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Superconductivity

In many materials, the resistance drop to an unmeasurably small
value if the sample is cooled down at a temperature below its
critical temperature Tc

=⇒ superconductivity (H. Kamerlingh-Onnes 1911)

The behavior (at T < Tc) of a superconducting sample in an
external magnetic field ~HS is characterized by the Ginzburg-Landau
parameter κ of the material.

Hc : critical field (type-I)

Hc1 , Hc2 : critical fields (type-II)
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Penetration of external magnetic field

= penetrated magnetic field

Supercond.

Superconducting phase: thin layer (20-50 nm); no magnetic
field in the bulk of the superconductor.

Mixed state: partial penetration in the bulk.

Normal conducting phase: full penetration in the bulk.
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Advantages of type-II superconductors

Technological advantages of type-II superconductors in mixed
state:

high Tc (up to 135K )

superconductivity properties with large magnetic fields

current flow in the bulk of the sample (not only in thin layers)
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Models for type-II superconductors

Microscopic: BCS theory (Bardeen, Cooper, Schrieffer 1957),
quantum mechanical description.

Mesoscopic: Ginzburg-Landau model (1950); formation of
vortices (filaments), Abrikosov (1957).

Macroscopic: Bean’s model (1962), critical state model for
the description of macroscopic electrodynamics.
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Bean’s model

Bean’s model (C.P. Bean, 1962) for type-II hard superconductors:
exists a critical current Jc such that:

|~J| = Jc in the region penetrated by the magnetic field;
~J = 0 otherwise.

Anisotropy of Jc , due to Cu-O planes, structure of defects, etc:
exists ∆ ⊂ R3 compact convex containing a neighborhood of 0 s.t.

~J ∈ ∂∆, in the region penetrated by the magnetic field;
~J = 0 otherwise.
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Macroscopic electrodynamics

PROBLEM: given a superconductor Q ⊂ R3 in an external field
~HS(t), find the internal magnetic field ~H(x , t) and the electric field
~E (x , t). (Boundary condition: ~H = ~HS on ∂Q.)

Faraday’s law: curl ~E = −µ0
∂~H

∂t

Ampère’s law: ~J = curl ~H

(Modified) Ohm’s law: ~E = ~E (~J)

Examples of material laws (Ohm’s law):

isotropic conductor: ~E (~J) = r ~J, r = resistivity

anisotropic conductor: ~E (~J) = A~J, A = resistivity tensor
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Problem: dependence ~E = ~E (~J) in the Bean’s anisotropic model.

In the isotropic case, the constraint |~J| ≤ Jc can be described by a
vertical ~E–~J relation:
...that can be approximated by a power-law relation

|~E (~J)| = c

(
|~J|
Jc

)p

.

The electric field is determined using the additional condition ~E ||~J.
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Problem: dependence ~E = ~E (~J) in the Bean’s anisotropic model.

Start from an anisotropic power law approximation for the
dissipation ~E · ~J:

~E (~J) · ~J =
c

p

(
ρ∆(~J)

)p

(ρ∆ = gauge function of ∆).

Deduce the dependence ~E (~J) =
c

p

(
ρ∆(~J)

)p−1
Dρ∆(~J).

In the limit as p →∞: ~E (~J) ∈ ∂I∆(~J)

∂I∆(~J) =


{0}, if ~J ∈ interior of ∆,

{λ Dρ∆(~J); λ ≥ 0}, if ~J ∈ ∂∆,

∅, if ~J 6∈ ∆
subdifferential of the indicator function of ∆.
=⇒ gives the constraint ~J ∈ ∆.

Rigorous giustification by Γ-convergence.
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Cylindrical symmetry

S

Ω H=(0,0,h)

SH =(0,0,h  )

Q = Ω× R, cylinder with cross-section Ω ⊂ R2, smooth;
~HS(t) = (0, 0, hS(t)) directed along the axis of the cylinder.

