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1 – Front propagation

1 – Front propagation

1.1 – Level-set method.

We are interested in front propagations governed by the law

Vt,x = c(t, x) (0.1)

where Vt,x denotes the normal velocity of the point x of the front at

time t.
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1 – Front propagation
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1 – Front propagation

Assume that the front Γ(t) = ∂Ω(t) is smooth, and that there exists a

smooth u : [0, T ] × R
N → R such that

Ω(t) = {x ∈ R
N ; u(t, x) > 0}, Γ(t) = {x ∈ R

N ; u(t, x) = 0}

and Du(t, x) 6= 0 when x ∈ Γ(t), where Du is the gradient of u with

respect to x.

Then Vt,x = ut(t,x)
|Du(t,x)| and u therefore satisfies the eikonal equation :

ut(t, x) = c(t, x)|Du(t, x)|. (0.2)
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1 – Front propagation

To generalize the preceding evolution to non-smooth fronts, we

realize the following program :

1. Find u0 : R
N → R such that Γ(0) = {x ∈ R

N ; u0(x) = 0}

2. Solve in an appropriate sense the problem

{

ut(t, x) = c(t, x)|Du(t, x)| for (t, x) ∈ (0, T ) × R
N

u(0, x) = u0(x) forx ∈ R
N

(0.3)

3. Set Γ(t) = {x ∈ R
N ; u(t, x) = 0}
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1 – Front propagation

Theorem 0.1 (M. Crandall, P.L. Lions).

Under the following assumptions :

(H) c : [0, T ] × R
N → R is continuous, bounded, Lipschitz continuous

with respect to the second variable,

the problem

{

ut(t, x) = c(t, x)|Du(t, x)| for (t, x) ∈ (0, T ) × R
N

u(0, x) = u0(x) forx ∈ R
N

(0.4)

has a unique uniformly continuous viscosity solution on [0, T ] × R
N

for all initial datum u0 that is uniformly continuous on R
N .
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1 – Front propagation

From now on, we restrict ourselves to sub-solutions.

A result from Barles, Soner and Souganidis ([3]) shows that any

sub-solution u of a geometric equation gives another sub-solution

1{u≥0}.

We infer, for any closed set K(0) ⊂ R
N , that there exists a family

(K(t))t∈[0,T ] such that

1. The graph of K,
⋃

t∈[0,T ]

{t} × K(t) is closed in R
N+1.

2. (t, x) 7→ 1K(t)(x) is a sub-solution of the eikonal equation on

(0, T ) × R
N .
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1 – Front propagation

Proposition 0.2. If K(0) is compact, the evolution is bounded :

there exists R > 0 such that for all t ∈ [0, T ], K(t) ⊂ B(0, R).
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2 – Hadamard’s formula

2 – Hadamard’s formula

If Γ(t) = ∂Ω(t) is a smooth hypersurface of R
N for t ≥ 0, and (Γt)t≥0

evolves smoothly in time, Hadamard’s formula states that :

For all φ ∈ C1([0, +∞) × R
N ),

d

dt

∫

Ω(t)

φ(t, x) dx =

∫

Ω(t)

∂φ

∂t
(t, x) dx +

∫

∂Ω(t)

Vt,x φ(t, x) dHN−1(x)

(0.5)
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2 – Hadamard’s formula

In particular if Vt,x ≤ c(t, x) in the classical sense, we have for all

φ ∈ C1([0, +∞) × R
N , R+) :

d

dt

∫

Ω(t)

φ(t, x) dx ≤

∫

Ω(t)

∂φ

∂t
(t, x) dx +

∫

∂Ω(t)

c(t, x) φ(t, x) dHN−1(x)

(0.6)
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2 – Hadamard’s formula

When (t, x) 7→ 1K(t)(x) is “only” a viscosity sub-solution of the

eikonal equation, we don’t know anything about the regularity of

K(t), and the term
∫

∂K(t)
c(t, x) φ(t, x) dHN−1(x) does not make any

sense.
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2 – Hadamard’s formula

When (t, x) 7→ 1K(t)(x) is “only” a viscosity sub-solution of the

eikonal equation, we don’t know anything about the regularity of

K(t), and the term
∫

∂K(t)
c(t, x) φ(t, x) dHN−1(x) does not make any

sense.

However, under the conditions

i. c(t, x) > 0 ∀(t, x) ∈ [0, T ] × R
N ,

ii. K(0) has the interior ball property of radius r > 0, i.e. is the

union of closed balls of radius r > 0,

it has been proved by O. Alvarez, P. Cardaliaguet and R. Monneau

that K(t) also satisfies an interior ball condition, and that

Hadamard’s formula still holds.
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2 – Hadamard’s formula

An essential point is the following theorem that gives a control on the

perimeter of sets with the interior ball property :

Theorem 0.3. For all r > 0, there exists M > 0 such that for all

closed set E ⊂ R
N having the interior ball property of radius r and of

diameter less than 1/r, we have

HN−1(∂E) ≤ M.
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2 – Hadamard’s formula

From here on, we do not make any assumption either on the sign of

c, nor on the regularity of the initial set.

