Homogenization of the dislocation dynamics

Nicolas Forcadel

INRIA Futurs

Joint work with Cyril Imbert and Régis Monneau

December 13, 2007

Plan

Physical motivations

- 2 Homogenization of a particle system
- 3 Homogenization of the dynamics of dislocation lines
- Qualitative properties of the effective Hamiltonian

/□ ▶ < 글 ▶ < 글

2 Homogenization of a particle system

Homogenization of the dynamics of dislocation lines

Qualitative properties of the effective Hamiltonian

- ∢ ≣ ▶

2 Homogenization of a particle system

Bomogenization of the dynamics of dislocation lines

Qualitative properties of the effective Hamiltonian

- 2 Homogenization of a particle system
- Homogenization of the dynamics of dislocation lines
- Qualitative properties of the effective Hamiltonian

Homogenization of a particle system Homogenization of the dynamics of dislocation lines Qualitative properties of the effective Hamiltonian

Plan

Physical motivations

- 2 Homogenization of a particle system
- **3** Homogenization of the dynamics of dislocation lines
- Qualitative properties of the effective Hamiltonian

▲ □ ▶ ▲ □ ▶ ▲

Homogenization of a particle system Homogenization of the dynamics of dislocation lines Qualitative properties of the effective Hamiltonian

Observation of dislocations

Definition : a dislocation is a line of crystal defects.

Goal: modeling of plastic behaviour of crystal.

- 4 同 🕨 - 4 目 🕨 - 4 目

Homogenization of a particle system Homogenization of the dynamics of dislocation lines Qualitative properties of the effective Hamiltonian

Observation of dislocations

Definition : a dislocation is a line of crystal defects. Goal: modeling of plastic behaviour of crystal.

- **→** → **→**

Homogenization of a particle system Homogenization of the dynamics of dislocation lines Qualitative properties of the effective Hamiltonian

Continous 3D model

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Homogenization of a particle system Homogenization of the dynamics of dislocation lines Qualitative properties of the effective Hamiltonian

Continuous 2D model

(日) (同) (三) (三)

Homogenization of a particle system Homogenization of the dynamics of dislocation lines Qualitative properties of the effective Hamiltonian

Atomic structure of a dislocation

topological defect = dislocation

(日) (同) (三) (三)

Homogenization of a particle system Homogenization of the dynamics of dislocation lines Qualitative properties of the effective Hamiltonian

Atomic structure of a dislocation

topological defect = dislocation

Homogenization of a particle system Homogenization of the dynamics of dislocation lines Qualitative properties of the effective Hamiltonian

