Convergence of a Fast Marching algorithm
for a non-convex eikonal equation

E.Carlini

Dip.Matematica, Universita ‘La Sapienza’

joint work with M.Falcone, N.Forcadel, R.Monneau

Convergence of a Fast Marching algorithm for a non-convex eikonal equation



Outline

© o o o 0

The model problem
The Fast Marching Method
The non-monotone Fast Marching scheme

Convergence result
Numerical tests

Convergence of a Fast Marching algorithm for a non-convex eikonal equation — p.



Applications

# dislocation dynamics
# image processing
# interface motion

Convergence of a Fast Marching algorithm for a non-convex eikonal equation — p.



The model problem

A curve in R? moves in the normal direction with normal
speed ¢(z,y,t), variable sign velocity.
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Reformulation of the dynamics: level set

approach

(u >0 if (z,y) € Uy,
uw(z,y,t) = u=0 if(x,y) € I'y = 0,

u <0 if(z,y) & Q.
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Reformulation of the dynamics: level set
approach

The function u satisfies

ut = c(x,y,t)|Vu| R? < (0,T)
u = uY R?

In the class of continuous viscosity solutions.
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The stationary problem for the monotone
elkonal equation

Ly = {(z,y) € R? s u(z,y,t) = 0} = {(z,y) € R® : T(z,y) = t}

where T'(z,y) solves the minimum time problem

® c(r,y) >0
{c(a:,ywm,y) =1 R2\Q
T(x,y) =0 ()

(see Falcone, Giorgi, Loreti)

® c(z,y,1) >0
c(z,y, T(x,y) VT (z,y) =1 R*\Q
T(x,y) =0 Q
(see Vladirmisky)
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The present Fast Marching schemes

c(x,y) >0
Fast Marching Method
|Osher — Sethian]

c(z,y) = 0
Semi-Lagrangian Fast Marching Methods
|Falcone — Cristiani]

c(x,y,t) >0
Ordered Upwind Method
|Sethian — Viadimirsky|
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The Finite Difference approximation

Let us write the equation as

1
(x,y)

T2+ T, =

The standard up-wind FD approximation is

(1) max (0,75 ; — Ti-1.,1i; — Ti+1,j)2+

AN 2
max(0,7; ; — T; j—1,T5 5 — Ti,j+1)2 - (C_>
0]
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The Finite Difference Approximation

The iterative method is

# consistent

# stable, provided a CFL condition is satisfied
& convergent
o

expensive, since it globally works on all the grid
values at every iteration
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The Fast Marching Method, ¢ > 0

Main Idea (Tsitsiklis (1995), Sethian (1996))
Processing the values on the nodes in a special order
one can compute the solution in just 1 iteration.

This special order is obtained introducing a NARROW
BAND which locates the front.

Just the nodes in the NB are computed at every iteration,

In this way the "natural" ordering corresponds to the
Increasing values of 7.
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The Fast Marching Method

Def. We define neighborhood of the node x; ;

the set
V(i,j) = {(l,m) € Z* such that |(I,m) — (i,5)| = 1}.
j+1

i~1, N i+1,]
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The Fast Marching Method

Def. We define Narrow Band the set

NB =V (E)\E, where E = {(4,7); (xi,y;) € Q}.

T=00

Convergence of a Fast Marching algorithm for a non-convex eikonal equation — p.1.



The Fast Marching Method, ¢ > 0

Inizialization

1. All the nodes which belong to the initial front

configuration are labeled as ACCEPTED and they
are given the value 7' = 0.

2. The initial narrow band is defined, these nodes are
labeled NB and they are given the value 7' = 2.

3. All the remaining nodes are labeled as FAR and they
are given the value T' = +oc
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The Fast Marching Method, ¢ > 0

Main Cycle

1. Among the NB nodes take the one which has
minimal 7" value (let us call A this node).

2. Alis labeled ACCEPTED and it is removed from the
narrow band.

3. The neighboring nodes to A are included in the
narrow band.

4. We (re)compute the value 7' in the neighboring nodes
to A by the explicit evaluation of EQ.1 , selecting the
largest possible solution to the quadratic equation.

5. If the narrow band is not empty, go back to 1.
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Non monotone FMM method

Some important modifications to the classical scheme

# our new narrow band is 'DOUBLE’ : the set of nodes
which are going to be reached by the front and the
nodes just reached by the front

# we force the speed c to be exactly zero on the
boundaries of the regions where the speed change
sign so that the evolution of the front in each region
can be considered completely separated
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Non monotone FMM method

# in the evaluation of Eq.1 we take into account only
the nodes already accepted — no CFL condition!

# we Introduce an auxiliary discrete function

i {1 if (z7,y;) € U,
Ui =

—1 otherwise.
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Non monotone FMM method

Def. We define two different narrow bands:
F=A{(i, ) st.3(,m) € V(i,j) st. 0, = -1, 6, =1,}
F* ={(z,5) st.3(I,m) € V(i,5) s.t. 0], =1, 0", = —1}
We define front the set F" = F} U F™.
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Non monotone FMM algorithm

Inizialization

® Initialization of the matrix "

" —1 (7’7]) §é QO
® |nitialization of the time on the front
TP, = 0forall (i,5) € F°
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Non monotone FMM algorithm

Main Cycle
# computation of s V(i,j) € Fn1
fci; ! > 0andi,j € F'™" compute T7'; by the explicit

valuation of Eq.1 using the nodes from F:Z’_l.
if CZ;l < 0andz,j € Fj:_l compute Tz?j’j by the explicit
valuation of Eq.1 using the nodes from Ff_l.

® ¢, — min {Tg}j, (i,7) € Fn—l}.

# |[nitialization of new accepted point
NA™ = {(i,j) € F*™1, T/ =t}
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Non monotone FMM algorithm

® Re-initialization of 9"

g _ ) 1 (i,j) € NA"and 077" =1
Yl 1 if (4,5) e NA"and 677 = -1

® Re-initialization of T" on F™
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Convergence result

Theorem

Let c(x,y,t) be globally Lipschitz continuous in space and time, the
initial set {2y be with piece wise smooth boundary and 6 (x, ) be an
appropriate extension of the discrete function (9;1 over all the

continuous space,then

O(x,t) = iiLHOHA(x’ t)

IS a viscosity discontinuous solution of the problem

0; = c(x,y,t)|VO| R?x (0,T)
0 =1q, — los R?

?
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A rotating line
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A propagating circle

c(x,y,t) =0.1t — x

A Ly-error
0.08 | 0.4992
0.04 | 0.2784
0.02 | 0.1288
0.01 | 0.0582
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Numerical tests: evolution of two circles

Speed ¢(x,y,t) =1—1t

Increasing (left) and decreasing (right) evolution of two
circles

Convergence of a Fast Marching algorithm for a non-convex eikonal equation — p.2



Open Problems

® extension of the FMM non monotone scheme to non
local speed

# convergence for the FMM non monotone non-local
scheme
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