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Introduction

In this talk we present a new algorithm for the computation of the

electrostatic and the quasi—Fermi potentials inside a p—n junction.

This algorithm is based on a Quasi—Variational Inequality Model.

We take care to relate the derivation of this model to the underline
physic of the p—n junction.

The algorithm gives good solutions and has interesting properties,
such as low computation time and good robustness.

Conclusions
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The p-n junction

In a doped semiconductor the concentration of added impurities C is
used to control, in a fine way, the concentrations of electron and holes,
p and n, respectively.

The p-n junction

Ohmic contact Metallurgical junction Ohmic contact
semicol r material
p doped semiconducto n doped semiconductor
C<0 C>0

PTcharge density
hole electron doping (fixedicharges)

p=q(p—n+ C) p-neutral region n-neutral region
free charges p~0 0 p ~0 X
p==C,n<p n~C,p<n
absolute value of
the electron charge depletion region
p~qC

p~0,n~0
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The p-n junction as a free boundary problem

From the physic of a p-n junction, we may assume the following three statements

Near the metallurgical junction, we have a depletion region.
Far away from the metallurgical junction the semiconductor is neutral (neutral regions).

The semiconductor is globally neutral.

So, we may subdivide the p-n junction into neutral and depletion regions only!

ql ‘depletion to neutral free boundary‘
A% - o,
:G) n-neutral region

']

p-neutral region
0

p~

O =0

constant potential

constant potential /

We know the values for the charge density but we do not know where these values
are assumed, since we do not know the location of the two free boundaries.

=) free boundary problem!
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The potential is lower and upper bounded

quasi—Fermi potentials
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Distance from the metallurgical p--n junction
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The Quasi-Variational Inequality Model: notations

Qo =NpyUDp Qp=NyuU D, Q=0,VQ,
AN \
o Do\ D, N\
p| On
Yo
Vo Vn
external voltage ‘ @ | external voltage
C(XT
C(x) >0 » doping function
C(x) < Q) o X

built-in potentials
electrostatic potential at O electrostatic potential at Op, at Op and O,
P P

V={ueH'(@): u0p) =Up u(On) =W} where

w P

vy =

K={ueV:iv<u inQp u<v.inQy} It's a convex set!
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A Quasi-Variational Inequality for ¢—part A

Letuek. These integrals are zero, since
Ay =0 inside the neutral regions.

/Q Ap(u —)dx

= [ pou—vydx+ | Do(u—o)ox
Dy Dn

Recalling that —=Ay = q(p — n+ C), we have

/Dp eAy(u —)dx /D

C(x) < 0 and so -qC(x) > 0!
U —1 >0 inside N!

IN

In the same way, we have
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A Quasi-Variational Inequality for ¢—part B

Using the Green equation we get

o
—Ayvdx = / Vi - Vvdx — ——vd~y
/{2 Q o0 1_)’/ /0.Q=FDUFN
CoY N
. ﬁvdﬂ, H- . Evdﬂ, =01

Ohmic contacts are At Neumann boundary
inside the neutral  conditions we take & ¢/0v=0 !

Collecting all the results regions!
/ -V - V(u—-v)dx = / eA(u— ¥)dx
Ja Ja

/Dp eAp(u —p)dx +/ eAY(u—)dx

n

IN

/Q,, _qC(u— v)dx + /Q —qC(u - ¥)dx

= / —qC(u —)dx  since Q=QpUQp
Q

So, we obtain the quasi-variational inequality:
/ eV - V(u—v)dx — / qC(u—)dx >0, VYu e Qi
Ja Ja



Introduction Quasi-Variational Inequality Model Examples Conclusions

The idea to solve the Quasi-Variational Inequality

We define the map[s: U — U]using the following steps.
LetlweU] Then, s (w) is

4 V- (panie =9V, ) = R(w, 6. ¢,,) |Electron continuity equation
on(—=L) =V, ¢n(L) = Vg, solve for on

{ V- (pnie®r ="V éy,) = R(w, bn, bp) Hole continuity equation

op(—=L)=Vi, &p(L)=Vp. solve for ¢p
b On+ Vpin
v o= dptVeip @
- =S (w)]

/ eV - V(U —)dx — / qC(u—)dx >0, Vue K(w)
Q Q

\.

Now we note that, since ¢ solve the quasi-variational inequality, it is
a fixed point for the map S(w)! Thatis, y=5(y).

This last result suggests an iterative algorithm!

For each function w, we have to solve a variational inequality!
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The iterative algorithm

set (9, o(,,o), (,‘)S))

compute %, 3@

k0

k) — 2

while (<) > <)
solve the EVI for :(k+1) using K (%))
solve the ECE for (,)f,k“)

solve the HCE for o;,k“)
(k+1)‘ (,(k+1)

compute 1

k—k+1

compute (k)
endwhile

Starting guesses.