Displacement of a dislocation

< ロ > < 同 > < 回 > < 回 >

Physical motivations

2 Homogenization of a particle system

3 Homogenization of the dynamics of dislocation lines

Qualitative properties of the effective Hamiltonian

▲ □ ▶ ▲ □ ▶ ▲

Homogenization

<ロ> <同> <同> < 同> < 同>

Homogenization 1D

Homogenization 1D

Modelling

$$\dot{x_i} = -\nabla_{x_i} E$$

with

$$E = \sum_{i} V_0(x_i) + \sum_{i < j} V(x_i - x_j)$$

and

 $V_0(x+1) = V_0(x)$

$$V(x) = \ln |x|$$

$$\dot{x}_i = -V_0(x_i) - \sum_{i \neq i} V'(x_i - x_j).$$

<ロ> <同> <同> < 同> < 同>

Modelling

$$\dot{x_i} = -\nabla_{x_i} E$$

with

$$E = \sum_{i} V_0(x_i) + \sum_{i < j} V(x_i - x_j)$$

and

 $V_0(x+1) = V_0(x)$

$$V(x) = \ln|x|$$

$$\dot{x}_i = -V_0(x_i) - \sum_{j \neq i} V'(x_i - x_j).$$

<ロ> <同> <同> < 同> < 同>

Modelling

$$\dot{x_i} = -\nabla_{x_i} E$$

with

$$E = \sum_{i} V_0(x_i) + \sum_{i < j} V(x_i - x_j)$$

and

$$V_0(x+1) = V_0(x)$$

$$V(x) = \ln|x|$$

$$\dot{x}_i = -V_0(x_i) - \sum_{j \neq i} V'(x_i - x_j).$$

<ロ> <同> <同> < 同> < 同>

Modelling

$$\dot{x_i} = -\nabla_{x_i} E$$

with

$$E = \sum_{i} V_0(x_i) + \sum_{i < j} V(x_i - x_j)$$

and

$$V_0(x+1) = V_0(x)$$
$$V(x) = \ln |x|$$
$$\dot{x}_i = -V_0(x_i) - \sum V'(x_i - x_j).$$

 $j \neq i$

<ロ> <同> <同> < 同> < 同>

Homogenization 1D

Plastic deformation: $\gamma(x,t) = \sum_{i} H(x - x_i(t))$

→ < ∃→

Rescalling

Plastic deformation: $\gamma^{\varepsilon}(x,t) = \varepsilon \gamma \left(\frac{x}{\varepsilon}, \frac{t}{\varepsilon}\right)$

| 4 同 🕨 🖌 4 目 🖌 4 目 🖌

Limit $\varepsilon = 0$: Homogenization result

Theorem (NF, Imbert, Monneau)

Under certain assumptions on the initial data and on V_0 , there exists \overline{H} such that $\gamma^{\varepsilon}(x,t)$ converges to the solution $u^0(x,t)$ of

$$\begin{cases} \frac{\partial u^0}{\partial t} = \overline{H}(\mathcal{I}_1[u^0(\cdot, t)], Du_0) \\ +I.C. \end{cases}$$
(1)

where

$$\mathcal{I}_1[U](x) = \int_{\mathbb{R}} (U(x+z) - U(x) - \nabla_x U(x) \cdot z \mathbf{1}_B(z)) \frac{1}{|z|^2} dz$$

< ロ > < 同 > < 回 > < 回 >

Idea of the proof

 γ^{ε} is a (discontinuous) solution of

$$\begin{cases} \frac{\partial \gamma^{\varepsilon}}{\partial t} = \left(c\left(\frac{x}{\varepsilon}\right) + M^{\varepsilon} \left[\frac{\gamma^{\varepsilon}(\cdot, t)}{\varepsilon}\right](x) \right) |D\gamma^{\varepsilon}| \\ +I.C. \end{cases}$$

where M^{ε} is a non-local operator of order 0 defined by

$$M^{\varepsilon}[U](x) = \int_{\mathbb{R}} dz J(z) E\left(U(x + \varepsilon z) - U(x)\right)$$

(2)

Assumptions on V

We make the following assumptions on V:

- $V \in W^{1,\infty}_{\mathrm{Loc}}(\mathbb{R})$ and $V'' \in W^{1,1}(\mathbb{R} \setminus \{0\})$,
- V is symmetric *i.e.* V(-y) = V(y),
- V is non-increasing and convex on $(0, +\infty)$,
- $\bullet \ V'(y) \to 0 \text{ as } |y| \to +\infty \text{,}$
- there exists a constant g_0 such that $V''(y)y^2 = g_0$ for $|y| \ge 1$.

伺 ト イ ヨ ト イ ヨ

Idea of the proof

Lemma

We have

$$\sum_{j \neq i} V'(x_i - x_j) = J \star E(\gamma^*(\cdot) - \gamma^*(x_i))(x_i).$$

<ロト <問 > < 臣 > < 臣 >

Proof that γ^* is a sub-solution

$$\begin{split} t &\mapsto \varphi(x_i(t), t) \text{ reaches a local minimum in } t_0 \\ &\implies \varphi_t(x_i(t_0), t_0) + \dot{x}_i(t_0) D\varphi(x_i(t_0), t_0) = 0. \\ &\implies \varphi_t(x_i(t_0), t_0) = \Big(J \star E(\gamma^*(\cdot) - \gamma^*(x_i))(x_i) + c(x)\Big) |D\varphi(x_i(t_0), t_0)|. \end{split}$$

