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Sandpile growth on a plane support

Connection with other mathematical research fields

Optimal mass transport, Monge-Kantorovich problem

River networks, semiconductor magnetization, elastoplastic
deformation

Infinity Laplacian, absolute minimizers and optimal
Lipschitz extensions of given boundary data

Hamilton-Jacobi equations

Nonlocal geometric curvature motion
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Sandpile growth on a plane support

Sandpile growth on a plane support
Differential approach: main references

1 G. Aronsson, A mathematical model in sand mechanics, SIAM
J.Appl.Math., 22 (’72)

2 J. -P. Bouchaud, M. E. Cates, J. Ravi Prakash and S. F. Edwards,
A model for the dynamics of sandpile surfaces, J. Phys.I Fr., 4 (’94)

3 G. Aronsson, L.C. Evans and Y. Wu, Fast/slow diffusion and
growing sandpiles, J.Diff.Equat., 131 (’96)

4 L. Prigozhin, Variational model of sandpile growth,
Euro.J.Appl.Math., 7 (’96)

5 K.P. Hadeler and C. Kuttler, Dynamical models for granular matter,
Granular Matter, 2 (’99)

6 P. Cannarsa and P.Cardaliaguet, Representation of equilibrium
solutions to the table problem for growing sandpiles, JEMS, 6 (’04)
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Sandpile growth on a plane support

The table problem: notations

Ω ⊆ IR2 : bounded table , ΩT = Ω× (0, T )

∂Ω = Γ0 ∪ Γw , Γ0 : open boundary, Γw : walls

f (x) ≥ 0 : vertical source , Df = {x : f > 0}
u(x , t), pile height in x ∈ Ω at time t

u0(x) : initial profile (here u0 ≡ 0 )

|∇u| ≤ a : critical slope (here a = 1 )

d(x) = dist(x , Γ0) : distance from Γ0

S : cut locus of Ω (singular set of d)
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Sandpile growth on a plane support

Boundary conditions for the table problem

Boundary conditions

1 Dirichlet (∂Ω = Γ0) ⇒ open table problem

2 Mixed (Γ0, Γw 6= ∅) ⇒ partially open table problem

3 Neumann (∂Ω = Γw ) ⇒ closed table problem (silo)

The problem changes very much according to boundary conditions.
Here we only recall case (1) and discuss (2), where, as time grows,

u(x , t) → u(x) (equilibria).

For the silo problem (3) (see e.g. [Hadeler-Kuttler, ’99 and ’01])
instead:

u(x , t) → u(x) + ct (similarity solutions).



A numerical model for growing sandpiles on partially open tables

The open table problem

Differential models

A variational model [Aronsson-Evans-Wu, Prigozhin, ’96]

(P)


∂tu −∇ · (v∇u) = f in ΩT

|∇u| ≤ 1 , |∇u| < 1 ⇒ v = 0 in ΩT

u = 0 on ∂Ω , u(·, 0) = 0 in Ω

v(x , t) ≥ 0 is an auxiliary unknown which controls the surface
flow (a dynamic Lagrange multiplier for the constraint on ∇u)

(P) is equivalent to the variational inequality u(t) ∈ K = {v ∈ W 1,∞
0 (Ω) : |∇v | ≤ 1}, u(0) = 0,

(∂tu(t)− f , φ− u(t)) ≥ 0, ∀φ ∈ K , ∀t > 0

Existence and uniqueness of the solution (by penalty method)
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The open table problem

Differential models

A two-layer system [Hadeler-Kuttler, ’99]

(HK )


∂tv = ∇ · (v∇u)− (1− |∇u|)v + f in ΩT

∂tu = (1− |∇u|)v in ΩT

u = 0 on ∂Ω , u(·, 0) = 0 in Ω

where u : standing layer , v : rolling layer , u + v : pile height.

