.

Formally \(V_\varepsilon \to V \) where \(V \) is a solution of

\[
\begin{cases}
\quad H(x, D_1 V) = 0 \\
\quad \partial V \partial n(x) + 2b(x) \cdot n(x) = 0
\end{cases}
\]

Since Levinson's condition is violated (\(b \) has an attractor inside \(D \)), no uniqueness and the 3rd step in the PDE approach fails.
Set $V^\varepsilon = -\varepsilon \log(v^\varepsilon)$, then V^ε is a solution of the singular perturbation problem

$$
\begin{cases}
-\frac{\varepsilon}{2} \Delta V^\varepsilon + H(x, DV^\varepsilon) = \varepsilon \text{div}(b) & \ x \in D \\
\frac{\partial V^\varepsilon}{\partial n}(x) + 2b(x) \cdot n(x) = 0 & \ x \in \partial D
\end{cases}
$$

where $H(x, p) = \frac{|p|^2}{2} + b(x) \cdot p$ is the Hamiltonian associated to the Lagrangian $L(x, q) = \frac{|q-b(x)|^2}{2}$ in the quasi-potential.
Set $V^\varepsilon = -\varepsilon \log(v^\varepsilon)$, then V^ε is a solution of the singular perturbation problem

$$
\begin{aligned}
-\frac{\varepsilon}{2} \Delta V^\varepsilon + H(x, DV^\varepsilon) &= \varepsilon \text{div}(b) \quad x \in D \\
\frac{\partial V^\varepsilon}{\partial n}(x) + 2b(x) \cdot n(x) &= 0 \quad x \in \partial D
\end{aligned}
$$

where $H(x, p) = \frac{|p|^2}{2} + b(x) \cdot p$ is the Hamiltonian associated to the Lagrangian $L(x, q) = \frac{|q - b(x)|^2}{2}$ in the quasi-potential. Formally $V^\varepsilon \to V$ where V is a solution of

$$
\begin{aligned}
H(x, DV) &= 0 \quad x \in D \\
\frac{\partial V}{\partial n}(x) + 2b(x) \cdot n(x) &= 0 \quad x \in \partial D
\end{aligned}
$$

Since Levinson's condition is violated (b has an attractor inside D), no uniqueness and the 3rd step in the PDE approach fails.
Aim:

• To study the structure of the solutions of the 1st Neumann problem

\[H(x, \nabla V) = 0 \quad x \in D \]
\[\partial V \partial n(x) + 2b(x) \cdot n(x) = 0 \quad x \in \partial D \]

• To understand if the sequence of the solutions \(V_{\varepsilon} \) of the 2nd order problems selects a particular solution of the 1st order problem
Aim:
• To study the structure of the solutions of the 1st Neumann problem
\[
\begin{aligned}
\left\{ \begin{array}{l}
H(x, DV) = 0 \quad x \in D \\
\frac{\partial V}{\partial n}(x) + 2b(x) \cdot n(x) = 0 \quad x \in \partial D
\end{array} \right.
\end{aligned}
\]
Aim:
• To study the structure of the solutions of the 1st Neumann problem
\[
\begin{align*}
H(x, DV) &= 0 & x &\in D \\
\frac{\partial V}{\partial n}(x) + 2b(x) \cdot n(x) &= 0 & x &\in \partial D
\end{align*}
\]
• To understand if the sequence of the solutions \(V_\varepsilon \) of the 2nd order problems selects a particular solution of the 1st order problem
A short review of the Aubry-Mather theory for HJ equations
A short review of the Aubry-Mather theory for HJ equations

Let $H(x, p)$ be a convex, coercive Hamiltonian and define

$$c = \inf\{\lambda : H(x, Du) \leq \lambda \text{ admits a subsolution in } D\}$$
A short review of the Aubry-Mather theory for HJ equations

Let $H(x, p)$ be a convex, coercive Hamiltonian and define

$$c = \inf\{\lambda : H(x, Du) \leq \lambda \text{ admits a subsolution in } D\}$$

For $\lambda \geq c$ set

$$Z_\lambda(x) = \left\{ p \in \mathbb{R}^N : H(x, p) \leq \lambda \right\}$$

$$\sigma_\lambda(x, q) = \sup \{ p \cdot q : p \in Z_\lambda(x) \}$$

and define the distance
A short review of the Aubry-Mather theory for HJ equations

Let $H(x, p)$ be a convex, coercive Hamiltonian and define

$$c = \inf \{ \lambda : H(x, Du) \leq \lambda \text{ admits a subsolution in } D \}$$

