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The aim is to do quantum mechanics on graphs
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The aim is to do quantum mechanics on graphs

This should be done in analogy to quantum mechanics on the real
line with dynamics ( time evolution) given by

Schrodinger operators
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Metric graphs

The first basic concept is given by the

Definition: A metric graph G is a finite collection of halflines and
intervals of given lengths with an identification of some of its
endpoints (=vertices)

A graph with n = 6 external lines and m = 8 internal lines
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Metric graphs

The first basic concept is given by the

Definition: A metric graph G is a finite collection of halflines and
intervals of given lengths with an identification of some of its
endpoints (=vertices)

A graph with n = 6 external lines and m = 8 internal lines
G is a metric space:
There is the unique notion of a distance between two points
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Quantum Mechanics

In order to do quantum mechanics on a given graph we have to
specify

O the state space, a

Hilbert space H = H(G) with elements 1) called

wave functions,

@ an operator on this Hilbert space, the
Hamiltonian H.
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Quantum Mechanics

In order to do quantum mechanics on a given graph we have to
specify

O the state space, a

Hilbert space H = H(G) with elements 1) called

wave functions,

@ an operator on this Hilbert space, the
Hamiltonian H.

@ This will define a dynamics in form of the
time dependent Schrodinger equation

ih@tw(t) - H@b(t)

giving rise to a flow in Hilbert space.
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Wave Functions

Definition: The Hilbert space H is the space of square integrable,
complex valued functions ¢ on G. The scalar product is

(6,) = /g S0 (x)dx

where dx is the canonical Lebesgue measure on G.
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Laplace Operators

The simplest dynamics is where there is free flow
away from any vertex. Thus the Schrodinger
equation should take the form

2 42

1how(x, t) = I a (x,t)

2m dx?
as long as x € G is not a vertex v of the graph.
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Laplace Operators

The simplest dynamics is where there is free flow
away from any vertex. Thus the Schrodinger
equation should take the form

2 42

1how(x, t) = I a (x,t)

2m dx?
as long as x € G is not a vertex v of the graph.

Question

What happens at the vertices?
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Laplace Operators:

Answer: Specify Boundary conditions at the vertices
The general one vertex case:

¥ = {Ye(x)}ecs € Bece*(Ry)

€ = set of external half-lines e = [0, 00.) = R4, n =| & |

The 1-vertex graph with n = 4 external lines

The boundary values 1(0) = {¢)e(0c)}ecs € C" and
Y'(0) = {1L(0¢) }ece € C" combined define a linear space C2".
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Laplace Operators:

Green's Theorem (= partial integration)
gives a hermitean symplectic form on this 2n dim. linear space

@6) = .80 = (| S0 | ] o) e

J:<gjﬁ.

For selfadjoint extensions of the Laplace operator this has to vanish for ¢
and 9 in the domain of definition. Consequence for the choice ) = ¢: The
sum of the quantum probability currents at the vertex has to vanish. This
is the quantum version of the local Kirchhoff law at the vertex.

The domain of a given s.a. extension of the Laplace operator consists of
those 1 whose boundary values lie in a given, fixed maximal isotropic
subspace M of C2".
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Boundary conditions and Selfadjointness

Let M = M(A, B) be given by the linear relation
A(0) + BY'(0) =0

with A and B being n x n matrices.
Theorem: The boundary condition (A, B) defines a selfadjoint Laplace
operator A = A(A, B) on the graph G
@ iff M(A, B) is a maximal isotropic subspace of C2"
@ iff ABT is selfadjoint and the n x 2n matrix (A, B) has maximal rank
and then
M(A,B) = M(A,B)

iff there is invertible C with A’ = CA, B’ = CB. All maximal isotropic
subspaces can be written as M = M(A, B).
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Boundary conditions and Selfadjointness

Let M = M(A, B) be given by the linear relation
A(0) + BY'(0) =0

with A and B being n x n matrices.
Theorem: The boundary condition (A, B) defines a selfadjoint Laplace
operator A = A(A, B) on the graph G

@ iff M(A, B) is a maximal isotropic subspace of C2"

@ iff ABT is selfadjoint and the n x 2n matrix (A, B) has maximal rank
and then

M(A,B) = M(A,B)

iff there is invertible C with A’ = CA, B’ = CB. All maximal isotropic
subspaces can be written as M = M(A, B).

