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e To show the relation between singular perturbations problems
arising in Large Deviations theory and the Aubry-Mather
theory for Hamilton-Jacobi equations

e To reprove by simple PDE (viscosity) methods, some singular
perturbation results which require hard probabilistic proofs

Plan of the talk:

e What is a Large Deviations result?
e The PDE approach to Large Deviations and when it fails
e The Aubry-Mather theory of Hamilton-Jacobi equations

e Improving the PDE approach to Large Deviations via
Aubry-Mather theory
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Large Deviations

Aim of Large Deviations theory is to gives estimates of events with
exponentially small probability or expectation. Consider

dX.(t) = b(X:(1))dt + \/EdW (1),
{ X(0)=xeD

E.: a functional depending on the sample paths X,
(fe. Ec(x) =E[Xc(7:)] or Ec(x) = P[Xc(72) € ] with ' C 9D).
The classical LD result is

—clog(E-(x)) — I(x) e—0

where | > 0 in D is the rate function, i.e.

_Ix)+0(1)

E.(x)=e" " = e—0

o Freidlin-Wentzell: Random perturbations of dynamical
systems, Springer, 1994
e Varadhan: Large deviations and applications, SIAM, 1984
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The PDE approach to Large Deviations

Perform the log-transform I.(x) = —¢log(E-(x)) and interpret
I. as a solution of the singular perturbation problem

—eAu+ H(x,Du) =0 xeD
boundary condition on 0D

Pass to the limit for € — 0 in the previous problem. If
I, — |, for some subsequence, then / solves the
Hamilton-Jacobi equation

(HJ) H(x,Du) =0 xeD
boundary condition on 9D

Show uniqueness for (HJ). Then I — | and we have the large
deviations result —¢ log(E-(x)) — I(x) for e — 0.
Interpreting (HJ) as the a control problem, we also have a
representation formula for /
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W.Fleming ('81): logarithmic transformation and stochastic
control methods

Kamin, Eizenberg: classical solutions and strong convergence
of I, DI, (estimates for ||I||, || DL, ||D?/]|)

Evans-Ishii ('85): continuous viscosity solutions and uniform
convergence of I. (estimates for ||/;||oo, ||Dl:||oc)

Barles-Perthame ('90): discontinuous viscosity solutions and
half-relaxed limits (estimates for ||/||)
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Uniqueness for the Hamilton-Jacobi equation H(x, Du) = 0+(BC)

)

There exists a strict subsolution to the Hamilton-Jacobi (i.e.
H(x, D) < 0in D)
0

Levinson’s condition: If dX.(t) = b(X.(t))dt + \/edW(t), then
the trajectories of x(t) = b(x(t)) must exit in a (uniformly
bounded) finite time out of D.

b cannot have equilibria inside D = interesting problems in Large
Deviation theory (e.g. Wentzell-Freidlin's theory) are excluded by
the viscosity solution approach (Perthame (TAMS '90): the case of
a single equilibrium point for b)
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A basic problem (Wentzell-Freidlin’s book, Ch. 1V)
dX.(t) = b(Xc(t))dt + /edW/(t)
X(0)=xeD
in bounded domain D. Assume

o b(x) - next(x) < 0 for x € D (D is invariant)

o the set Q} of the w-limits of X(t) = b(x(t)) is a class of
equivalence for the quasi-potential

V(y,x) = inf{f, 3é(s) — b(¢(s))|* ds :
$(0) = y,¢(T) = x, T > 0}.

(i,e. V(y,x)=V(x,y)=0for x,y € Qp)
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Consider LD functional

E-(x) = Ex[pp(Xc(7:))]

where 7 is the exit-time from D and ¢ a given continuous
function.
If there a unique y s.t. V(Qp,y) = minyecap V (25, x), then

E.(x) — ©(y) fore — 0

This means that the stochastic trajectories X exit from D close
toy
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The PDE approach (Kamin, Perthame)
E.(x) = Ex[¢(Xc(7%))] is a solution of
—5Au. + b(x)-Du* =0 xeD
us(x) = p(x) x € 0D

The invariant measure v associated to the process satisfies the
adjoint equation

—5AVE +div(b(x)v*) =0  xe€D

E@vE
2 On

(x)+ b(x) - n(x)ve. =0 x € 0D
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Set V& = —clog(v®), then V< is a solution of the singular
perturbation problem

—5AV® + H(x,DV®) = ediv(b) x€ D

ove
on

(x) +2b(x)-n(x)=0 x € 0D
where H(x, p) = % + b(x) - p is the Hamiltonian associated to

the Lagrangian L(x, q) = M in the quasi-potential.
Formally V€ — V where V is a solution of

H(x,DV) =0 xeD
{ %:(X) +2b(x)-n(x)=0 xedD

Since Levinson's condition is violated (b has an attractor inside
D), no uniqueness and the 3 step in the PDE approach fails.
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Aim:
e To study the structure of the solutions of the 15t Neumann
problem