Extension of the BCRE + de Gennes model (transport
velocity proportional to the pile slope)

No existence and uniqueness results known
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The open table problem

Differential models

Model comparison

Both the models describe granular surface flow and pile surface
dynamics, neglecting avalanche phenomena (realistic for small
source intensities). However, their characteristic are very different:

(P) Surface flow allowed only at critical slopes. Well-suited
for describing large piles or long distance phenomena (small
details are negligible) [large spatiotemporal scale]

(HK) Surface flow allowed upon subcritical slopes. Well-suited
for describing fast processes and small details (sand ripples
formation, contact angle near pile bottom)
[short spatiotemporal scale]

Rescaled (HK) converges (in the long-scale limit) to (P)
[Prigozhin-Zaltzman, ’01]
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The open table problem

Equilibria

Asymptotic behavior and equilibria

Existence of equilibria: for both the (P) and the (HK) model

ut ≥ 0 , u(., t) ≤ d(.) ⇒ u(x , t) → u(x) .

The two models have different dynamics, but formally the
same admissible equilibrium configurations, solutions of

(E )


−∇ · (v∇u) = f in Ω
|∇u| = 1 in {v > 0}
|∇u| ≤ 1 , u, v ≥ 0 in Ω
u = 0 on ∂Ω

Remark

System (E) is not able to determine u in regions where v = 0 !
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The open table problem

Equilibria

Special equilibria

Maximal:

u(x)=d(x)
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Maximal profile

Minimal w.r. to Df :

u∗(x) = maxy∈Df
{d(y)− |x − y |}+

(physical solution)
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The open table problem

Equilibria

Characterization of equilibria

Let k(x) be the curvature of ∂Ω at the boundary projection Π(x)
of x ∈ Ω, and τ(x) = min{t ≥ 0 : x + t∇d(x) ∈ S}
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The open table problem

Equilibria

Characterization of equilibria [Cannarsa-Cardaliaguet ’04]

Theorem

Let ∂Ω ∈ C 2, f ∈ C 0(Ω); then :

Existence: (u, v) solves (E), with

u = d in Ω, v = 0 on S

(∗) v(x) =

∫ τ(x)

0
f (x + t∇d(x))

1− (d(x) + t)k(x)

1− d(x)k(x)
dt, in Ω\S

Almost uniqueness: if (u′, v ′) is another solution of (E), then

v ′ = v in Ω , u′ = d in {x ∈ Ω : v ′ > 0}.
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The open table problem

Equilibria

Asymptotic behavior of the two models

1 S ⊂ D f : (E) has one and only one solution (u, v) ,

with u ≡ d and v given by the integral formula (*)
⇒ same equilibrium for the two models

2 S * D f : no uniqueness for u in (E)

(P) u = u∗
The active region Ω+

P = {x ∈ Ω : u > 0} is completely
determined by Df (source intensity only affects v !)

(HK) u > u∗
u and the active region Ω+

HK = {x ∈ Ω : u > 0} ⊇ Ω+
P are

not mathematically characterized: both depend on Df and on
the source intensity f too !
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The open table problem

A numerical scheme for (HK)

An explicit f.d. scheme for the two-layer system (HK)
[Falcone - F.V., SIAM J.Sci.Comput., ’06]

(HK1D)


vt + [−uxv ]x = vt + [Fu(v)]x = f − (1− |ux |)v

ut = (1− |ux |)v

u(0, t) = u(1, t) = 0 , u(x , 0) = 0 x ∈ Ω = (0, 1) .

(SHK )



vn+1
i = vn

i −
∆t
h (Hn

i+ 1
2

− Hn
i− 1

2

) + ∆t [ fi − (1− |Dun
i |) vn

i ]

un+1
i = un

i + ∆t (1− |Dun
i |) vn+1

i

u0
i = v0

i = 0 (i = 1, ...,N) , un
1 = un

N = 0 ∀n.
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The open table problem

A numerical scheme for (HK)

Finite difference formulas

At any node xi : D+ui = ui+1−ui

h , D−ui =
ui−ui−1

h

maxmod difference

|Dui | ≡ max(
∣∣D+ui

∣∣ ,
∣∣D−ui

∣∣)
upwind numeric flow in (xi , xi+1)

Hi+ 1
2
≡ −ui+1 − ui

h
upw(vi , vi+1)

upw(vi , vi+1) ≡
{

vi if ui > ui+1

vi+1 if ui ≤ ui+1
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The open table problem

A numerical scheme for (HK)

