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Entanglement is one of the most intriguing features of quantum mechanics. It is widely

used in quantum communication and information processing and plays a key role in quantum

computation.

At the same time, entanglement is not fully understood and has many puzzling features.

It is deeply rooted into the linearity of quantum theory and in the superposition principle

and (for pure states) is essentially and intuitively related to the impossibility of factorizing

the state of the total system in terms of states of its constituents.

Let us make an example: consider an ensemble of n spin-1/2 particles (qubits), whose

Hilbert space H = (C2)⊗n has dimension N = 2n, and divide this set in two balanced parts,

A and Ā, made up of nA and nĀ qubits respectively (n = nA +nĀ, nA = bn/2c 6 nĀ with no

loss of generality). The total Hilbert space factorizes in the tensor product H = HA ⊗HĀ,

with dimensions NA = 2nA and NĀ = 2nĀ respectively (N = NANĀ). A pure state

H 3 |ψ〉 =
N−1∑
j=0

zj|j〉, zj ∈ C,

N−1∑
j=0

|zj|2 = 1 (1)

can be conveniently written in terms of the so-called computational basis {|j〉}j=0,...,N−1,

that in turn can be naturally expressed in terms of binary sequences belonging to {0, 1}n

(whose decimal representation are the indices j). Each binary sequence is essentially the

collection of the eigenvalues of third Pauli matrices σ3 = diag(1,−1), each acting on a single

qubit.

We shall say that the state is separable if it can be factorized:

|ψ〉 = |ψA〉 ⊗ |ψĀ〉, with |ψA〉 ∈ HA, |ψĀ〉 ∈ HĀ. (2)

Otherwise |ψ〉 is entangled.

The characterization and quantification of entanglement is an open and challenging prob-

lem. It is possible to give a good definition of bipartite entanglement, namely when the

original ensemble of qubits is divided in two parts, A and Ā, like before. The problem of
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defining multipartite entanglement (whatever we mean by this expression) is more difficult

and no unique definition exists.

A good bipartite entanglement measure is the so-called purity of subsystem A, which is

defined in terms of the reduced density operator of A, ρA = TrĀ ρ (ρ = |ψ〉〈ψ| being the

total density operator):

πA = TrA ρ2
A. (3)

It is easy to see that πA = TrĀ ρ2
Ā

and that

1

NA

≤ πA ≤ 1. (4)

Purity πA = 1 if and only if ρA and ρĀ are projectors, that is, if the state is separable

as in (2). Otherwise, if πA < 1, |ψ〉 is entangled. Moreover, πA saturates its minimum

N−1
A = 2−nA = 2−bn/2c if and only if the reduced density operator of the (smaller) balanced

partition A is proportional to the identity matrix ρA = 11/NA. In such a case |ψ〉 is said to

be endowed with maximal bipartite entanglement [at fixed bipartition (A, Ā)].

After a preceptive summary of the idea of entanglement, we introduce the notion of

maximally multipartite entangled (pure) states (MMES) of n qubits as a generalization of

the bipartite case. Their bipartite entanglement does not depend on the bipartition and is

maximal for all possible bipartitions. In other words, we require

πA =
1

NA

, ∀ balanced bipartitions (A, Ā). (5)

Some examples of MMES for small n are investigated, both analytically and numerically.

These states are the solutions of an optimization problem, that can be recast in terms of

statistical mechanics.


