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Motivations from Physics

Defaults moving in crystals

Figure: Dislocations in a slip plane
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Physics of dislocations

New boom of physics of dislocations
New models for the dynamics of dislocations densities
(Groma, Balogh ’99 / Groma, Czikor, Zaiser ’03 / Sethna ’04 etc.)

Level set formulation of the problem
(Alvarez, Hoch, Le Bouar, Monneau (CRAS’04, ARMA 06))

The monotone case:{
∂uε

∂t = h1
( x

ε ,∇uε,
)

+ h2 (,∇uε)
u(0, x) = u0(x)

bq
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Physics of dislocations

New boom of physics of dislocations
New models for the dynamics of dislocations densities
(Groma, Balogh ’99 / Groma, Czikor, Zaiser ’03 / Sethna ’04 etc.)

Level set formulation of the problem
(Alvarez, Hoch, Le Bouar, Monneau (CRAS’04, ARMA 06))

The monotone case:{
∂uε

∂t = h1
( x

ε ,∇uε, [uε]
)

+ h2
(uε

ε ,∇uε
)

u(0, x) = u0(x)

bq
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Physics of dislocations

New boom of physics of dislocations
New models for the dynamics of dislocations densities
(Groma, Balogh ’99 / Groma, Czikor, Zaiser ’03 / Sethna ’04 etc.)

Level set formulation of the problem
(Alvarez, Hoch, Le Bouar, Monneau (CRAS’04, ARMA 06))

The monotone case:{
∂uε

∂t = h1
( x

ε ,∇uε, [uε]
)

+ h2
(uε

ε ,∇uε
)

u(0, x) = u0(x)

First difficulty: non-local HJ equation
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Physics of dislocations

New boom of physics of dislocations
New models for the dynamics of dislocations densities
(Groma, Balogh ’99 / Groma, Czikor, Zaiser ’03 / Sethna ’04 etc.)

Level set formulation of the problem
(Alvarez, Hoch, Le Bouar, Monneau (CRAS’04, ARMA 06))

The monotone case:{
∂uε

∂t = h1
( x

ε ,∇uε, [uε]
)

+ h2

(
uε

ε ,∇uε
)

u(0, x) = u0(x)

Main difficulty: the u
ε -dependance of the Hamiltonian
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Setting of the problem

We reduce the problem to the main difficulty by considering
the following ε-HJ equation:

(HJ)ε

{
∂uε

∂t = H
(uε

ε , x
ε ,∇uε

)
u(0, x) = u0(x)

Examples:

I duε

dt (t) = h
(

uε(t)
ε

)
(the ODE case)

I ∂uε

∂t = c
( x

ε

)
|∇uε|+ h

(uε

ε

)
I ∂uε

∂t = c
( x

ε

)
(1 + |∇u|2)

1
4 + h

(uε

ε

)
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Setting of the problem (2)

Main assumptions
I Regularity

|∂H
∂i | ≤ C (i = u, p)

∣∣∣∂H
∂y

∣∣∣ ≤ C(1 + |p|)

I Periodicity
H(u + l , y + k , p) = H(u, y , p) l ∈ Z, k ∈ ZN

I Coercivity
H(x , u, p) −→

|p|→+∞
+∞

Aims
I Determine the homogenized equation
I Construct correctors
I Prove convergence
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Main results

The initial value “cell” problem (IVCP):{
∂w
∂t = H (p · y + w , y , p +∇w)
w(0, y) = 0

Ergodicity

There exists H(p), a unique λ ∈ R such that the continuous
solution of (IVCP) satisfies: w(τ,y)

τ → λ as τ →∞ unif wrt y .

Put v = w − λτ and get the “cell” problem (CP):{
λ + ∂v

∂t = H (λτ + p · y + v , y , p +∇v)
v(0, y) = 0



Periodic
homogen◦ of
ut =H

“
u
ε

,∇u
”

C. Imbert

Introduction
Motivations

The problem

Main results

Cell problem
The classical case

Homogenize an ODE

ODE: ansatz?