Properties of the scheme (SHK )

Theorem

Let f ≥ 0 in Ω, and ∆t
h ≤ min (1

2 , c
‖f ‖∞ ) ; then for any n :

(Positivity and monotonicity in u) 0 ≤ un ≤ un+1

(Positivity in v) vn ≥ 0

(Gradient constraint in u) |Dun| ≤ 1

⇒ Under the previous stability conditions: (un, vn) → (ū, v̄),
equilibrium of the discrete system such that (1− |Dū|)v̄ = 0.
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The open table problem

A numerical scheme for (HK)

Examples of growing sandpiles
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(HK)      N=101    ∆ x=0.01    ∆ t=0.005   supp(f)=(0,1)    it=6993   Tmax =34.965
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(HK)      N=101    ∆ x=0.01    ∆ t=0.005   supp(f)=(0,0.4)    it=6879   Tmax =34.395

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
(HK)      N=101    ∆ x=0.01    ∆ t=0.00125   supp(f)=(0,1)    it=25610   Tmax =32.0125
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(HK)      N=100    ∆ x=0.010101    ∆ t=0.0050505   supp(f)=(0,1)    itstep=100   Tmax =46.4545

f ≡ 0.5, uh(·, 100n∆t) ; Df =[0, 1], [0, 0.4], [0.2, 0.4] ∪ [0.8, 1], [0.18, 0.22] ∪ [0.78, 0.82].
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The open table problem

A numerical scheme for (HK)

Examples of equilibria for different source supports

u versus u∗
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(HK)      N=51    ∆ x=0.02    ∆ t=0.01   supp(f)=(0,1)    itstep=100   Tmax =39.02
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(HK)      N=51    ∆ x=0.02    ∆ t=0.01   supp(f)=(0,0.4)    itstep=100   Tmax =37.62
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(HK)      N=51    ∆ x=0.02    ∆ t=0.0066667   supp(f)=(0,1)    itstep=100   Tmax =35.68

f ≡ 0.5, stationary uh [—] and (uh + vh) [++], the distance function d [- -] and

the minimal solution u∗ [-·-] when Df is [0, 1], [0, 0.4] and [.2, 0.4] ∪ [0.8, 1].
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The open table problem

A numerical scheme for (HK)

Maximal equilibria (square and rectangular tables)

HK-2D :Df = Ω, Ω = (0, 1)2 (top), Ω = (0, 1)× (0, 2) (bottom).
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The open table problem

A numerical scheme for (HK)

Different standing (same rolling) layers

HK-2D :Ω = (0, 1)2, Df ⊂ Ω, N = 51, uh versus u∗, vh versus v∗.



A numerical model for growing sandpiles on partially open tables

The open table problem

A numerical scheme for (HK)

More general tables: |∇u| ≤ 1Ω′(x), Ω′ ⊂ Ω

HK-2D : examples of non convex or non simply connected open tables
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The partially open table problem

The partially open table problem

Let ∂Ω = Γ0 ∪ Γw , Γ0, Γw 6= ∅
Γ0 : open boundary ; Γw : (infinite) vertical walls.

The two-layer system for the growing sandpiles becomes:

(HKw )


∂tv = ∇ · (v∇u)− (1− |∇u|)v + f in ΩT

∂tu = (1− |∇u|)v in ΩT

u(·, 0) = 0 in Ω
u = 0 on Γ0 , v ∂u

∂n
= 0 on Γw
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The partially open table problem

The wall boundary condition

Summing up the two equations at the equilibrium:

0 =
d

dt

∫
Ω
(u + v) dx =

∫
Ω
∇ · (v∇u) dx +

∫
Ω

f dx =

=

∫
Γw

v
∂u

∂n
dσ +

∫
Γ0

v
∂u

∂n
dσ +

∫
Ω

f dx ;

since the last two terms (the sand leaving the table through Γ0 and
the incoming sand from the source) have to cancel at the
equilibrium, the natural boundary condition at the wall becomes

v ∂u
∂n = 0 on Γw .
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The partially open table problem

Equilibria

Special equilibria in this case:

(maximal) d0(x) = dist(x , Γ0)