This approach gives all selfadjoint Laplace operators on the graph and is o
equivalent to von Neumann's theory of selfadjoint extensions. L
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Scattering Theory: Single vertex graphs

Consider an incoming plane wave with wave vector k = v/E in channel
I € € (in units where i = 2m = 1) superposed with an outgoing plane
wave in each channel j € £ thus giving a solution 1’ of the stationary
Schrodinger equation at energy E,

—A¢l — E¢l
of the form . .
%’(X) _ eflkx(sj/ + Sjl(k)elkx

and which satisfies the boundary condition. The diagonal parts of the

n x n matrix S(k) give the n reflection amplitudes and the off-diagonal
parts the transmission amplitudes.
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Scattering Theory: Single vertex graphs

Solution

Sap(k) = — (A+ikB) ™ (A —ikB)

is unitary and satisfies the relations

Sca,ca(k) = Sa (k) for invertible C,
Sap(k) = Sas(k )t (time reversal),
Sag(—k) = Sap(k)™? (hermitian analyticity),
Sav,u(k) = U 'Sa (k) U
A(AU,BU) = UTA(A, B)U (gauge covariance),

where A is the complex conjugate of A, t denotes transposition and U is
any n X n unitary.
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Scattering Theory: Single vertex graphs

Scaca(k) = Sag(k) for invertible C,
implies that S4 g(k) depends only on the maximal isotropic subspace
M = M(A, B).
Conversely: The S-matrix at any energy k3 = Eg uniquely fixes the
boundary condition, where A and B may be chosen to be given by

A:%(S(ko)—]l), B — 2110(5(k0)+]1)

Also
S(k) = ((k — ko)S(ko) + (k + ko)) "' ((k + ko)S(ko) + (k — ko))
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Scattering Theory: Single vertex graphs

Scaca(k) = Sag(k) for invertible C,
implies that S4 g(k) depends only on the maximal isotropic subspace
M = M(A, B).
Conversely: The S-matrix at any energy k3 = Eg uniquely fixes the

boundary condition, where A and B may be chosen to be given by
1 1
A=5(S(ko) =), B = 5—(S(ko) +1).

Also

S(k) = ((k — ko)S(ko) + (k + ko)) "' ((k + ko)S(ko) + (k — ko))

In addition: Choosing S(ko) = U arbitrarily unitary gives all selfadjoint
Laplace operators.
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Scattering Theory: Single vertex graphs

Scaca(k) = Sag(k) for invertible C,
implies that S4 g(k) depends only on the maximal isotropic subspace
M = M(A, B).
Conversely: The S-matrix at any energy k3 = Eg uniquely fixes the
boundary condition, where A and B may be chosen to be given by

A= 5(S() = D). B = 7 (S(ko) +1).

Also

S(k) = ((k — ko)S(ko) + (k + ko)) "' ((k + ko)S(ko) + (k — ko))

In addition: Choosing S(ko) = U arbitrarily unitary gives all selfadjoint
Laplace operators.
Applications in quantum computing?
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Scattering Theory: Single vertex graphs

Consequences

© There is a one — to — one correspondence between
a) maximal isotropic subspaces,
b) n x n unitaries (see also Arnold),
c) Laplacians.

@ 2a) The bound states correspond to poles in k of S(k) on the positive
imaginary axis
b) The number of bound states (= positive eigenvalues of the
corresponding Laplace operator) equals the number of positive
eigenvalues of ABT or equivalently of +(S(ko) — S(ko)f), ko > 0.
© The notion for almost all boundary conditions makes sense.