For $\lambda \geq c$ set

$$Z_\lambda(x) = \{ p \in \mathbb{R}^N : H(x, p) \leq \lambda \}$$

$$\sigma_\lambda(x, q) = \sup \{ p \cdot q : p \in Z_\lambda(x) \}$$

and define the distance

$$S_\lambda(x, y) = \inf \{ \int_0^1 \sigma_\lambda(\phi(s), \dot{\phi}(s))ds : \phi \in W^{1,\infty}([0, 1], D), \phi(0) = x, \phi(1) = y \}$$
Properties:

For any $x \in D$, $S_{\lambda}(x, \cdot)$ is a subsolution in D and a supersolution in $D \setminus \{x\}$ to $H(y, Du) = \lambda$.

u is a subsolution to $H(y, Du) = \lambda$ \iff $u(x) - u(y) \leq S_{\lambda}(y, x)$ for any $x, y \in D$.

$H(y, Du) = \lambda + (BC)$ has a unique viscosity solution (or no viscosity solution) $\iff \lambda > c$ $\iff S_{\lambda}$ is locally equivalent to the Euclidean distance. For $\lambda = c$, a non-uniqueness phenomenon appears.
Properties:

- For any $x \in D$, $S_{\lambda}(x, \cdot)$ is a subsolution in D and a supersolution in $D \setminus \{x\}$ to $H(y, Du) = \lambda$.

- For any $x, y \in D$, $u(x) - u(y) \leq S_{\lambda}(y, x)$.

- $H(y, Du) = \lambda + (BC)$ has a unique viscosity solution (or no viscosity solution) $\iff \lambda > c$ $\iff S_{\lambda}$ is locally equivalent to the Euclidean distance $\lambda = c$.

A non-uniqueness phenomenon appears...
Properties:

• For any \(x \in D \), \(S_\lambda(x, \cdot) \) is a subsolution in \(D \) and a supersolution in \(D \setminus \{x\} \) to \(H(y, Du) = \lambda \).

• \(u \) is a subsolution to \(H(y, Du) = \lambda \) \(\iff \) \(u(x) - u(y) \leq S_\lambda(y, x) \) for any \(x, y \in D \).
Properties:

• For any \(x \in D \), \(S_\lambda(x, \cdot) \) is a subsolution in \(D \) and a supersolution in \(D \setminus \{x\} \) to \(H(y, Du) = \lambda \).

• \(u \) is a subsolution to \(H(y, Du) = \lambda \iff u(x) - u(y) \leq S_\lambda(y, x) \) for any \(x, y \in D \).

• \(H(y, Du) = \lambda + (BC) \) has a unique viscosity solution (or no viscosity solution) \(\iff \lambda > c \iff S_\lambda \) is locally equivalent to the Euclidean distance.
Properties:

- For any $x \in D$, $S_\lambda(x, \cdot)$ is a subsolution in D and a supersolution in $D \setminus \{x\}$ to $H(y, Du) = \lambda$.

- u is a subsolution to $H(y, Du) = \lambda \iff u(x) - u(y) \leq S_\lambda(y, x)$ for any $x, y \in D$.

- $H(y, Du) = \lambda + (BC)$ has a unique viscosity solution (or no viscosity solution) $\iff \lambda > c$ $\iff S_\lambda$ is locally equivalent to the Euclidean distance.

For $\lambda = c$ a non-uniqueness phenomenon appears.
The Aubry set \mathcal{A}

The Aubry set is the set where S_c fails to equivalent to the Euclidean distance.
The Aubry set \mathcal{A}

The Aubry set is the set where S_c fails to equivalent to the Euclidean distance

- **A metric definition:** $x \in \mathcal{A} \iff \exists \{\phi_n\}, \phi_n(0) = \phi_n(1) = x$, s.t.
 \[
 \inf_n \{\int_0^1 |\dot{\phi}_n(s)|\,ds\} \geq \delta > 0 \quad \text{(Euclidean length)}
 \]
 \[
 \inf_n \{\int_0^1 \sigma_c(\phi_n(s)), \dot{\phi}_n(s))\,ds\} = 0 \quad \text{(intrinsic length)}
 \]
The Aubry set \mathcal{A}

The Aubry set is the set where S_c fails to equivalent to the Euclidean distance

- **A metric definition**: $x \in \mathcal{A} \iff \exists \{\phi_n\}, \phi_n(0) = \phi_n(1) = x$, s.t.
 $\inf_n \{ \int_0^1 |\dot{\phi}_n(s)| ds \} \geq \delta > 0$ (Euclidean length)
 $\inf_n \{ \int_0^1 \sigma_c(\phi_n(s)), \dot{\phi}_n(s) \} ds \} = 0$ (intrinsic length)

- **A PDE definition**: $x \in \mathcal{A} \iff S_c(x, \cdot)$ is a solution at x.