(minimal w.r. to Df ) u∗(x) = maxy∈Df
{d0(y)− |x − y |}+

A system for the equilibria

(Ew )


u, v ≥ 0, u ∈ Lip1(Ω), v ∈ BV (Ω)
−∇ · (v∇u) = f in Ω
u∗ ≤ u ≤ d0 in Ω
v ∂u

∂n
= 0 on Γw
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The partially open table problem

Asymptotic behavior and equilibria (1D)

Asymptotic behavior and equilibria (1D)

Assume Ω = (0, 1) and that sand can leave the table only from the
left-hand side(Γ0 = {0}, Γw = {1}). Let Df = (x1, x2) ⊆ Ω; then

Case (1) x2 = 1 There is only one possible equilibrium :

u(x) = d0(x) = x v(x) =

∫ 1

x
f (s)ds ;

Case (2) x2 < 1 u is not uniquely determined :

u(x) =


d0(x) if x ≤ x2

? if x > x2

v(x) =


∫ x2

x f (s)ds if x < x2

0 if x ≥ x2
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The partially open table problem

Asymptotic behavior and equilibria (1D)

The wall-problem (1D)
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(HK)      N=51    ∆ x=0.02    ∆ t=0.01   supp(f)=(0.3,1)    it=3328   Tmax =33.28
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(HK)      N=51    ∆ x=0.02    ∆ t=0.01   supp(f)=(0,0.5)    it=3849   Tmax =38.49

f ≡ 0.5: growing uh [blue], final uh + vh [red balls], u [black], u + v [green].
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The partially open table problem

Asymptotic behavior and equilibria (2D)

Asymptotic behavior and equilibria (2D)

Ω convex ⇒ all the transport rays towards Γ0 are segments;
Df = Ω ⇒ the maximal equilibrium is expected.

Definition

Let P ∈ ∂Γ0, nP the normal direction to ∂Ω in P and t ∈ IR:
if P + tnP /∈ Ω for any t ⇒ P is a regular boundary point (RBP),
if P + tnP ∈ Ω for some t ⇒ P is a singular boundary point (SBP).
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The partially open table problem

Asymptotic behavior and equilibria (2D)

An example of regular boundary points

Example 1

• Ω = Q = (0, 1)2 (a square table);
• Γw = one side of Q (the transport rays are parallel).

There exists a unique (continuous) equilibrium:{
u = d0 , v = 0 on S

v(x) =
∫ τ(x)
0 f (x + t∇d0(x)) dt, ∀x ∈ Ω\S



A numerical model for growing sandpiles on partially open tables

The partially open table problem

Asymptotic behavior and equilibria (2D)

An example of regular boundary points

f ≡ 0.5, N = 41, Γw = {0 < x < 1, y = 0}.
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The partially open table problem

Asymptotic behavior and equilibria (2D)

An example of singular boundary points

The presence of a SBP radically changes the situation:

Example 2

• Ω = Q , f ≡ 1 ;
• Γ0 = {0 ≤ x ≤ 0.5, y = 0} ;
• O is a RBP, P is a SBP
[there exist infinitely many transport rays through P]
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The partially open table problem

Asymptotic behavior and equilibria (2D)

An example of singular boundary points

Explicit computation for the equilibrium is possible by
decomposition along PQ and polar coordinates in P
(θ ∈ [0, π

2 ], 0 < ρ < τ(θ) = distθ(P, ∂Ω) , r =
√

x2 + y2):

u = d0 , v(x , y) =


1− y if x ≤ 0.5

∫ τ(θ)
r

ρ
r dρ if x > 0.5

Then

v is discontinuous along the segment PQ

v is unbounded in P but v ∈ L1(Ω). From the system:∫
Ω v =

∫
Ω v |∇d0|2 = −

∫
Ω d0∇ · (v∇d0) =

∫
Ω fd0 < ∞

∇v is discontinuous along PR
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The partially open table problem

Asymptotic behavior and equilibria (2D)

An example of a SBP: exact stationary solutions
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The partially open table problem

Asymptotic behavior and equilibria (2D)

Equilibria in the general 2D case

Existence results for the stationary solutions and their
characterization are not easy in the general case (it is not clear in
which sense a discontinuous function like v in Example 2 globally
solves the differential system (Ew )).