Back to PDE

Correctors
Approx cell pbs

Approx correctors

Exact ergodicity

Main results (2)

Comments about correctors v

They are bounded
They are time-dependent
They are not space-periodic

The homogenized HJ equation:{
∂u0

∂t = H(∇u0)
u0(0, x) = u0(x)

Convergence

The bounded continuous solution uε of the ε-HJ equation
converges locally uniformly towards the bounded
continuous solution u0 of the homogenized HJ equation.
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The results of Guy Barles

After this work was completed, Guy Barles obtained simpler
proofs of some results.

I G. Barles. Some homogenization results for
non-coercive Hamilton-Jacobi equations, preprint (HAL)

Assumptions
I Regularity, periodicity, coercivity
I Behaviour at infinity

|H(x , u, p)− p · ∇pH(x , u, p)| ≤ C

Main idea

I Replace uε

ε with y
ε where y is a new variable

I Reduce the problem to homogenize a front equation
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Determining the cell problem

We discuss the two following (linked) points:

It is not clear (even if not surprising) that the cell
problem we presented is the proper one.

Does the classical proof of convergence
(classical ansatz) applies to our case?
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The classical case

The equation ∂uε

∂t = H
( x

ε ,∇uε
)

An ansatz

Look for v that is a good “corrector” between uε and u0:

uε(t , x) = u0(t , x) + εv
(

t
ε
,
x
ε

)
+ . . .

Comments

This extension is done around a fixed point (t0, x0)
(r denotes the radius around this point)
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The classical case (2)

Plugg into the ε-HJ equation and get:

∇xuε = ∇xu0 +∇yv
∂tuε = ∂tu0 + ∂τv

∂tu0 + ∂τv = H(y ,∇xu0 +∇yv)

Hope: if p = ∇xu0 is fixed, there is a unique ∂tu0 = λ = H(p)

Comments on the classical case.

Look for bounded correctors v
time-independent correctors v are ok
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The ODE case

Threshold phenomenon for the homogenization of an ODE

If the periodic function h vanishes, uε → 0

If not, 0 < α ≤ h ≤ A, then α ≤ uε

t ≤ A

Proper ansatz for duε

dt (t) = h
(

t , uε(t)
ε

)
& uε(0) = 1 ?

Expected homogenized equation: d
dt u

0 = λ(t) & u0(0) = 1.

u0(t) ' u0(t0)− λ(t0)t0 + λ(t0)t

and we try to determine λ = λ(t0).
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The ODE case

Threshold phenomenon for the homogenization of an ODE

If the periodic function h vanishes, uε → 0
If not, 0 < α ≤ h ≤ A, then α ≤ uε

t ≤ A

Proper ansatz for duε

dt (t) = h
(

t , uε(t)
ε

)
& uε(0) = 1 ?

Expected homogenized equation: d
dt u

0 = λ(t) & u0(0) = 1.

u0(t) ' u0(t0)− λ(t0)t0 + λ(t0)t

and we try to determine λ = λ(t0).



Periodic
homogen◦ of
ut =H

“
u
ε

,∇u
”

C. Imbert

Introduction
Motivations

The problem

Main results

Cell problem
The classical case

Homogenize an ODE

ODE: ansatz?

Back to PDE

Correctors
Approx cell pbs

Approx correctors

Exact ergodicity

Find the ansatz for the ODE case

Classical ansatz

uε(t) = u0(t) + εv
(

t
ε

)
+ . . .

= u0(t0)− λt0 + λt + εv
(

t
ε

)
+ . . .

↪→ λ + dτv = h
(

u0(t0)−λt0
ε + λτ + v

)
with τ = t

ε

The “error”: b . . . q ' r
ε . Still oscillating!



Periodic
homogen◦ of
ut =H

“
u
ε

,∇u
”

C. Imbert

Introduction
Motivations

The problem

Main results

Cell problem
The classical case

Homogenize an ODE

ODE: ansatz?

Back to PDE

Correctors
Approx cell pbs

Approx correctors

Exact ergodicity

Find the ansatz for the ODE case

Classical ansatz

uε(t) = u0(t) + εv
(

t
ε

)
+ . . .

= u0(t0)− λt0 + λt + εv
(

t
ε

)
+ . . .