Check for stop.
Update the potential solving a
variational inequality!

Update lower and upper obstacles
using the continuity equations.

Note that, at the beginning of each iteration, we have known values
for both obstacles and thus we are able to compute the set K(y*))
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The Variational Inequality as a minimun problem

The variational inequality is equivalent to a inimization problem
¢ = arg mig J(u
ERLY

J(u) = /%Wuﬁdx— / qCudx  Energy functional!
Ja Ja

We are right!

We are dealing with a physical system which naturally get towards the condition of minimum

energy. Thus we have a minimization problem. But this system is not free, since we have the
boundary conditions. Thus the constrained in the minimization problem!

The problem is discretized using finite element method. For N unknowns, we get

W = argminy,

o
Uy =1

T T subset of RM !
72U RU+b'U

symmetric and positive semidefinite
where U = [uq,

vy UN]T.
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The framework for the examples

external bias Va

-
-

Ohmic contact; Ohmic contact

C(X)T doping function

-L A |O L x=

The device has a length equal to 2L and the metallurgical junction
is located at x = 0.

The numerical solution is carried out using a uniform grid with Ny, points.

The continuity equations are solved using the Sharfetter—Gummel
stabilization scheme.
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The abrupt p—n junction at low bias

5V reverse bias 0.5 V forward bias

Eeciostatc Poertal
Electostatc Potentil Electron Quas-Ferm Potertal

Hole Guasi-Ferm: Potental

i
|
i
i

potential [ V]
Potentials [V ]

maximum error

(.

s N I R TR B e S BT e
x[um] x[um]
Computation time [ s ] Drift Diffusion Model
Ny tovi tppar N, tovi tppar
25 0.7 3.5 25 0.7 0.7
50 1.4 5.1 50 1.4 0.8
100 4.2 7.7 100 4.5 1.2
200 251  14.9 200 30.7 2.3 |few iterations since
400 252 37.8 400 - 5.1 |V, is low!

For high Ny, values, the non-linear Poisson equation may become ill conditioned.
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The abrupt p—n junction at high reverse bias

The applied voltage is V5 = 50 V and the doping is Ng = Ng=10%2 m?,
£

The transition is less
" smooth for the QVIM

This times are obtained using a
Np lovi tDDMI/ continuation scheme with 0.5 V step
computation time 50 1.5 221
[ s ] 100 4.4 343
200 46.4 66.3
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The Gaussian doped p—n junction

Doping function

Ny = 102 m®
1(x=L)? No = 5-102 m=*
C = —Na+ Npe () L = 2.10°%m
o = L/\/2In(Np/Na)
Potential (at reverse bias with V, = 5V)
QviM

%ﬂ

ectostatic potential [V

Drift Diffusion Model

electiostatic potential [V ]

T Tr T 0w T
Hln ] Clypn ]

The QVIM does not capture the small slope in the potential
due to the gradient of the impurities C. Otherwise, the solution
is very good.
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Notes

o The algorithm gives the complete solution of the p—n junction, that is
the potential as well as the quasi—Fermi potentials.

O The algorithm does not solve the non—linear Poisson equation.

O From our test, we have the following
The algorithm have good convergence properties even for high applied
voltages and does not any continuation scheme.
The solutions are very good in a reverse bias condition.

The solutions are still good even in a forward bias condition. In this case, a
small error appears near the neutral/depletion regions transition. This is a
limit of this kind of model.

The computational time are low for sparse meshes and rises to high values
for dense meshes.



Conclusions

Conclusions

In this talk we have presented the Quasi—Variational Inequality Model
for the simulation of a p—n junction.

We have shown an algorithm for the solution of the QVIM for
which we have

* Good solutions both for reverse and forward bias.
* Works for an arbitrarily doped p—n junction.
* Good computational time for sparse meshes.
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Bevelled p—n junction

Na=Ng=10%2 m*

Electric Field, [ V/um ]

The mesh has 10944 triangles and 5605 points.

The CPU time using a proper quadratic solver is about 2 seconds!
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The potential is lower and upper bounded

We start by introducing the two obstacle functions

on+ VrIn(|C|/n;). inQn| upper obstacle

(!
{u = ¢p— VrIn(IC|/n;). InQp | lower obstacle

Recalling the definitions of the quasi-Fermi potentials

{ ¢n = 1 — Vrin(n/n;)| electron quasi-Fermi potential

¢p = v+ Vrin(p/n;)| hole quasi-Fermi potential

and neglecting the minority free carriers, we obtain the two bounds
for the potential

charge neutralit charge neutralit
p-A-ICl =0 pn+|C| = 0
{pCian =|d=4¢inN, {nCinN,, = |y =4¢inN,

p<|ClinD, =|v>inDy

n<|ClinD, = |y <vinD,
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