We are able to extend the [CC] existence result to this case under
the following assumptions:

(H1) Ω ⊂ IR2 convex Lipschitz domain;

(H2) Γ0 = ∪N
i=1Γi , Γi pairwise disjoint C 2 connected arcs of

∂Ω (with endpoints Ai and Bi ).
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The partially open table problem

Asymptotic behavior and equilibria (2D)

Decomposable domains

Let Ω∗ = Ω\S and Π0 : Ω∗ → Γ0 given by

Π0(x) = {y ∈ Γ0 : d0(x) = |x − y |};

then, if (H1)-(H2) hold, Ω∗ can be uniquely decomposed as

Ω∗ = ∪N
i=1(Ω

∗
i ∪ ΩA

i ∪ ΩB
i ),

where
Ω∗

i = {x ∈ Ω∗ : Π0(x) ∈ int(Γi )},

ΩA
i = {x ∈ Ω∗ : Π0(x) = Ai}, ΩB

i = {x ∈ Ω∗ : Π0(x) = Bi}.
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Example of decomposition
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Asymptotic behavior and equilibria (2D)

Characterization of 2D equilibria [Crasta-F.V.]

Theorem

Assume (H1)-(H2); then (d0, v) is a solution of (Ew ), with v = 0
on S and

v(x) =

∫ τ(x)

0
f (x + t∇do(x))Mx(t) dt, in Ω\S .

where

Mx(t) =


d0(x)+t
d0(x) if x ∈ ΩA

i ∪ ΩB
i ,

1−(d0(x)+t)k(y)
1−d0(x)k(y) if x ∈ Ω∗

i , y = Π0(x).
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An example of a SBP: exact stationary solutions
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The partially open table problem

Numerical experiments

Numerical stationary solutions by standard algorithm
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The partially open table problem

Numerical experiments

Numerical stationary solutions by domain decomposition

5 10 15 20 25 30

5

10

15

20

25

30

u: linee di livello

as
se

 Y

asse X
5 10 15 20 25 30

5

10

15

20

25

30

v: linee di livello

as
se

 Y

asse X



A numerical model for growing sandpiles on partially open tables

The partially open table problem

Numerical experiments

Growing sandpile by standard algorithm
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The partially open table problem

Numerical experiments

Other examples: one wall

N = 41, Γw = {0 < x < 0.5, y = 0}.
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The partially open table problem

Numerical experiments

Other examples: three walls

N = 41, Γw = {0 < x < 0.5, y = 0} ∪ {x = 0, 0 < y < 0.25} ∪ {0 < x < 1, y = 1}.
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The partially open table problem

Numerical experiments

Other examples: exit at the corner

N = 41, Γ0 = {0.75 < x < 1, y = 1} ∪ {x = 1, 0.75 < y < 1}.
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Conclusion and developments

Summary

We have studied the extension of the two-layer model of
Hadeler and Kuttler for growing sandpiles to the case of a
table partially bounded by walls.

Such extension requires a more careful formulation for the
equilibrium system, giving sense to unbounded and
discontinuous solutions. A partial result can be given on a
priori decomposable tables.

From a numerical point of view, the finite-difference scheme
used for the description of the growing process and the
equilibrium detection in the o.t. problem, can be adapted to
the p.o.t. problem. But more efforts are necessary to take
care efficiently of the wall boundary conditions and of the
internal developing singularities (first tests)
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Conclusion and developments

Open problems and developments

A complete mathematical characterization of the o.t.
equilibrium for the two-layer system

A general theorem for the equilibria of the p.o.t. problem (for
convex and even non convex tables)
[height=8cm]nonconvex.jpg

Rigorous stability and convergence results for the schemes;
more accurate 2D schemes (especially for p.o.t.), involving
domain decomposition and adaptivity techniques

Direct implementation of the closed integral formulas for the
equilibria (efficient algorithms for d are available from the
control theory, see e.g. [Cristiani-Falcone, ’05])

Numerical study of other boundary conditions (silos) and
different model problems (collapsing sandpiles, obstacles,
optimal mass transport)
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