H(x,DV) =0 x€D
{ a\;(x) +2b(x)-n(x)=0 xe€adD

e To understand if the sequence of the solutions V. of the 2"¢
order problems selects a particular solution of the 15t order problem
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Let H(x, p) be a convex, coercive Hamiltonian and define
c =inf{\: H(x, Du) < Xadmits a subsolution in D}

For A > ¢ set
Z)\ {pERN Xp< }

U)\(X q) =sup{p-q: pc r(x)}
and define the distance

S\, y) = inf{ [} oa(6(s), d(s))ds : ¢ € WL>([0,1], D),
#(0) = x,¢(1) = y}
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Properties:

e Forany x € D, S\(x,-) is a subsolution in D and a
supersolution in D \ {x} to H(y, Du) = \.

e uis a subsolution to H(y, Du) = A < u(x) — u(y) < Sa(y, x)
for any x,y € D.

e H(y, Du) = A+(BC) has a unique viscosity solution (or no
viscosity solution) < A > ¢ < S, is locally equivalent to the
Euclidean distance

For A = ¢ a non-uniqueness phenomenon appears
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The Aubry set A

The Aubry set is the set where S. fails to equivalent to the
Euclidean distance
o A metric definition: x € A < 3 {¢pn}, #n(0) = ¢n(1) = x, s.t.
infa{ [ |én(s)|ds} > 6 >0 (Euclidean length)

inf,,{fo1 0c(én(s)), dn(s))ds} =0 (intrinsic length)

e A PDE definition: x € A < Sc(x, ) is a solution at x.

The main property: There exists a subsolution to H(x, Du) = c,
which is strict (i.e. H(x, Du) < c) out of A.

General Fact: A unique solution to H(x, Du) = c+(BC) < the
value on A is prescribed, i.e. A is an uniqueness set for

H(x,Du) = c
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Aubry-Mather theory for the Neumann problem

Recall that we want to study

H(x,Dv) =0 xeD
{ g,‘;(x) +2b(x)-n(x)=0 xedD

where H(x, p) = 3|p|? + b(x) - p is the LD Hamiltonian. Set
Z(x) = B(=b(x),[b(x)])
o(x,q) = [b(x)llg| — b(x) - q
1
Scey) =int { [ 16(0)161 - b(0) s 6(0) =x,0(1) = v

x,q
X,y
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The assumption b(x) - next(x) < 0 implies that
o 0 = inf{\ : H(x, Du) < Xadmits a subsolution in D}

This explains the non-uniqueness of the solution to the Neumann
problem.

e A is contained in the interior of D. This fact is very important
since we can interpret the Neumann boundary condition in
standard viscosity sense
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The Comparison Theorem

Theorem: u subsolution and v supersolution s.t. u<v forxe A
then
u<v for x € D

(i.e. A is a uniqueness set for (HJ))
Corollary: If g is such that g(y) — g(x) < S(x,y) for any
x,y € A then

v(x) = yig; [g(y) + S(y,x)]

is the unique viscosity solution to (HJ) with value g on A.
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The key point is to establish the relation between the LD objects
V' (the quasi-potential), Q5 (the w-limits set) and the PDE objects
S (the distance), A (the Aubry set)

e The quasi-potential

T .
Vi) = o int 5100 - blo(s)) P s

" $(0)=y,6(T)=x,T>0

coincides with the distance S

e Q, C A, Ais forward invariant for X = b(x(t)) and any
subsolution is constant on the integral curve contained in A.
This implies that:

e A subsolution of H(x, Du) is constant on A
e (4, is a uniqueness set for the Neumann problem
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The Large Deviations result

Theorem: Let v¢ be the solution of
—5AVE + H(x, Dv®) = ediv(b) x € D
8 g
(Tvn(x) +2b(x) - n(x) =0 x € 0D

Set vé(x) = 0 for X € A (a solution is defined up to a constant).
Then

v — S(A, ") e—0

where S(A, x) = min{S(y,x) : y € A}.

Remark: Recalling that S = V/, where V the quasi-potential, the
previous theorem implies the Wentzell-Freidlin's large deviations
result.
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Proof: By the Harnack's inequality we have that v, is uniformly
Lipschitz continuous.

If v., — v, then v is a solution of the Neumann problem and
v(x) =0, hence v(x) =0 for x € A.

Recalling the representation formula

v(x) = yig;{g(y) + S(y,x)}

we get
v(x) = S(A, x) for x € D.
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Remarks:

e The previous result can be extended to the case Qp = U,"V:;lKi-
where K; class of equivalence for the quasi-potential, K3
attractive, Ko, ..., Ky repulsive. Then v, — S(Ki,-) for
e — 0.

e With the same method it is possible to study other problems
such as the Kamin and Eizenberg singular perturbation
problem

—eAv. + H(x,Dv.) —ec(x) =0 xeD
ve(x) =0 x € 0D

where ¢ is non-negative in D.



