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Introduction

The algorithm gives good solutions and has interesting properties,
such as low computation time and good robustness.

In this talk we present a new algorithm for the computation of the 
electrostatic and the quasi—Fermi potentials inside a p—n junction.

This algorithm is based on a Quasi—Variational Inequality Model.

We take care to relate the derivation of this model to the underline 
physic of the p—n junction. 
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The p-n junction

xO



Ohmic contact Ohmic contact

p doped semiconductor n doped semiconductor

=q  p−nC 
free charges

hole electron doping (fixed charges)

In a doped semiconductor the concentration of added impurities C is 
used to control, in a fine way, the concentrations of electron and holes, 
p and n, respectively.

The p-n junction

n-neutral regionp-neutral region
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≈qC
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the electron charge

Metallurgical junction

semiconductor material
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The p-n junction as a free boundary problem

Near the metallurgical junction, we have a depletion region.

From the physic of a p-n junction, we may assume the following three statements

Far away from the metallurgical junction the semiconductor is neutral (neutral regions).

≈qC

We know the values for the charge density but we do not know where these values
are assumed, since we do not know the location of the two free boundaries. 

≈−q∣C∣

The semiconductor is globally neutral.

p-neutral region n-neutral region 
-

-

+

+



OnOp

≈0 ≈0

depletion to neutral free boundary

constant potential

constant potential

free boundary problem!

So, we may subdivide the p-n junction into neutral and depletion regions only!
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The potential is lower and upper bounded

n-neutral regionp-neutral region

lower bound

upper bound

quasi—Fermi potentials

built—in potentials

The potential 
is bounded

depletion region

Dp

Dn

Np Nn
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The Quasi-Variational Inequality Model: notations

electrostatic potential at Op electrostatic potential at On

It's a convex set!

-

-

+

+
Np Nn

Dp Dn
On

Op

Vp Vn
external voltageexternal voltage

x

C(x)

O
doping function

C(x) < 0
C(x) > 0

= p∪n

where

built-in potentials
at Op and On
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A Quasi-Variational Inequality for ψ–part A

These integrals are zero, since 
              inside the neutral regions.

Recalling that 
C(x) < 0 and so -qC(x) > 0!

> 0  inside Np!

In the same way, we have

inside Np

, we have

Let u∈K.
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A Quasi-Variational Inequality for ψ–part B

Using the Green equation we get

= 0 !

Ohmic contacts are
inside the neutral 
regions!

At Neumann boundary 
conditions we take                   !

=

Collecting all the results

So, we obtain the quasi-variational inequality

since

∂=D∪N

∂/∂=0
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The idea to solve the Quasi-Variational Inequality

S :U UWe define the map using the following steps.
w∈ULet . Then, S w  is

Electron continuity equation

Hole continuity equation

Now we note that, since      solve the quasi-variational inequality, it is
a fixed point for the map S(w)! That is,  


=S .

This last result suggests an iterative algorithm!

S w 

solve for 

solve for 

For each function w, we have to solve a variational inequality!



Introduction Quasi–Variational Inequality Model Examples Conclusions

The iterative algorithm

Update the potential solving a 
variational inequality!

Update lower and upper obstacles 
using the continuity equations.

Check for stop.

Starting guesses.

Note that, at the beginning of each iteration, we have known values 
for both obstacles and thus we are able to compute the set              .
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The Variational Inequality as a minimun problem

The variational inequality is equivalent to a constrained minimization problem

The problem is discretized using finite element method. For N unknowns, we get

where U = [u1, ..., uN]T.

subset of RN !

symmetric and positive semidefinite

Energy functional!

We are dealing with a physical system which naturally get towards the condition of minimum 
energy. Thus we have a minimization problem. But this system is not free, since we have the 
boundary conditions. Thus the constrained in the minimization problem!

We are right!
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The framework for the examples

p—doped n--doped

-L LO x

C(x)

Vaexternal bias

doping function

The device has a length equal to 2L and the metallurgical junction 
is located at x = 0.

Ohmic contactOhmic contact

The numerical solution is carried out using a uniform grid with Np points.
The continuity equations are solved using the Sharfetter—Gummel 
stabilization scheme.
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The abrupt p–n junction at low bias

0.5 V forward bias5 V reverse bias

maximum error

Computation time [ s ]

For high Np values, the non-linear Poisson equation may become ill conditioned.

few iterations since
Va is low!

Drift Diffusion Model
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The abrupt p–n junction at high reverse bias
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This times are obtained using a 
continuation scheme with 0.5 V step

The applied voltage is Va = 50 V and the doping is Na = Nd=1022 m-3.

The transition is less
smooth for the QVIM
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The Gaussian doped p–n junction
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Doping function

Potential (at reverse bias with Va = 5V)

Drift Diffusion Model

QVIM
zoom

The QVIM does not capture the small slope in the potential 
due to the gradient of the impurities C. Otherwise, the solution
is very good.

0.05 V
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Notes

The algorithm gives the complete solution of the p—n junction, that is
the potential as well as the quasi—Fermi potentials.

The algorithm does not solve the non—linear Poisson equation.    

From our test, we have the following
The algorithm have good convergence properties even for high applied 
voltages and does not any continuation scheme.

The solutions are very good in a reverse bias condition.

The computational time are low for sparse meshes and rises to high values 
for dense meshes.

The solutions are still good even in a forward bias condition. In this case, a 
small error appears near the neutral/depletion regions transition. This is a 
limit of this kind of model.
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Conclusions

In this talk we have presented the Quasi—Variational Inequality Model 
for the simulation of a p—n junction. 

 Good solutions both for reverse and forward bias.
 Works for an arbitrarily doped p—n junction.
 Good computational time for sparse meshes.

We have shown an algorithm for the solution of the QVIM for 
which we have  
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Bevelled p–n junction

The mesh has 10944 triangles and 5605 points.

p—semiconductor

n—semiconductor SiO2

Na=Nd=1022 m-3

The CPU time using a proper quadratic solver is about 2 seconds!
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The potential is lower and upper bounded

Recalling the definitions of the quasi-Fermi potentials

hole quasi-Fermi potential

electron quasi-Fermi potential

We start by introducing the two obstacle functions

upper obstacle

lower obstacle

and neglecting the minority free carriers, we obtain the two bounds 
for the potential 

p-n-|C| = 0 p-n+|C| = 0
charge neutrality charge neutrality
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