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Aim:

• To show the relation between singular perturbations problems
arising in Large Deviations theory and the Aubry-Mather
theory for Hamilton-Jacobi equations

• To reprove by simple PDE (viscosity) methods, some singular
perturbation results which require hard probabilistic proofs

Plan of the talk:

• What is a Large Deviations result?

• The PDE approach to Large Deviations and when it fails

• The Aubry-Mather theory of Hamilton-Jacobi equations

• Improving the PDE approach to Large Deviations via
Aubry-Mather theory
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Large Deviations

Aim of Large Deviations theory is to gives estimates of events with
exponentially small probability or expectation.

Consider{
dXε(t) = b(Xε(t))dt +

√
εdW (t),

X (0) = x ∈ D

Eε: a functional depending on the sample paths Xε

(f.e. Eε(x) = E[Xε(τε)] or Eε(x) = P[Xε(τε) ∈ Γ] with Γ ⊂ ∂D).
The classical LD result is

−ε log(Eε(x)) −→ I (x) ε→ 0

where I > 0 in D is the rate function, i.e.

Eε(x) = e−
I (x)+O(1)

ε ε→ 0

• Freidlin-Wentzell: Random perturbations of dynamical
systems, Springer, 1994

• Varadhan: Large deviations and applications, SIAM, 1984
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The PDE approach to Large Deviations

• Perform the log-transform Iε(x) = −ε log(Eε(x)) and interpret
Iε as a solution of the singular perturbation problem{

−ε∆u + H(x ,Du) = 0 x ∈ D
boundary condition on ∂D

• Pass to the limit for ε→ 0 in the previous problem. If
Iεk

→ I , for some subsequence, then I solves the
Hamilton-Jacobi equation

(HJ)

{
H(x ,Du) = 0 x ∈ D
boundary condition on ∂D

• Show uniqueness for (HJ). Then Iε → I and we have the large
deviations result −ε log(Eε(x)) −→ I (x) for ε→ 0.
Interpreting (HJ) as the a control problem, we also have a
representation formula for I
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• W.Fleming (’81): logarithmic transformation and stochastic
control methods

• Kamin, Eizenberg: classical solutions and strong convergence
of Iε, DIε (estimates for ‖Iε‖, ‖DIε‖, ‖D2Iε‖)

• Evans-Ishii (’85): continuous viscosity solutions and uniform
convergence of Iε (estimates for ‖Iε‖∞, ‖DIε‖∞)

• Barles-Perthame (’90): discontinuous viscosity solutions and
half-relaxed limits (estimates for ‖Iε‖∞)
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Uniqueness for the Hamilton-Jacobi equation H(x ,Du) = 0+(BC)

m

There exists a strict subsolution to the Hamilton-Jacobi (i.e.
H(x ,Dψ) < 0 in D)

m

Levinson’s condition: If dXε(t) = b(Xε(t))dt +
√
εdW (t), then

the trajectories of ẋ(t) = b(x(t)) must exit in a (uniformly
bounded) finite time out of D.

b cannot have equilibria inside D ⇒ interesting problems in Large
Deviation theory (e.g. Wentzell-Freidlin’s theory) are excluded by
the viscosity solution approach (Perthame (TAMS ’90): the case of
a single equilibrium point for b)
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A basic problem (Wentzell-Freidlin’s book, Ch. IV){
dXε(t) = b(Xε(t))dt +

√
εdW (t)

X (0) = x ∈ D

in bounded domain D. Assume

• b(x) · next(x) < 0 for x ∈ ∂D (D is invariant)

• the set Ωb of the ω-limits of ẋ(t) = b(x(t)) is a class of
equivalence for the quasi-potential

V (y , x) = inf{
∫ T
0

1
2 |φ̇(s)− b(φ(s))|2 ds :

φ(0) = y , φ(T ) = x ,T > 0}.