The Aubry set \mathcal{A}

The Aubry set is the set where S_c fails to equivalent to the Euclidean distance

- **A metric definition:** $x \in \mathcal{A} \iff \exists \{\phi_n\}, \phi_n(0) = \phi_n(1) = x$, s.t.
 \[
 \inf_n \left\{ \int_0^1 |\dot{\phi}_n(s)| \, ds \right\} \geq \delta > 0 \quad \text{(Euclidean length)}
 \]
 \[
 \inf_n \left\{ \int_0^1 \sigma_c(\phi_n(s)), \dot{\phi}_n(s) \right\} \, ds \right\} = 0 \quad \text{(intrinsic length)}
 \]

- **A PDE definition:** $x \in \mathcal{A} \iff S_c(x, \cdot)$ is a solution at x.

The main property: There exists a subsolution to $H(x, Du) = c$, which is strict (i.e. $H(x, Du) < c$) out of \mathcal{A}.

The Aubry set \mathcal{A}

The Aubry set is the set where S_c fails to be equivalent to the Euclidean distance.

- **A metric definition**: $x \in \mathcal{A} \iff \exists \{\phi_n\}, \phi_n(0) = \phi_n(1) = x$, s.t.
 \[
 \inf_n \left\{ \int_0^1 |\dot{\phi}_n(s)| \, ds \right\} \geq \delta > 0 \quad \text{(Euclidean length)}
 \]
 \[
 \inf_n \left\{ \int_0^1 \sigma_c(\phi_n(s)), \dot{\phi}_n(s) \right\} \, ds \right\} = 0 \quad \text{(intrinsic length)}
 \]

- **A PDE definition**: $x \in \mathcal{A} \iff S_c(x, \cdot)$ is a solution at x.

The main property: There exists a subsolution to $H(x, Du) = c$, which is strict (i.e. $H(x, Du) < c$) out of \mathcal{A}.

General Fact: A unique solution to $H(x, Du) = c + (BC) \iff$ the value on \mathcal{A} is prescribed, i.e. \mathcal{A} is an uniqueness set for $H(x, Du) = c$.
Aubry-Mather theory for the Neumann problem

Recall that we want to study

\[
\begin{aligned}
&H(x, Dv) = 0 \quad x \in D \\
&\frac{\partial v}{\partial n}(x) + 2b(x) \cdot n(x) = 0 \quad x \in \partial D
\end{aligned}
\]

where \(H(x, p) = \frac{1}{2}|p|^2 + b(x) \cdot p \) is the LD Hamiltonian.
Aubry-Mather theory for the Neumann problem

Recall that we want to study

\[\begin{cases} \quad H(x, Dv) = 0 & x \in D \\ \quad \frac{\partial v}{\partial n}(x) + 2b(x) \cdot n(x) = 0 & x \in \partial D \end{cases} \]

where \(H(x, p) = \frac{1}{2}|p|^2 + b(x) \cdot p \) is the LD Hamiltonian. Set

\[Z(x) = B(-b(x), |b(x)|) \]

\[\sigma(x, q) = |b(x)||q| - b(x) \cdot q \]

\[S(x, y) = \inf \left\{ \int_0^1 |b(\phi)||\dot{\phi}| - b(\phi) \cdot \dot{\phi} ds : \phi(0) = x, \phi(1) = y \right\} \]
The assumption $b(x) \cdot n_{ext}(x) < 0$ implies that
The assumption $b(x) \cdot n_{\text{ext}}(x) < 0$ implies that

- $0 = \inf \{ \lambda : H(x, Du) \leq \lambda \text{ admits a subsolution in } D \}$

This explains the non-uniqueness of the solution to the Neumann problem.
The assumption $b(x) \cdot n_{ext}(x) < 0$ implies that

- $0 = \inf \{ \lambda : H(x, Du) \leq \lambda \text{ admits a subsolution in } D \}$

This explains the \textit{non-uniqueness} of the solution to the Neumann problem.