We only consider a family (K(t))t∈[0,T ] with closed graph such that

(t, x) 7→ 1K(t)(x) is a sub-solution of the eikonal equation on

(0, T ) × R
N .

Set for all ε > 0,

Kε(t) = {x ∈ R
N ; dK(t)(x) < ε}

Then Kε(t) has the interior ball property.

→ We want to generalize Hadamard’s formula to the evolution

t → Kε(t).
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2 – Hadamard’s formula

To this end, we will have to modify the equation, which leads to

introduce a perturbed velocity

cε(t, x) = max
|y−x|≤ε

c(t, y)
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3 – The integral formulation

3 – The integral formulation

3.1 – Statement of the result

Theorem 0.4. Let K : [0, T ] → P(RN ) \ {∅} be such that

1. K(0) is compact and K(t) → K(0) in the Hausdorff distance as

t → 0,

2.
⋃

t∈[0,T ]

{t} × K(t) is closed in R
N+1,

3. u : (t, x) 7→ 1K(t)(x) is a viscosity sub-solution of the eikonal

equation.
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3 – The integral formulation

Then for all t1 et t2 satisfying 0 ≤ t1 < t2 ≤ T , for almost all ε > 0,

and for all φ ∈ C1([0, T ] × R
N , R+),

∫ t2

t1

∫

Kε(s)

φt(s, x) dxds +

∫ t2

t1

∫

∂Kε(s)

cε(s, x) φ(s, x) dHN−1(x)ds

≥

[

∫

Kε(s)

φ(s, x) dxds

]t2

t1

(0.7)
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3 – The integral formulation

3.2 – Steps of proof

Let w(t, x) = −dK(t)(x). Let θ : R → R be smooth and non-decreasing

such that θ = 0 in (−∞,−ε], θ = 1 in [0,∞), and set wθ = θ ◦ w.
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3 – The integral formulation

3.2 – Steps of proof

Let w(t, x) = −dK(t)(x). Let θ : R → R be smooth and non-decreasing

such that θ = 0 in (−∞,−ε], θ = 1 in [0,∞), and set wθ = θ ◦ w.

1. wθ is a sub-solution of (wθ)t = cε(t, x)|Dwθ| in (0, T ) × R
N .
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3 – The integral formulation

3.2 – Steps of proof

Let w(t, x) = −dK(t)(x). Let θ : R → R be smooth and non-decreasing

such that θ = 0 in (−∞,−ε], θ = 1 in [0,∞), and set wθ = θ ◦ w.

1. wθ is a sub-solution of (wθ)t = cε(t, x)|Dwθ| in (0, T ) × R
N .

2. For all φ ∈ C1
c ((0, T ) × R

N , R+),

∫ T

0

∫

RN

wθ(s, x) φt(s, x) dxds

+

∫ T

0

∫

RN

cε(s, x)|Dwθ(s, x)|φ(s, x) dxds ≥ 0

(this is obtained by a regularization in time and integration by parts).
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3 – The integral formulation

As θ tends to 1(−ε,+∞) :

3.
∫ T

0

∫

RN wθ(s, x) φt(s, x) dxds →
∫ T

0

∫

Kε(s)
φt(s, x) dxds.
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3 – The integral formulation

As θ tends to 1(−ε,+∞) :

3.
∫ T

0

∫

RN wθ(s, x) φt(s, x) dxds →
∫ T

0

∫

Kε(s)
φt(s, x) dxds.

4. The coarea formula shows that

∫

RN

cε(s, x)|Dwθ(s, x)|φ(s, x) dx

=

∫ 1

0

∫

{wθ(s,·)=τ}

cε(s, x) φ(s, x) dHN−1(x)dτ

→

∫

∂Kε(s)

cε(s, x) φ(s, x) dHN−1(x) for a.a. ε > 0.
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3 – The integral formulation

Conclusion :

For almost all ε > 0, for all φ ∈ C1
c ((0, T ) × R

N , R+),

∫ T

0

∫

Kε(s)

φt(s, x) dxds +

∫ T

0

∫

∂Kε(s)

cε(s, x) φ(s, x) dHN−1(x)ds ≥ 0.
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4 – The converse theorem

4 – The converse theorem

The following theorem shows that the integral formulation

characterizes the fact for (t, x) 7→ 1K(t)(x) to be a viscosity

sub-solution of the eikonal equation :
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4 – The converse theorem

4 – The converse theorem

The following theorem shows that the integral formulation

characterizes the fact for (t, x) 7→ 1K(t)(x) to be a viscosity

sub-solution of the eikonal equation :

Theorem 0.5. Let K : [0, T ] → P(RN ) \ {∅} be such that

1.
⋃

t∈[0,T ]{t} × K(t) is closed in R
N+1 and K is bounded.

2. For almost all small enough ε > 0, for all φ ∈ C1
c ((0, T )×R

N , R+),

∫ T

0

∫

Kε(s)

φt(s, x) dxds +

∫ T

0

∫

∂Kε(s)

cε(s, x) φ(s, x) dHN−1(x)ds ≥ 0.