(i.e. V (y , x) = V (x , y) = 0 for x , y ∈ Ωb)



A basic problem (Wentzell-Freidlin’s book, Ch. IV){
dXε(t) = b(Xε(t))dt +

√
εdW (t)

X (0) = x ∈ D

in bounded domain D. Assume

• b(x) · next(x) < 0 for x ∈ ∂D (D is invariant)

• the set Ωb of the ω-limits of ẋ(t) = b(x(t)) is a class of
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Consider LD functional

Eε(x) = Ex [ϕ(Xε(τε))]

where τε is the exit-time from D and ϕ a given continuous
function.
If there a unique y s.t. V (Ωb, y) = minx∈∂D V (Ωb, x), then

Eε(x) −→ ϕ(y) for ε→ 0

This means that the stochastic trajectories Xε exit from D close
to y
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The PDE approach (Kamin, Perthame)

Eε(x) = Ex [ϕ(Xε(τ
ε))] is a solution of − ε
2∆uε + b(x) · Duε = 0 x ∈ D

uε(x) = ϕ(x) x ∈ ∂D

The invariant measure v ε associated to the process satisfies the
adjoint equation

− ε
2∆v ε + div(b(x)v ε) = 0 x ∈ D

ε

2

∂v ε

∂n
(x) + b(x) · n(x)vε = 0 x ∈ ∂D
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Set V ε = −ε log(v ε), then V ε is a solution of the singular
perturbation problem

− ε
2∆V ε + H(x ,DV ε) = εdiv(b) x ∈ D

∂V ε

∂n
(x) + 2b(x) · n(x) = 0 x ∈ ∂D

where H(x , p) = |p|2
2 + b(x) · p is the Hamiltonian associated to

the Lagrangian L(x , q) = |q−b(x)|2
2 in the quasi-potential.

Formally V ε → V where V is a solution of{
H(x ,DV ) = 0 x ∈ D
∂V

∂n
(x) + 2b(x) · n(x) = 0 x ∈ ∂D

Since Levinson’s condition is violated (b has an attractor inside
D), no uniqueness and the 3rd step in the PDE approach fails.
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Aim:

• To study the structure of the solutions of the 1st Neumann
problem {

H(x ,DV ) = 0 x ∈ D
∂V

∂n
(x) + 2b(x) · n(x) = 0 x ∈ ∂D

• To understand if the sequence of the solutions Vε of the 2nd

order problems selects a particular solution of the 1st order problem
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A short review of the Aubry-Mather theory for HJ equations

Let H(x , p) be a convex, coercive Hamiltonian and define

c = inf{λ : H(x ,Du) ≤ λ admits a subsolution in D}

For λ ≥ c set

Zλ(x) =
{
p ∈ RN : H(x , p) ≤ λ

}
σλ(x , q) = sup {p · q : p ∈ Zλ(x)}

and define the distance

Sλ(x , y) = inf{
∫ 1
0 σλ(φ(s), φ̇(s))ds : φ ∈ W 1,∞([0, 1],D),
φ(0) = x , φ(1) = y}
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Properties:

• For any x ∈ D, Sλ(x , ·) is a subsolution in D and a
supersolution in D \ {x} to H(y ,Du) = λ.

• u is a subsolution to H(y ,Du) = λ ⇔ u(x)− u(y) ≤ Sλ(y , x)
for any x , y ∈ D.

• H(y ,Du) = λ+(BC) has a unique viscosity solution (or no
viscosity solution) ⇔ λ > c ⇔ Sλ is locally equivalent to the
Euclidean distance

For λ = c a non-uniqueness phenomenon appears
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The Aubry set A

The Aubry set is the set where Sc fails to equivalent to the
Euclidean distance

• A metric definition: x ∈ A ⇔ ∃ {φn}, φn(0) = φn(1) = x , s.t.

infn{
∫ 1
0 |φ̇n(s)|ds} ≥ δ > 0 (Euclidean length)

infn{
∫ 1
0 σc(φn(s)), φ̇n(s))ds} = 0 (intrinsic length)

• A PDE definition: x ∈ A ⇔ Sc(x , ·) is a solution at x .