=⇒ By symmetry: ~H(x , t) = (0, 0, h(x1, x2, t))
=⇒ ~J = curl ~H = (∂x2h,−∂x1h, 0)

Remark: ~J ∈ ∆ ⇐⇒ Dh ∈ K , where K ⊂ R2 is the rotation of
the section z = 0 of ∆.
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Discretized Faraday’s law
Magnetic and electric field

Quasistatic evolution

Time discretization in [0,T ]: δt = T/n, ti = iδt,
~Hi = ~H(ti ), ~Ei = ~E (ti ).

Goal: give a variational formulation of the anisotropic Bean’s
model starting with a power law approximation.

Power law for dissipation: ~E (~J) · ~J =
c

p

(
ρ∆(~J)

)p

Discretized Faraday’s law: curl ~Ei+1 = −µ0

~Hi+1 − ~Hi

δt
=⇒ admits the variational formulation

Jp(h) =

∫
Ω

1

p
[ρ(Dh)]p+

µ0

2cδt
(h−hi )

2, h ∈ hs(ti+1)+W 1,p
0 (Ω)

i.e., hi+1 is the unique minimum point of Jp in hs(ti+1)+W 1,p
0 (Ω).

ρ = ρK = gauge function of K ⊂ R2.
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~Hi+1 − ~Hi

δt
=⇒ admits the variational formulation

Jp(h) =

∫
Ω

1

p
[ρ(Dh)]p+

µ0

2cδt
(h−hi )

2, h ∈ hs(ti+1)+W 1,p
0 (Ω)

i.e., hi+1 is the unique minimum point of Jp in hs(ti+1)+W 1,p
0 (Ω).

ρ = ρK = gauge function of K ⊂ R2.
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Convergence

Theorem (G.C. - A. Malusa)

up ∈ hs(ti+1) + W 1,p
0 (Ω): unique minimum point of Jp, p ≥ 1.

u∞ ∈ hs(ti+1) + W 1,1
0 (Ω): unique minimum point of

J(u) =

∫
Ω

IK (Du) + (u − hi )
2 , u ∈ hs(ti+1) + W 1,1

0 (Ω).

Then, for every q > 1, (up) converges to u∞ in weak-W 1,q.

Conclusion: the variational formulation of Bean’s law is based on
functional J. Given hi , we have hi+1 = u∞.
Remark: variational formulation proposed by Bad́ıa-López (2002)
starting from physical considerations.
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Necessary conditions - Electric field

Theorem (Dual function)

∃ a non-negative continuous function vi such that

− div(vi Dρ(Dhi+1)) = hi − hi+1 in Ω.

vi has an explicit representation in terms of the anisotropic
principal curvatures of ∂Ω and the normal distance from cut locus.
Interpretation: wi = vi/δt is the (discretized) dissipated power
density, and Ei = wi Dρ(Dhi+1) is the (discretized) electric field.

Techniques developed in
G.C., Malusa: to appear in Trans. Amer. Math. Soc.

Isotropic case (K = ball):
Cannarsa, Cardaliaguet, G.C., Giorgieri: Calc. Var. 2005
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Candidate solution u∞ = hi+1

Minkowski distance w.r.t. K : d(x) = min
y∈∂Ω

ρ0
K (x − y)

(ρ0
K = polar of the gauge function of K )

=⇒ viscosity solution of ρ(Du) = 1 in Ω, u = 0 on ∂Ω.

Minkowski distance w.r.t. −K :
d−(x) = min

y∈∂Ω
ρ0
−K (x − y) = min

y∈∂Ω
ρ0
K (y − x)

=⇒ viscosity solution of −ρ(Du) = −1 in Ω, u = 0 on ∂Ω.