- A is contained in the \textit{interior} of D. This fact is very important since we can interpret the \textit{Neumann boundary condition} in standard viscosity sense
The Comparison Theorem
The Comparison Theorem

Theorem: u subsolution and v supersolution s.t. $u \leq v$ for $x \in A$
then

$$u \leq v \quad \text{for} \quad x \in \overline{D}$$

(i.e. A is a uniqueness set for (HJ))
The Comparison Theorem

Theorem: u subsolution and v supersolution s.t. $u \leq v$ for $x \in \mathcal{A}$ then

$$u \leq v \quad \text{for } x \in \overline{D}$$

(i.e. \mathcal{A} is a uniqueness set for (HJ))

Corollary: If g is such that $g(y) - g(x) \leq S(x, y)$ for any $x, y \in \mathcal{A}$ then

$$v(x) := \inf_{y \in \mathcal{A}} [g(y) + S(y, x)]$$

is the unique viscosity solution to (HJ) with value g on \mathcal{A}.
Aubry-Mather theory and Large Deviations
Aubry-Mather theory and Large Deviations

The key point is to establish the relation between the LD objects V (the quasi-potential), Ω_b (the ω-limits set) and the PDE objects S (the distance), A (the Aubry set)
Aubry-Mather theory and Large Deviations

The key point is to establish the relation between the LD objects V (the quasi-potential), Ω_b (the ω-limits set) and the PDE objects S (the distance), \mathcal{A} (the Aubry set)

- The quasi-potential

$$V(y, x) = \inf_{\phi(0)=y, \phi(T)=x, T>0} \left\{ \int_0^T \frac{1}{2} |\dot{\phi}(s) - b(\phi(s))|^2 \, ds \right\}.$$

coincides with the distance S
Aubry-Mather theory and Large Deviations

The key point is to establish the relation between the LD objects V (the quasi-potential), Ω_b (the ω-limits set) and the PDE objects S (the distance), \mathcal{A} (the Aubry set)

- The quasi-potential

$$V(y, x) = \inf_{\phi(0) = y, \phi(T) = x, T > 0} \left\{ \int_0^T \frac{1}{2} |\dot{\phi}(s) - b(\phi(s))|^2 \, ds \right\}.$$

coincides with the distance S

- $\Omega_b \subset \mathcal{A}$, \mathcal{A} is forward invariant for $\dot{x} = b(x(t))$ and any subsolution is constant on the integral curve contained in \mathcal{A}. This implies that:
Aubry-Mather theory and Large Deviations

The key point is to establish the relation between the LD objects V (the quasi-potential), Ω_b (the ω-limits set) and the PDE objects S (the distance), A (the Aubry set)

- The quasi-potential

$$V(y, x) = \inf_{\phi(0)=y, \phi(T)=x, T>0} \left\{ \int_0^T \frac{1}{2} |\dot{\phi}(s) - b(\phi(s))|^2 ds \right\}.$$

coinsides with the distance S

- $\Omega_b \subset A$, A is forward invariant for $\dot{x} = b(x(t))$ and any subsolution is constant on the integral curve contained in A.

This implies that:
- A subsolution of $H(x, Du)$ is constant on A
- Ω_b is a uniqueness set for the Neumann problem
The Large Deviations result

Let \(v \in \mathbb{E} \) be the solution of

\[
-\epsilon^2 \Delta v + \epsilon \text{div}(b) = 0 \quad \text{in} \quad D
\]

\[
\partial v \epsilon \partial_n(x) + 2b(x) \cdot n(x) = 0 \quad \text{on} \quad \partial D
\]

Set \(v \epsilon(x) = 0 \) for \(x \in A \) (a solution is defined up to a constant).

Then \(v \epsilon \to S(A, \cdot) \epsilon \to 0 \) where \(S(A, x) = \min \{ S(y, x) : y \in A \} \).

