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Applications

dislocation dynamics

image processing

interface motion
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The model problem

A curve in R
2 moves in the normal direction with normal

speed c(x, y, t), variable sign velocity.

c>0

c<0
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Reformulation of the dynamics: level set
approach

u(x, y, t) =











u > 0 if(x, y) ∈ Ωt,

u = 0 if(x, y) ∈ Γt = ∂Ωt,

u < 0 if(x, y) /∈ Ωt .

Ωt
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Reformulation of the dynamics: level set
approach

The function u satisfies
{

ut = c(x, y, t)|∇u| R
2 × (0, T )

u = u0
R

2

in the class of continuous viscosity solutions.
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The stationary problem for the monotone
eikonal equation

Γt = {(x, y) ∈ R
2 : u(x, y, t) = 0} = {(x, y) ∈ R

2 : T (x, y) = t}

where T (x, y) solves the minimum time problem

c(x, y) ≥ 0
{

c(x, y)|∇T (x, y)| = 1 R
2 \ Ω

T (x, y) = 0 Ω

(see Falcone, Giorgi, Loreti)

c(x, y, t) ≥ 0
{

c(x, y, T (x, y))|∇T (x, y)| = 1 R
2 \ Ω

T (x, y) = 0 Ω

(see Vladirmisky)
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The present Fast Marching schemes

c(x, y) > 0
Fast Marching Method
[Osher − Sethian]

c(x, y) ≥ 0
Semi-Lagrangian Fast Marching Methods
[Falcone − Cristiani]

c(x, y, t) > 0
Ordered Upwind Method
[Sethian − V ladimirsky]

Convergence of a Fast Marching algorithm for a non-convex eikonal equation – p.8



The Finite Difference approximation

Let us write the equation as

T 2
x + T 2

y =
1

c2(x, y)

The standard up-wind FD approximation is

(1) max(0, Ti,j − Ti−1,j, Ti,j − Ti+1,j)
2+

max(0, Ti,j − Ti,j−1, Ti,j − Ti,j+1)
2 =

(

∆

ci,j

)2
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The Finite Difference Approximation

The iterative method is

consistent

stable, provided a CFL condition is satisfied

convergent

expensive, since it globally works on all the grid
values at every iteration
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The Fast Marching Method, c > 0

Main Idea (Tsitsiklis (1995), Sethian (1996))
Processing the values on the nodes in a special order
one can compute the solution in just 1 iteration.

This special order is obtained introducing a NARROW
BAND which locates the front.

Just the nodes in the NB are computed at every iteration,
in this way the "natural" ordering corresponds to the
increasing values of T .
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The Fast Marching Method

Def. We define neighborhood of the node xi,j
the set
V (i, j) ≡ {(l,m) ∈ Z

2 such that |(l,m) − (i, j)| = 1}.
i,j+1

i+1,j

i,j−1

i−1,j i,j
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The Fast Marching Method

Def. We define Narrow Band the set

NB ≡ V (E)\E, where E = {(i, j); (xi, yj) ∈ Ω}.

T=0

T=oo
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The Fast Marching Method, c > 0

Inizialization

1. All the nodes which belong to the initial front
configuration are labeled as ACCEPTED and they
are given the value T = 0.

2. The initial narrow band is defined, these nodes are
labeled NB and they are given the value T = ∆

c
.

3. All the remaining nodes are labeled as FAR and they
are given the value T = +∞
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The Fast Marching Method, c > 0

Main Cycle

1. Among the NB nodes take the one which has
minimal T value (let us call A this node).

2. A is labeled ACCEPTED and it is removed from the
narrow band.

3. The neighboring nodes to A are included in the
narrow band.

4. We (re)compute the value T in the neighboring nodes
to A by the explicit evaluation of Eq.1 , selecting the
largest possible solution to the quadratic equation.

5. If the narrow band is not empty, go back to 1.
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Non monotone FMM method

Some important modifications to the classical scheme

our new narrow band is ’DOUBLE’ : the set of nodes
which are going to be reached by the front and the
nodes just reached by the front

we force the speed c to be exactly zero on the
boundaries of the regions where the speed change
sign so that the evolution of the front in each region
can be considered completely separated
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Non monotone FMM method

in the evaluation of Eq.1 we take into account only
the nodes already accepted → no CFL condition!

we introduce an auxiliary discrete function

θn
i,j =

{

1 if (xi, yj) ∈ Ωtn

−1 otherwise.
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Non monotone FMM method

Def. We define two different narrow bands:
Fn

+ = {(i, j) s.t.∃(l,m) ∈ V (i, j) s.t. θn
l,m = −1, θn

i,j = 1, }

Fn
−

= {(i, j) s.t.∃ (l,m) ∈ V (i, j) s.t. θn
l,m = 1, θn

i,j = −1}

We define front the set Fn = Fn
+ ∪ Fn

−
.
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−
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Convergence of a Fast Marching algorithm for a non-convex eikonal equation – p.18



Non monotone FMM algorithm

Inizialization

Initialization of the matrix θ0

θ0
i,j =

{

1 (i, j) ∈ Ω0

−1 (i, j) /∈ Ω0

Initialization of the time on the front
T 0

i,j = 0 for all (i, j) ∈ F 0
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Non monotone FMM algorithm

Main Cycle

computation of Tn
i,j , ∀(i, j) ∈ Fn−1

if cn−1
i,j > 0 and i, j ∈ Fn−1

−
compute Tn

i,j by the explicit

valuation of Eq.1 using the nodes from Fn−1
+ .

if cn−1
i,j < 0 and i, j ∈ Fn−1

+ compute Tn
i,j by the explicit

valuation of Eq.1 using the nodes from Fn−1
−

.

tn = min
{

Tn
i,j , (i, j) ∈ Fn−1

}

.

Initialization of new accepted point
NAn = {(i, j) ∈ Fn−1, Tn−1

i,j = tn}
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Non monotone FMM algorithm

Re-initialization of θn

θn
i,j =

{

−1 if (i, j) ∈ NAn and θn−1
i,j = 1

1 if (i, j) ∈ NAn and θn−1
i,j = −1

Re-initialization of Tn on Fn
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Convergence result

Theorem
Let c(x, y, t) be globally Lipschitz continuous in space and time, the
initial set Ω0 be with piece wise smooth boundary and θ∆(x, t) be an
appropriate extension of the discrete function θn

i,j over all the

continuous space,then

θ(x, t) = lim
∆→0

θ∆(x, t)

is a viscosity discontinuous solution of the problem

{

θt = c(x, y, t)|∇θ| R
2 × (0, T )

θ = 1Ω0
− 1Ωc

0
R

2,
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A rotating line

c(x, y, t) = x
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A propagating circle

c(x, y, t) = 0.1t − x
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Numerical tests: evolution of two circles

Speed c(x, y, t) = 1 − t

Increasing (left) and decreasing (right) evolution of two
circles
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Open Problems

extension of the FMM non monotone scheme to non
local speed

convergence for the FMM non monotone non-local
scheme
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