Solution of the minimum problem:

hi+1(x) =


d(x) + hs(ti+1), if x ∈ Ω+ = {hi > d},
−d−(x) + hs(ti+1), if x ∈ Ω− = {hi < −d−},
hi (x), if x ∈ Ω0 = Ω \ (Ω+ ∪ Ω−).

hi+1(x) = [hi (x) ∨ (−d−(x) + hs(ti+1))] ∧ (d(x) + hs(ti+1))
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1D heuristics

K = [−1, 2]

J(h) =

∫
Ω
|h − hi |2 + IK (Dh)

h = 0 on ∂Ω

ih

Ω

d

−d−
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Decomposition of Ω in transport rays

Ω can be decomposed in transport rays (paths of minimal distance
from the boundary):
two possible decompositions, one for d and one for d−.

Example: hi (y) > 0.

i

(y)
hi+1 =h

ν

Ω

y

D   (  (y))ρ ν transport ray

point on cut locus

y hi+1=d

ν(y) = inward Euclidean normal of ∂Ω at y
l(y) = length of the transport ray

=⇒ on each transport ray apply the 1D-heuristics.

Graziano Crasta Electrodynamics of hard superconductors



Superconductivity
Quasistatic evolution

Discretized Faraday’s law
Magnetic and electric field

Decomposition of Ω in transport rays

Ω can be decomposed in transport rays (paths of minimal distance
from the boundary):
two possible decompositions, one for d and one for d−.

Example: hi (y) > 0.

i

(y)
hi+1 =h

ν

Ω

y

D   (  (y))ρ ν transport ray

point on cut locus

y hi+1=d

ν(y) = inward Euclidean normal of ∂Ω at y
l(y) = length of the transport ray

=⇒ on each transport ray apply the 1D-heuristics.

Graziano Crasta Electrodynamics of hard superconductors



Superconductivity
Quasistatic evolution

Discretized Faraday’s law
Magnetic and electric field

Quasistatic evolution

Start with h(x , 0) = h0(x) ∈ LipK (Ω), h0 = hS(0) on ∂Ω.

hi+1 = internal magnetic field at time ti+1

=⇒ solution of the minimization problem

min

{∫
Ω

µ0

2
|h − hi |2 + δt IK (Dh); h ∈ hS(ti+1) + W 1,1

0 (Ω)

}
By the existence and uniqueness theorem,
hi+1(x) =

[
hi (x) ∨ (hS(ti+1)− d−(x))

]
∧ (hS(ti+1) + d(x))

Explicit formula for monotone external field:
1. hS monotone increasing in [0,T ]:

hi (x) = h0(x) ∨ (hS(ti )− d−(x))
2. hS monotone decreasing in [0,T ]:

hi (x) = h0(x) ∧ (hS(ti ) + d(x))
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The limit δt → 0

For δt = T/n, n ∈ N+, construct hi as above and define
hn(x , t) = hi (x), for t ∈ [ti , ti+1)

Assume monotone external field; as n →∞ (δt → 0)

hS increasing: hn(x , t) → h(x , t) = h0(x) ∨ (hS(t)− d−(x))

hS decreasing: hn(x , t) → h(x , t) = h0(x) ∧ (hS(t) + d(x))

=⇒ the internal magnetic field can be explicitly computed if hS is
piecewise monotone.
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The section Ω, the constraints set K ; Level sets and 3D-plot of the
distance d .
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Example: plot of h
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Hysteresis loop
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Hysteresis loop: magnetization ~M = 〈~H〉 − ~HS versus external field
~HS .
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Conclusion and outlook

What we have done...

Strong mathematical justification of the anisotropic variational
formulation of Bean’s law suggested by Bad́ıa and López.

Explicit form of both magnetic field and electric field inside
the superconductor; explicit computation of the dissipated
power density (very important for the stability analysis of the
superconducting phase).

...and what remains to do:

Nonhomogeneous samples (general Finsler metric instead of
Minkowski); connections with elasticity theory and material
science (e.g., dieletric breakdown).

True 3D analysis (no cylindrical symmetry).
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