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Aim

The aim is to do quantum mechanics on graphs

This should be done in analogy to quantum mechanics on the real
line with dynamics ( time evolution) given by

Schrödinger operators
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Metric graphs

The first basic concept is given by the

Definition: A metric graph G is a finite collection of halflines and
intervals of given lengths with an identification of some of its
endpoints (=vertices)
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A graph with n = 6 external lines and m = 8 internal lines
G is a metric space:

There is the unique notion of a distance between two points
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Quantum Mechanics

In order to do quantum mechanics on a given graph we have to
specify

1 the state space, a
Hilbert space H = H(G) with elements ψ called
wave functions,

2 an operator on this Hilbert space, the
Hamiltonian H.

3 This will define a dynamics in form of the
time dependent Schrödinger equation

i~∂tψ(t) = Hψ(t)

giving rise to a flow in Hilbert space.
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Wave Functions

Definition: The Hilbert space H is the space of square integrable,
complex valued functions ψ on G. The scalar product is

〈φ, ψ〉 =

∫
G
φ(x)ψ(x)dx

where dx is the canonical Lebesgue measure on G.
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Laplace Operators

The simplest dynamics is where there is free flow
away from any vertex. Thus the Schrödinger
equation should take the form

i~∂tψ(x , t) = − ~2

2m

d2

dx2
ψ(x , t)

as long as x ∈ G is not a vertex v of the graph.

Question

What happens at the vertices?
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Laplace Operators:
Boundary conditions

Answer: Specify Boundary conditions at the vertices
The general one vertex case:

ψ = {ψe(x)}e∈E ∈ ⊕e∈EL
2(R+)

E = set of external half-lines e ∼= [0e ,∞e) ∼= R+, n =| E |
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The 1-vertex graph with n = 4 external lines

The boundary values ψ(0) = {ψe(0e)}e∈E ∈ Cn and
ψ′(0) = {ψ′e(0e)}e∈E ∈ Cn combined define a linear space C2n.
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Laplace Operators:
Boundary conditions

Green’s Theorem (= partial integration)
gives a hermitean symplectic form on this 2n dim. linear space

〈∆ψ, φ〉 − 〈ψ,∆φ〉 = 〈
[
ψ(0)
ψ′(0)

]
, J

[
φ(0)
φ′(0)

]
〉C2n

J =

(
0 −I
I 0

)
.

For selfadjoint extensions of the Laplace operator this has to vanish for φ
and ψ in the domain of definition. Consequence for the choice ψ = φ: The
sum of the quantum probability currents at the vertex has to vanish. This
is the quantum version of the local Kirchhoff law at the vertex.

The domain of a given s.a. extension of the Laplace operator consists of
those ψ whose boundary values lie in a given, fixed maximal isotropic
subspace M of C2n.
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Boundary conditions and Selfadjointness

Let M = M(A,B) be given by the linear relation

Aψ(0) + Bψ′(0) = 0

with A and B being n × n matrices.
Theorem: The boundary condition (A,B) defines a selfadjoint Laplace
operator ∆ = ∆(A,B) on the graph G

1 iff M(A,B) is a maximal isotropic subspace of C2n

2 iff AB† is selfadjoint and the n × 2n matrix (A,B) has maximal rank

and then
M(A,B) = M(A′,B ′)

iff there is invertible C with A′ = CA, B ′ = CB. All maximal isotropic
subspaces can be written as M = M(A,B).

This approach gives all selfadjoint Laplace operators on the graph and is
equivalent to von Neumann’s theory of selfadjoint extensions.
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Scattering Theory: Single vertex graphs
(Ansatz)

Consider an incoming plane wave with wave vector k =
√

E in channel
l ∈ E (in units where ~ = 2m = 1) superposed with an outgoing plane
wave in each channel j ∈ E thus giving a solution ψl of the stationary
Schrödinger equation at energy E ,

−∆ψl = Eψl

of the form
ψl

j (x) = e−ikxδjl + Sjl(k)e ikx

and which satisfies the boundary condition. The diagonal parts of the
n × n matrix S(k) give the n reflection amplitudes and the off-diagonal
parts the transmission amplitudes.
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Scattering Theory: Single vertex graphs
(Solution)

Solution

SA,B(k) = − (A + ikB)−1 (A− ikB)

is unitary and satisfies the relations

SCA,CB(k) = SA,B(k) for invertible C ,

SĀ,B̄(k) = SA,B(k)t (time reversal),

SA,B(−k) = SA,B(k)−1 (hermitian analyticity),

SAU,BU(k) = U−1SA,B(k)U

∆(AU,BU) = U−1∆(A,B)U (gauge covariance),

where Ā is the complex conjugate of A, t denotes transposition and U is
any n × n unitary.
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Scattering Theory: Single vertex graphs
(S-matrix and Boundary conditions)

SCA,CB(k) = SA,B(k) for invertible C ,

implies that SA,B(k) depends only on the maximal isotropic subspace
M = M(A,B).
Conversely: The S-matrix at any energy k2

0 = E0 uniquely fixes the
boundary condition, where A and B may be chosen to be given by

A =
1

2
(S(k0)− I), B =

1

2ik0
(S(k0) + I).

Also

S(k) = ((k− k0)S(k0) + (k + k0))
−1((k + k0)S(k0) + (k− k0)).

In addition: Choosing S(k0) = U arbitrarily unitary gives all selfadjoint
Laplace operators.

