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Control problem with state constraints

v(T , x) := Min ϕ(yx(T ));{
ẏx(t) = f (yx(t), u(t)), t > 0,

yx(0) = x ,
(1a)

u(t) ∈ U := L∞(0, +∞; U) a.e. t > 0,(1b)

yx(T ) ∈ C, yx(t) ∈ K for 0 ≤ t ≤ T . (1c)

C ⊂ K closed sets of R
d ( C 6= ∅), U ⊂ R

m a compact set,
the functions f : R

d × U −→ R
d and ϕ : R

d −→ R are
Lipschitz, bounded, and f (x , U) is convex for any x ∈ R

d .
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Free state constraints (K = C = R
d )

v is the unique bounded continuous viscosity
solution of the HJB equation:

∂tV − H(x , DxV (x)) = 0 in x ∈ R
d , t > 0

V (x , 0) = ϕ(x) x ∈ R
d ,

where H(x , DxV (x)) = min
a∈U

(
f (x , a) · DxV (x)

)
.

(Lions, Barles, Cappuzo-Dolcetta, ... etc)
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RDV problem (K = R
d , C ⊂ R

d )

In this case, the value function v is the unique
l.s.c. ’Bilateral’ solution

∂tV − H(x , DxV (x)) = 0 in ]0, T [×R
d ,

V (x , 0) = ϕ(x)χC(x) x ∈ R
d ,

(Barron-Jensen, Frankowska, ...)
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RDV problem (K = R
d , C ⊂ R

d )

Bilateral solution: touching one side test function

Definition (Barron-Jensen, Frankowska)
A l.s.c. function v is a bilateral solution of the
HJB equation, if

(i) for every φ ∈ C1 s. t. u − φ has a local
minimum at (x , t) ∈ R

d × R
+
∗ ,

∂tφ(x , t) − H(x , Dxφ(x , t)) = 0,

(ii) v(x , 0) = ϕ(x)χC(x) = lim inf
y→x
t↘0+

v(y , t),

∀x ∈ R
d .
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Known results
State constraints (K = C)

Inward qualification constraint:

mina∈U f (x , a) · ηx < 0, ∀x ∈ ∂K

v is continuous on K (Ishii-Koike, Soner, ...)
Outward qualification constraint:

sup
a∈U

f (x , a) · ηx > 0, ∀x ∈ ∂K

The value function is the unique l.s.c.
viscosity solution of the HJB equation on
int(K) and supersolution on ∂K.
(Frankowska,Vinter, Plaskasz)
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Target problem with state constraints (P)

ϑ(T , x) := Min Ψ(yx(τ));{
ẏx(t) = f (yx(t), u(t)), t > 0,

yx(0) = x ,

u(t) ∈ U := L∞(0, +∞; U) a.e. t > 0,

τ ∈ [0, T ], yx(τ) ∈ C,

yx(t) ∈ K for 0 ≤ t ≤ τ.
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Target problem with state constraints (P)

ϑ(T , x) := Min Ψ(yx(τ));{
ẏx(t) = f (yx(t), u(t)), t > 0,

yx(0) = x ,

u(t) ∈ U := L∞(0, +∞; U) a.e. t > 0,

τ ∈ [0, T ], yx(τ) ∈ C,

yx(t) ∈ K for 0 ≤ t ≤ τ.

Ψ(x) =

{
0 x ∈ C

1 otherwise
= χC(x).
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Link with the optimal time problem

T (x) := inf{τ ≥ 0 | yx(τ) ∈ C, yx ⊂ K}.

Theorem
➤ ϑ(T , x) = 0 ⇐⇒ T (x) ≤ T

➤ For every x ∈ R
d ,

[
ϑ(T , x) = 1, ∀T ≥ 0

]
⇐⇒ T (x) = +∞.

➤ T (x) = inf{T ≥ 0; ϑ(T , x) = 0}.

Link with front propagation:
The target set C: burned region at t = 0,
ϑ(0, x) = χC(x).
Ct := {x ∈ R

n, ϑ(t , x) = 0}: burned region at
time t .

"Evolution of regions" instead of the "level set approach".

O. Bokanowski, N. Megdich, H. Zidani Control problem with state constraints
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{
ẏx(t)= f (yx(t), u(t))
yx(0)=x

;





˙̃yx(t)=λ(t)f (ỹx(t), ũ(t))
ỹx(0)=x
λ(t) ∈ Λ(ỹx(t))

Λ(z)=





{0} if z ∈ Kc

[0, 1] if z ∈ C ∪ ∂K

{1} otherwise.

O. Bokanowski, N. Megdich, H. Zidani Control problem with state constraints
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Lemma 2.
Let T ≥ 0, x ∈ K. For every ỹx : [0, T ] → K,
there exist 0 ≤ S ≤ T , u ∈ U such that:

ẏx(t) = f (yx(t), u(t)) t ∈ (0, S), yx(0) = x ,

yx(S) = ỹx(T ),

{yx(t); t ∈ (0, S)} ≡ {ỹx(t); t ∈ [0, T ]} ⊂ K .

O. Bokanowski, N. Megdich, H. Zidani Control problem with state constraints
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Idea of the proof of Lemma 2:

ỹx satisfies: ∃λ : (0, T ) −→ [0, 1] such that:
{

˙̃yx(t) = λ(t)f (ỹx(t), ũ(t)),
ỹx(0) = x

λ(t) ∈ Λ(ỹx(t)).