Remark: Recalling that \(S = V \), where \(V \) the quasi-potential, the previous theorem implies the Wentzell-Freidlin's large deviations result.
The Large Deviations result

Theorem: Let v^ε be the solution of

$$\begin{cases}
-\frac{\varepsilon}{2} \Delta v^\varepsilon + H(x, Dv^\varepsilon) = \varepsilon \text{div}(b) & x \in D \\
\frac{\partial v^\varepsilon}{\partial n}(x) + 2b(x) \cdot n(x) = 0 & x \in \partial D
\end{cases}$$

Set $v^\varepsilon(\bar{x}) = 0$ for $\bar{x} \in \mathcal{A}$ (a solution is defined up to a constant).
The Large Deviations result

Theorem: Let v^ε be the solution of

\[
\begin{align*}
-\frac{\varepsilon}{2} \Delta v^\varepsilon + H(x, Dv^\varepsilon) &= \varepsilon \text{div}(b) & x \in D \\
\frac{\partial v^\varepsilon}{\partial n}(x) + 2 b(x) \cdot n(x) &= 0 & x \in \partial D
\end{align*}
\]

Set $v^\varepsilon(x) = 0$ for $x \in \mathcal{A}$ (a solution is defined up to a constant). Then

\[v^\varepsilon \to S(\mathcal{A}, \cdot) \quad \varepsilon \to 0\]

where $S(\mathcal{A}, x) = \min\{S(y, x) : y \in \mathcal{A}\}$.

Remark: Recalling that $S = V$, where V the quasi-potential, the previous theorem implies the Wentzell-Freidlin’s large deviations result.
Proof:
By the Harnack’s inequality we have that v_{ε} is uniformly Lipschitz continuous.

If $v_{\varepsilon} \to v$, then v is a solution of the Neumann problem and $v(x) = 0$, hence $v(x) = 0$ for $x \in A$.

Recalling the representation formula $v(x) := \inf_{y \in A} \{ g(y) + S(y, x) \}$ we get $v(x) = S(A, x)$ for $x \in D$.
Proof: By the Harnack’s inequality we have that v_ε is uniformly Lipschitz continuous.
Proof: By the Harnack’s inequality we have that v_ε is uniformly Lipschitz continuous. If $v_{\varepsilon_k} \to v$, then v is a solution of the Neumann problem and $v(\bar{x}) = 0$, hence $v(x) = 0$ for $x \in A$.\[\]

Recalling the representation formula $v(x) := \inf_{y \in A} \{ g(y) + S(y, x) \}$ we get $v(x) = S(A, x)$ for $x \in D$.\[\]
Proof: By the Harnack’s inequality we have that v_ε is uniformly Lipschitz continuous.

If $v_{\varepsilon_k} \to v$, then v is a solution of the Neumann problem and $v(\bar{x}) = 0$, hence $v(x) = 0$ for $x \in \mathcal{A}$.

Recalling the representation formula

$$v(x) := \inf_{y \in \mathcal{A}} \{g(y) + S(y, x)\}$$

we get

$$v(x) = S(\mathcal{A}, x) \quad \text{for } x \in D.$$
Remarks:

- The previous result can be extended to the case \(\Omega = \bigcup_{i=1}^{N} K_i \), where \(K_i \) class of equivalence for the quasi-potential, \(K_1 \) attractive, \(K_2, \ldots, K_N \) repulsive.

- Then \(v \in S(K_1, \cdot) \) for \(\epsilon \to 0 \).

- With the same method it is possible to study other problems such as the Kamin and Eizenberg singular perturbation problem:

\[
-\epsilon \Delta v + H(x, Dv) - \epsilon c(x) = 0 \quad x \in Dv(x) = 0 \quad x \in \partial D
\]

where \(c \) is non-negative in \(D \).
Remarks:

- The previous result can be extended to the case $\Omega_b = \bigcup_{i=1}^{N} K_i$, where K_i class of equivalence for the quasi-potential, K_1 attractive, K_2, \ldots, K_N repulsive.
Remarks:

• The previous result can be extended to the case $\Omega_b = \bigcup_{i=1}^{N} K_i$, where K_i class of equivalence for the quasi-potential, K_1 attractive, K_2, \ldots, K_N repulsive. Then $v_\varepsilon \to S(K_1, \cdot)$ for $\varepsilon \to 0$.
Remarks:

• The previous result can be extended to the case \(\Omega_b = \bigcup_{i=1}^{N} K_i \), where \(K_i \) class of equivalence for the quasi-potential, \(K_1 \) attractive, \(K_2, \ldots, K_N \) repulsive. Then \(v_\varepsilon \to S(K_1, \cdot) \) for \(\varepsilon \to 0 \).

• With the same method it is possible to study other problems such as the Kamin and Eizenberg singular perturbation problem

\[
\begin{align*}
-\varepsilon \Delta v_\varepsilon + H(x, Dv_\varepsilon) - \varepsilon c(x) &= 0 & x \in D \\
v_\varepsilon(x) &= 0 & x \in \partial D
\end{align*}
\]

where \(c \) is non-negative in \(D \).