The main property: There exists a subsolution to H(x ,Du) = c ,
which is strict (i.e. H(x ,Du) < c) out of A.
General Fact: A unique solution to H(x ,Du) = c+(BC) ⇔ the
value on A is prescribed, i.e. A is an uniqueness set for
H(x ,Du) = c
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Aubry-Mather theory for the Neumann problem

Recall that we want to study{
H(x ,Dv) = 0 x ∈ D
∂v

∂n
(x) + 2b(x) · n(x) = 0 x ∈ ∂D

where H(x , p) = 1
2 |p|

2 + b(x) · p is the LD Hamiltonian.

Set

Z (x) = B(−b(x), |b(x)|)
σ(x , q) = |b(x)||q| − b(x) · q

S(x , y) = inf

{∫ 1

0
|b(φ)||φ̇| − b(φ) · φ̇ds : φ(0) = x , φ(1) = y

}
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The assumption b(x) · next(x) < 0 implies that

• 0 = inf{λ : H(x ,Du) ≤ λ admits a subsolution in D}

This explains the non-uniqueness of the solution to the Neumann
problem.
• A is contained in the interior of D. This fact is very important
since we can interpret the Neumann boundary condition in
standard viscosity sense
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The Comparison Theorem

Theorem: u subsolution and v supersolution s.t. u ≤ v for x ∈ A
then

u ≤ v for x ∈ D

(i.e. A is a uniqueness set for (HJ))
Corollary: If g is such that g(y)− g(x) ≤ S(x , y) for any
x , y ∈ A then

v(x) := inf
y∈A

[g(y) + S(y , x)]

is the unique viscosity solution to (HJ) with value g on A.
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Aubry-Mather theory and Large Deviations

The key point is to establish the relation between the LD objects
V (the quasi-potential), Ωb (the ω-limits set) and the PDE objects
S (the distance), A (the Aubry set)

• The quasi-potential

V (y , x) = inf
φ(0)=y ,φ(T )=x ,T>0

{
∫ T

0

1

2
|φ̇(s)− b(φ(s))|2 ds}.

coincides with the distance S

• Ωb ⊂ A, A is forward invariant for ẋ = b(x(t)) and any
subsolution is constant on the integral curve contained in A.
This implies that:
• A subsolution of H(x ,Du) is constant on A
• Ωb is a uniqueness set for the Neumann problem
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The Large Deviations result

Theorem: Let v ε be the solution of{ − ε
2∆v ε + H(x ,Dv ε) = εdiv(b) x ∈ D

∂v ε

∂n
(x) + 2b(x) · n(x) = 0 x ∈ ∂D

Set v ε(x) = 0 for x ∈ A (a solution is defined up to a constant).
Then

v ε → S(A, ·) ε→ 0

where S(A, x) = min{S(y , x) : y ∈ A}.
Remark: Recalling that S = V , where V the quasi-potential, the
previous theorem implies the Wentzell-Freidlin’s large deviations
result.
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Proof: By the Harnack’s inequality we have that vε is uniformly
Lipschitz continuous.
If vεk

→ v , then v is a solution of the Neumann problem and
v(x) = 0, hence v(x) = 0 for x ∈ A.
Recalling the representation formula

v(x) := inf
y∈A

{g(y) + S(y , x)}

we get
v(x) = S(A, x) for x ∈ D.
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Remarks:

• The previous result can be extended to the case Ωb = ∪N
i=1Ki ,

where Ki class of equivalence for the quasi-potential, K1

attractive, K2, . . . ,KN repulsive. Then vε → S(K1, ·) for
ε→ 0.

• With the same method it is possible to study other problems
such as the Kamin and Eizenberg singular perturbation
problem{

−ε∆vε + H(x ,Dvε)− εc(x) = 0 x ∈ D

vε(x) = 0 x ∈ ∂D

where c is non-negative in D.
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