↪→ λ + dτv = h
(

u0(t0)−λt0
ε + λτ + v

)
with τ = t

ε

The “error”: b . . . q ' r
ε . Still oscillating!



Periodic
homogen◦ of
ut =H

“
u
ε

,∇u
”

C. Imbert

Introduction
Motivations

The problem

Main results

Cell problem
The classical case

Homogenize an ODE

ODE: ansatz?

Back to PDE

Correctors
Approx cell pbs

Approx correctors

Exact ergodicity

Find the ansatz for the ODE case

Classical ansatz

uε(t) = u0(t) + εv
(

t
ε

)
+ . . .

= u0(t0)− λt0 + λt + εv
(

t
ε

)
+ . . .

↪→ λ + dτv = h
(

u0(t0)−λt0
ε + λτ + v

)
with τ = t

ε

The “error”: b . . . q ' r
ε . Still oscillating!



Periodic
homogen◦ of
ut =H

“
u
ε

,∇u
”

C. Imbert

Introduction
Motivations

The problem

Main results

Cell problem
The classical case

Homogenize an ODE

ODE: ansatz?

Back to PDE

Correctors
Approx cell pbs

Approx correctors

Exact ergodicity

Find the ansatz for the ODE case (2)

Second ansatz

Add a fast variable: y = 1
ε and write:

uε(t) = u0(t) + εv
(

t
ε
,
u0(t)− λt

ε

)
+ . . .

↪→ λ + d
dτ v + b . . . q = h(λτ + y + v(τ, y))

The error b . . . q is small.
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I To construct a bounded solution v , solve the PDE:

dτw = h(y + w) & w(0) = 0

and find λ such that v := w − λτ is bounded.

I Note that the corrector have to depend on time
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The PDE case:

twist a variable and add one

Consider now the PDE case and write:

uε(t , x) = u0(t , x

, xN+1

)+εv
(

t
ε
,
x
ε
,
u0(t , x

, xN+1

)− λt

− p · x

ε

)
with λ = ∂tu0(t0, x0) and plug it:

λ + ∂τ v + ∂N+1v × (∂tu0(t)− λ)

= H(λτ

+p · y

+ yN+1 + v , y , p +∇y v + (∂N+1v ×

(

∇xu0

−p

)) )

with p = ∇u0(t0, x0) and λ = ∂tu0(t0, x0).

To get b. . . q � 1 try to control ∂N+1v
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Outline

1 Introduction
Motivations from Physics
Setting of the problem
Main results

2 Proof of convergence / determining the cell problem
The classical case
Homogenize an ODE
The ODE case: ansatz?
The PDE case

3 Constructing correctors
Constructing approximate cell problems
Constructing approximate correctors
Approximate ergodicity implies exact ergodicity
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Constructing approximate cell problems

Recall: the initial value “cell” problem:{
∂W
∂t = H(p · y+yN+1 + W , y ,∇yW )

W (0, Y ) = 0

and find λ such that v = w − λτ is bounded

Aim: obtain regular sub- and supercorrectors.

How? By approximating the cell problem.

Which approximation?

Use coercivity of H to construct Lipschitz approx correctors
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Constructing approximate cell problems

Recall: the initial value “cell” problem:{
∂W
∂t = H(p · y+yN+1 + W , y ,∇yW )

W (0, Y ) = 0

and find λ such that v = w − λτ is bounded

Aim: obtain regular sub- and supercorrectors.

How? By approximating the cell problem.

Which approximation?
Use coercivity of H to construct Lipschitz approx correctors
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A gradient estimate

{
∂U
∂t = F (U, y ,∇Y U)
U(0, Y ) = U0(Y )

Gradient estimate
If F (W , y , p) = constant outside a starshaped compact set
Ω, then the inclusion ∇U0 ∈ Ω is preserved:

∇U(t , ·)· ∈ Ω for any t > 0.
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Precise construction

I H(u, y , q) is not coercive wrt Q = (q, qN+1)

↪→ Hδ(u, y , Q) = H(u, y , q)+δ|qN+1|.