Then u : (t, x) 7→ 1K(t)(x) is a viscosity sub-solution of

ut = c(t, x)|Du| in (0, T ) × R
N .
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5 – Regularity of the front

5 – Regularity of the front

5.1 – BV functions and sets of finite perimeter

Let Ω be an open subset of R
N .

Definition 0.6. An application f ∈ L1
loc(Ω) is said to have locally

bounded variations in Ω if for all open set U ⊂⊂ Ω,

sup{

∫

U

f(x) div φ(x) dx ; φ ∈ C1
c (U, RN ) ; ‖φ‖∞ ≤ 1} < +∞.

We denote by BVloc(Ω) the set of functions of locally bounded

variations in Ω.

Likewise, we say that f ∈ L1(Ω) has bounded variations in Ω (BV ) if

the preceding definition holds for U = Ω. We denote by BV (Ω) their

set.
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5 – Regularity of the front

From the Riesz representation theorem, we deduce :

Theorem 0.7. Let f ∈ BVloc(Ω). Then there exists a Radon measure

µ on Ω and a µ-measurable application σ : Ω → R
N such that :

1. |σ(x)| = 1 µ-a.e.

2.
∫

Ω
f(x) div φ(x) dx = −

∫

Ω
〈φ(x), σ(x)〉 dµ ∀φ ∈ C1

c (Ω, RN ).

The measure µ is called the variation measure of f , and is denoted by

‖Df‖.

Torino, July 4th 2006 Page 23



5 – Regularity of the front

Definition 0.8. A LN -measurable set E ⊂ R
N is said to have

(locally) finite perimeter in Ω if 1E has (locally) bounded variations

in Ω.

The variation measure of 1E is is this case denoted ‖∂E‖, and the

function −σ given by theorem 0.7 is denoted νE .

We thus have for all φ ∈ C1
c (Ω, RN ),

∫

E

div φ(x) dx =

∫

RN

〈φ(x), νE(x)〉 d‖∂E‖. (0.8)
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5 – Regularity of the front

Definition 0.9. Let E be a set of locally finite perimeter in Ω. We

say that x ∈ Ω belongs to the reduced boundary of E, denoted ∂∗E,

if :

1. ‖∂E‖(B(x, r)) > 0 ∀r > 0,

2. 1
‖∂E‖(B(x,r))

∫

B(x,r)
νE(y) d‖∂E‖ −→

r→0
νE(x),

3. |νE(x)| = 1.
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5 – Regularity of the front

Then we have the following result :

Theorem 0.10. Let E be a set of locally finite perimeter in Ω.

Then :

1. ‖∂E‖(B) = HN−1(B ∩ ∂∗E) for all Borel set B ⊂ Ω.

2. Gauss-Green formula : For all φ ∈ C1
c (Ω, RN ),

∫

E

div φ(x) dx =

∫

∂∗E

〈φ(x), νE(x)〉 dHN−1(x). (0.9)
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5 – Regularity of the front

5.2 – Perimeter estimate

Theorem 0.11. Let K : [0, T ] → P(RN ) with closed graph in R
N+1

be such that

1. K(0) is compact,

2. K(t) → K(0) in the Hausdorff distance as t → 0,

3. u : (t, x) 7→ 1K(t)(x) is a viscosity sub-solution of the eikonal

equation. Under the additional assumptions

(A1) c is of class C1, Dc is locally Lipschitz continuous with respect

to the second variable,

(A2) Dc(t, x) 6= 0 if c(t, x) = 0,
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5 – Regularity of the front

We have :

1. For almost all t ∈ [0, T ], c(t, ·) 1K(t) has bounded variations in

{c(t, ·) < 0}.

2. For almost all t ∈ [0, T ], K(t) has locally finite perimeter in

{c(t, ·) < 0}.

3. If we denote (·)− the negative part of a quantity

((x)− = max(−x, 0)), we have :

∫ T

0

∫

∂∗K(s)

c−(s, x) dHN−1(x)ds < +∞.
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5 – Regularity of the front

Heuristic idea : apply the integral formulation with ε = 0 to

φ = 1{c<0} :

∫ T

0

∫

K(s)

φt(s, x) dxds +

∫ T

0

∫

∂K(s)

c(s, x) φ(s, x) dHN−1(x)ds

≥

[

∫

K(s)

φ(s, x) dxds

]T

0

Torino, July 4th 2006 Page 29



5 – Regularity of the front

1.
[

∫

K(s)
φ(s, x) dxds

]T

0
=

[

∫

K(s)
1{c<0}(s, x) dxds

]T

0
.
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5 – Regularity of the front

1.
[

∫

K(s)
φ(s, x) dxds

]T

0
=

[

∫

K(s)
1{c<0}(s, x) dxds

]T

0
.

2.
∫ T

0

∫

K(s)
φt(s, x) dxds ≤

∫ T

0

∫

K(s)∩{c(s,·)=0}
|ct(s,x)|
|Dc(s,x)| dHN−1(x)ds.
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5 – Regularity of the front

Thank you !
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