© Choose U = S(ko) with non — vanishing entries. Then no matrix
element of the resulting single vertex S-matrix vanishes identically.
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Scattering Theory: General Graphs

General graphs G with

A set £ of n=| £ | external lines (=half lines),

o
@ An additional set Z of m =| Z | internal lines i = [0;, a;], i.e. with a
set of lengths a = {a;}iez

Function on these intervals: ¢ = {1;}, j € EUZ,

Boundary values: [¢/], [] € CI¢1+2/71,

Boundary conditions: A[¢] + B[] =0,

AB=(&|+2|Z|)x (]| €|+2]|Z]|) matrices with (A, B) has
maximal rank and ABT = BA' thus leading to local Kirchhoff laws at
each vertex and therefore defining a Laplace operator A g,

© 000

Actually (A, B) defines the graph uniquely.
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Scattering Theory: General Graphs

Definition of the S-matrix and internal amplitudes o and ( for incoming
plane wave of momentum k in channel / € &:
e_ikx5j/ + Sj/(k)eikx for je&
Ui(x) = . _
aji(k)e*™ + Bi(k)e ™k for jeT

has to satisfy the boundary conditions at each vertex.

Interpretation of a and 3: |avj(k)|? — |3;(k)|? is the quantum probability
current on the interior line j.

Kostrykin,Schrader (FU-Berlin) Quantum theory on graphs INdAM, Rome, Oct 26, 2007 16 / 23



Scattering Theory: General Graphs

Theorem
The quantum version of Kirchhoff's law:

Q@ S = Sp B (k) is well defined, continuous and unitary for all all k > 0,
@ S(k) is a meromorphic function in k in the complex plane,

© In the upper half plane it has at most a finite number of poles which
are located on the imaginary semiaxis fte k = 0,
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Scattering Theory: General Graphs

More explicitly: There is a matrix representation in the form

S(k) Inxn
ak) | ==z (A-ikB) [ Omxn
B(k) Omxn

with A and B being (n+ 2m) x (n+ 2m) matrices defining the boundary
conditions on the space C"™2™ of boundary values (or boundary values of
derivatives) at the vertices.

Z(k) is also an (n+2m) x (n+ 2m) matrix of the form

I O 0 I 0
Z(k)=Z(k;A,B,ay=A| 0 I I |+kB| 0 I
0 elkﬁ efikg 0 elka

The two diagonal m x m matrices exp(+ika) are given by
exp(tika)j = 6jkeiikai forj, ke T.
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of the S-matrix

Definition: W.e is the set of walks w from €’ to e (e, € € &).

Then as a reflection of the quantum superposition principle there is a
Selberg-Gutzwiller type representation for any S-matrix element

k)ee’ — Z S(k, W)ee’ el k length(w)
wew

ee’

The weight factor S(k; w)ees is given as
k W ee! = HS r) Jout(r);Jm( )

with S(k; v) being the S-matrix at the vertex v. The v(r) are the vertices

visited during the walk w and ji,(r) and jout(r) the lines by which v(r) is

entered and left respectively. ! a
'Read from right to left
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of the Inverse Problem

Theorem

For
@ lengths {a;}icz of the intervals, which are linearly independent over

the rationals
@ and generic boundary conditions
the metric graph G and the boundary conditions can be recovered
from the knowledge of the scattering matrix
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of the Traveling Salesman Problem

The Traveling Salesman Problem (TSP):

For given external lines e, &’ € £ find a walk from €’ to e of shortest
length which visits each vertex of the graph

(i) at least once
or
(ii) exactly once

TSP is NP complete
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to the Traveling Salesman Problem

For given graph

@ Introduce penalty laps (see Biathlon) at each vertex v
(=shooting range) of length b,

%@bv
v

@ Introduce suitable boundary conditions at the vertices
© resulting in an S-matrix which can be written as

S(k;§7 b)e,e’ = Z S(k;ﬂ7M)e,e’ eikﬂé eikm-b
(n,m)

(5(k; n,m)c ¢ is the sum of contributions from the walks with n; =
transversals of the line i and m, = transversals of the lap at v)
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to the Traveling Salesman Problem

The procedure

@ Calculate the scattering matrix by Linear algebra

@ Do Fourier analysis:
Look only at contributions to m = 1, which means
Each lap is traversed exactly once

4

Each vertex is visited at least oncel

© Again do Fourier analysis:
Among the contributions to m = 1 determine
which non-vanishing contribution n has shortest length a- n

Open problem: What is the computing time ?
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