I Truncate it: ↪→ H+
K ,δ(u, y , Q) = TK (Hδ)

so that
H+

K ,δ = Hδ ' H if |Q| ≤ K

H+
K ,δ = M+

K ,δ if Q /∈ Ω+
K,δ

H+
K ,δ ≥ H if Q ∈ Ω+

K,δ

I It is now constant outside Ω+
K ,δ starshaped compact.

It implies the Lipschitz regularity of the solution.

The approximate corrector is an “exact” supercorrector
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Constructing approximate correctors

{ ∂W
∂t = H+

K ,δ(P · Y + W , y ,∇Y W )

+ εI[W ]

W (0, Y ) = 0

Main steps in the construction of super-correctors.

I Perturb by a non-local 0 order operator to get a strong
maximum principle ; get the gradient estimates

I Control Y -space oscillations of W
I Control τ -time oscillations of W
I Construct a global in time solution
I Use the strong maximum principle & the sliding method

to get a τ -periodic solution

I Get an estimate of (τ, Y )-oscillations indep of K

I Pass to the limit as ε → 0
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to get a τ -periodic solution

I Get an estimate of (τ, Y )-oscillations indep of K

I Pass to the limit as ε → 0
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Integer translations in y :

|v(τ, y + k , yN+1)− v(τ, y , yN+1)| ≤ 1

v 1-periodic in yN+1

u := yN+1 + v nondecreasing
sliding method + strong maximum principle:

v(τ, y , yN+1) = v(0, y , λτ + yN+1)

↪→ control v in λτ and yN+1

λ ≤ F (|p|)
v(y) = inf{V (τ, y , yN+1) : τ ≥ 0} is Lipschitz c:

|∇v | ≤ F (|p|) → control v for small y
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Approximate ergodicity ⇒ exact ergodicity

We construct correctors V±
K of:

λ±K + ∂τV±
K = H±

K (λ±K τ + P · Y + V±
K , y , P +∇Y V±

K )

such that:
|V±

K | ≤ C and |λ±K | ≤ C

where C does not depend on K .

Moreover,

H±
K → H•

We next explain why as K → +∞:

λ±K → λ for some λ ∈ R???
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Approximate ergodicity ⇒ exact ergodicity (2)

Define:
λ±u = lim sup λ±K & λ±l = lim inf λ±K

V±
u = lim sup ∗V±

K & V±
l = lim inf ∗V±

K •

and get:

λ±u + ∂τV±
u ≤ H(λ±u τ + p · y + yN+1 + V±

u , p +∇yV±
u )

λ±l + ∂τV±
l ≥ H(λ±l τ + p · y + yN+1 + V±

l , p +∇yV±
l )

The comparison principle for the (HJ)ε yields:

λ

λ±u τ + V±
u ≤ W + C ≤

λ

λ±l τ + V±
l + 2C

and this implies:

but not regular
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Work in progress with N. Forcadel and R. Monneau

Numerical simulations for the effective Hamiltonian
A. Ghorbel, P. Hoch and R. Monneau



Periodic
homogen◦ of
ut =H

“
u
ε

,∇u
”

C. Imbert

Introduction
Motivations

The problem

Main results

Cell problem
The classical case

Homogenize an ODE

ODE: ansatz?

Back to PDE

Correctors
Approx cell pbs

Approx correctors

Exact ergodicity

Related works / works in progress

Homogenization results for non-coercive HJ equations
G. Barles

Homogenization of the model for dislocations dynamics
CI, R. Monneau and E. Rouy

Formulation “à la Slepčev” of the problem
Work in progress with N. Forcadel and R. Monneau

Numerical simulations for the effective Hamiltonian
A. Ghorbel, P. Hoch and R. Monneau



Periodic
homogen◦ of
ut =H

“
u
ε

,∇u
”

C. Imbert

Introduction
Motivations

The problem

Main results

Cell problem
The classical case

Homogenize an ODE

ODE: ansatz?

Back to PDE

Correctors
Approx cell pbs

Approx correctors

Exact ergodicity

Related works / works in progress

Homogenization results for non-coercive HJ equations
G. Barles

Homogenization of the model for dislocations dynamics
CI, R. Monneau and E. Rouy

Formulation “à la Slepčev” of the problem
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