Applications in quantum computing?
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Scattering Theory: Single vertex graphs
(Consequences)

Consequences
1 There is a one – to – one correspondence between

a) maximal isotropic subspaces,
b) n × n unitaries (see also Arnold),
c) Laplacians.

2 a) The bound states correspond to poles in k of S(k) on the positive
imaginary axis
b) The number of bound states (= positive eigenvalues of the
corresponding Laplace operator) equals the number of positive
eigenvalues of AB† or equivalently of 1

i (S(k0)− S(k0)
†), k0 > 0.

3 The notion for almost all boundary conditions makes sense.

4 Choose U = S(k0) with non – vanishing entries. Then no matrix
element of the resulting single vertex S-matrix vanishes identically.
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Scattering Theory: General Graphs

General graphs G with

1 A set E of n =| E | external lines (=half lines),

2 An additional set I of m =| I | internal lines i ∼= [0i , ai ], i.e. with a
set of lengths a = {ai}i∈I

3 Function on these intervals: ψ = {ψj}, j ∈ E ∪ I,

4 Boundary values: [ψ], [ψ′] ∈ C|E|+2|I|,

5 Boundary conditions: A[ψ] + B[ψ′] = 0,

6 A,B = (| E | +2 | I |)× (| E | +2 | I |) matrices with (A,B) has
maximal rank and AB† = BA† thus leading to local Kirchhoff laws at
each vertex and therefore defining a Laplace operator ∆A,B,a

7 Actually (A,B) defines the graph uniquely.
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Scattering Theory: General Graphs

Definition of the S-matrix and internal amplitudes α and β for incoming
plane wave of momentum k in channel l ∈ E :

ψl
j (x) =


e−ikxδjl + Sjl(k)e ikx for j ∈ E

αjl(k)e ikx + βjl(k)e−ikx for j ∈ I

has to satisfy the boundary conditions at each vertex.

Interpretation of α and β: |αjl(k)|2 − |βjl(k)|2 is the quantum probability
current on the interior line j .
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Scattering Theory: General Graphs

Theorem
:

The quantum version of Kirchhoff’s law:

1 S = SA,B,a(k) is well defined, continuous and unitary for all all k > 0,

2 S(k) is a meromorphic function in k in the complex plane,

3 In the upper half plane it has at most a finite number of poles which
are located on the imaginary semiaxis <e k = 0,
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Scattering Theory: General Graphs

More explicitly: There is a matrix representation in the form S(k)
α(k)
β(k)

 = −Z (k)−1 (A− ikB)

 In×n

0m×n

0m×n


with A and B being (n + 2m)× (n + 2m) matrices defining the boundary
conditions on the space Cn+2m of boundary values (or boundary values of
derivatives) at the vertices.
Z (k) is also an (n + 2m)× (n + 2m) matrix of the form

Z (k) = Z (k;A,B, a) = A

 I 0 0
0 I I
0 e ika e−ika

+ikB

 I 0 0
0 I −I
0 −e ika e−ika


The two diagonal m ×m matrices exp(±ika) are given by
exp(±ika)jk = δjke±ikaj for j , k ∈ I.

Kostrykin,Schrader (FU-Berlin) Quantum theory on graphs INdAM, Rome, Oct 26, 2007 18 / 23



Path Sum representation
of the S-matrix

Definition: Wee′ is the set of walks w from e ′ to e (e, e ′ ∈ E).

Then as a reflection of the quantum superposition principle there is a
Selberg-Gutzwiller type representation for any S-matrix element

S(k)ee′ =
∑

w∈Wee′

S(k;w)ee′e i k length(w)

The weight factor S(k;w)ee′ is given as

S(k;w)ee′ =
∏
r

S(k; v(r))jout(r),jin(r)

with S(k; v) being the S-matrix at the vertex v . The v(r) are the vertices
visited during the walk w and jin(r) and jout(r) the lines by which v(r) is
entered and left respectively. 1

1Read from right to left
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Solution
of the Inverse Problem

Theorem

For
1 lengths {ai}i∈I of the intervals, which are linearly independent over

the rationals

2 and generic boundary conditions

the metric graph G and the boundary conditions can be recovered
from the knowledge of the scattering matrix
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Formulation
of the Traveling Salesman Problem

The Traveling Salesman Problem (TSP):

For given external lines e, e ′ ∈ E find a walk from e ′ to e of shortest
length which visits each vertex of the graph

(i) at least once
or

(ii) exactly once

TSP is NP complete
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Quantum scattering approach
to the Traveling Salesman Problem

For given graph
1 Introduce penalty laps (see Biathlon) at each vertex v

(=shooting range) of length bv

p��
HHv

bv@@
�	

2 Introduce suitable boundary conditions at the vertices

3 resulting in an S-matrix which can be written as

S(k; a, b)e,e′ =
∑
(n,m)

S(k; n,m)e,e′ e ik n·a e ik m·b

(S(k; n,m)e,e′ is the sum of contributions from the walks with ni =
transversals of the line i and mv = transversals of the lap at v)
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Quantum scattering approach
to the Traveling Salesman Problem

The procedure
1 Calculate the scattering matrix by Linear algebra

2 Do Fourier analysis:
Look only at contributions to m = 1, which means
Each lap is traversed exactly once

⇓
Each vertex is visited at least once!

3 Again do Fourier analysis:
Among the contributions to m = 1 determine
which non-vanishing contribution n has shortest length a · n

Open problem: What is the computing time ?
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