Let γ(t) :=
∫ t

0 λ(s)ds. We construct y such that

yx(γ(t)) = ỹx(β(t)); S = γ(T );

where β(t) = inf{0 ≤ τ ≤ t , γ(τ) = γ(t)}.

O. Bokanowski, N. Megdich, H. Zidani Control problem with state constraints
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An other formulation of the target problem

ϑ(T , x) = inf{χC(ỹx(t)), ˙̃yx(t) ∈ F (ỹx(t)), ỹx(0) = x , },

where F (x) = {λf (x , a), a ∈ U, λ ∈ Λ(x)} et

Λ(x) :=





{0} if x ∈ Kc

[0, 1] if x ∈ C ∪ ∂K

{1} otherwise.

O. Bokanowski, N. Megdich, H. Zidani Control problem with state constraints
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Question
What is the HJB equation satisfied by ϑ?
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Contingent epiderivative of a l.s.c function u:

D↑u(t , x)(s, p) := lim inf
h↘0,q→p

1
h

(u(t+hs, x+hq)−u(t , x))

When F (x) := f (x , U) (K = R
d ), F is cont.,

u=ϑ ⇔





u lsc, verifies (IC): lim inf
t↘0, y→x

u(y , t) = χC(x),

∀t > 0, x ∈ R
n, sup

p∈F (x)

−D↑u(t , x)(−1, p) ≥ 0

∀t ≥ 0, x ∈ R
n, sup

p∈F (x)

D↑u(t , x)(1,−p) ≤ 0.

O. Bokanowski, N. Megdich, H. Zidani Control problem with state constraints
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D↑u(t , x)(s, p) := lim inf
h↘0,q→p

1
h

(u(t+hs, x+hq)−u(t , x))

When F (x) := f (x , U) (K = R
d ), F is cont.,

u=ϑ ⇔





u lsc, verifies (IC): lim inf
t↘0, y→x

u(y , t) = χC(x),

∀t > 0, x ∈ R
n, sup

p∈F (x)

−D↑u(t , x)(−1, p) ≥ 0

(super − solution)

∀t ≥ 0, x ∈ R
n, sup

p∈F (x)

D↑u(t , x)(1,−p) ≤ 0

(sub − solution).

Ref: Frankowska’93
O. Bokanowski, N. Megdich, H. Zidani Control problem with state constraints
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Tr−(x) :=

{
ỹx

∣∣∣∣∃ν > 0 ˙̃yx(·) ⊂ F (ỹx(·)), on [−ν, 0],

et ỹx(0) = x
}

,

with F (x) = {λf (x , a), a ∈ U, λ ∈ Λ(x)}

DF
↑ u(t , x)(ỹx) := lim inf

h↘0

1
h

(u(t + h, ỹx(−h)) − u(t , x))

Derivative with respect to trajectories arriving in x .

O. Bokanowski, N. Megdich, H. Zidani Control problem with state constraints
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Theorem (O. Bokanowski, HZ, N. Megdich)

u = ϑ⇔





u is l.s.c, and satisfies the IC,

∀t > 0, x ∈ K , sup
p∈F (x)

−D↑u(t , x)(−1, p) ≥ 0,

∀t ≥ 0, x ∈ K , sup
y∈Tr−(x)

DF
↑ u(t , x)(y) ≤ 0,

O. Bokanowski, N. Megdich, H. Zidani Control problem with state constraints
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u = ϑ⇔





u is l.s.c., and satisfies IC,

∀t > 0, x ∈ K , sup
p∈F (x)

−D↑u(t , x)(−1, p) ≥ 0,

∀t ≥ 0, ∀x ∈ K , sup
y∈Tr−(x)

DF
↑ u(t , x)(y) ≤ 0,

⇔





u is l.s.c., and satisfies IC,

∀t > 0, x ∈ K , sup
p∈F (x)

−D↑u(t , x)(−1, p) ≥ 0,

∀t ≥ 0, x ∈ int(K), sup
p∈F (x)

D↑u(t , x)(1,−p) ≤ 0,

∀t ≥ 0, ∀x ∈ ∂K ,sup
y∈Tr−(x)

DF
↑ u(t , x)(y) ≤ 0,

O. Bokanowski, N. Megdich, H. Zidani Control problem with state constraints
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Theorem (OB, HZ, NM)

The value function V is l.s.c on R
d × R

+
∗ , and is

a bilateral solution of the HJB equation

min(∂tϑ(x , t) −H(x , Dxϑ(x , t)), ϑ − χK(x)) = 0,

V (x , 0) = Φ(x) x ∈ R
d ,

where H(x , p) = inf{λf (x , a); λ ∈ Λ(x), a ∈ U},

O. Bokanowski, N. Megdich, H. Zidani Control problem with state constraints
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Algorithme: (without proof)

min(
V n+1 − V n

∆t
+ [H(V n)], V n+1 − χK ) = 0,

⇒ V n+1 = max(V n − ∆t [H(V n)], χK )

• 2d sparse method - The HJB-UltraBee (Bokanowski, Megdich, Zidani’05)

O. Bokanowski, N. Megdich, H. Zidani Control problem with state constraints
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