□ > < = > <

Plan

1 Physical motivations

2 Homogenization of a particle system

Bomogenization of the dynamics of dislocation lines

Qualitative properties of the effective Hamiltonian

▲ □ ▶ ▲ □ ▶ ▲

Model

We consider the following model

$$\begin{cases} \frac{\partial u^{\varepsilon}}{\partial t} = \left(c\left(\frac{x}{\varepsilon}\right) + M^{\varepsilon}\left[\frac{u^{\varepsilon}(\cdot,t)}{\varepsilon}\right](x)\right) |Du^{\varepsilon}| & \text{in } \mathbb{R}^{N} \times [0,+\infty) \\ u^{\varepsilon}(\cdot,t=0) = u_{0} & \text{on } \mathbb{R}^{N} \end{cases}$$

where M^{ε} is a non-local operator of order 0 defined by

$$M^{\varepsilon}[U](x) = \int_{\mathbb{R}^N} dz J(z) E \left(U(x + \varepsilon z) - U(x) \right)$$

Assumptions on J

We make the following assumptions on J:

•
$$J \in W^{1,1}(\mathbb{R}^N)$$
 and $J \ge 0$,

•
$$J$$
 is symmetric, *i.e.* $J(-y) = J(y)$,

• there exists a function $g \in C^0(\mathbf{S}^{N-1}), g \ge 0$ such that $J(z) = \frac{1}{|z|^{N+1}} g\left(\frac{z}{|z|}\right)$ for $|z| \ge 1$,

同 ト イ ヨ ト イ ヨ ト

Cell problem

• Cell problem:

$$\lambda = \left(c(y) + L + M_p[v(\tau, \cdot)](y)\right)|p + Dv|$$
(3)

where

$$M_p[U](y) = \int dz \, J(z) \left\{ E \left(U(y+z) - U(y) + p \cdot z \right) - p \cdot z \right\}.$$

• $\lambda = \overline{H}(L,p).$

Cell problem

• Cell problem:

$$\lambda = \left(c(y) + L + M_p[v(\tau, \cdot)](y)\right)|p + Dv|$$
(3)

where

$$M_p[U](y) = \int dz \, J(z) \left\{ E \left(U(y+z) - U(y) + p \cdot z \right) - p \cdot z \right\}.$$

• $\lambda = \overline{H}(L,p).$

・ 同 ト ・ ヨ ト ・ ヨ

Ergodicity

Theorem (NF, Imbert, Monneau)

Under certain assumptions on J and c, there exists a unique λ such that there exists a solution v of (3). Moreover, the oscillation of v is bounded.

(日) (同) (三) (三)

Convergence result

Theorem (NF, Imbert, Monneau)

Under certain assumptions on $J,\,c$ and $u_0,\,u^\varepsilon$ converges to the unique viscosity solution u^0 of

$$\begin{pmatrix}
\frac{\partial u^0}{\partial t} = \overline{H}(\mathcal{I}_1[u^0(\cdot, t)], Du_0) \\
u^0(\cdot, t = 0) = u_0
\end{cases}$$

(4)

э

where

$$\mathcal{I}_1[U](x) = \int_{\mathbb{R}^N} \frac{g\left(\frac{z}{|z|}\right)}{|z|^{N+1}} \left(U(x+z) - U(x) - \nabla_x U(x) \cdot z \mathbf{1}_B(z) \right) \, dz$$

(a)

Some works on dislocation density dynamics

- [Groma, Balogh]
- [El Hajj]
- [Ibrahim]
- [Monneau]

□ > < = > <

Plan

1 Physical motivations

- 2 Homogenization of a particle system
- 3 Homogenization of the dynamics of dislocation lines
- Qualitative properties of the effective Hamiltonian

▲ □ ▶ ▲ □ ▶ ▲

Qualitative properties

Theorem (NF, Imbert, Monneau)

We assume that N = 1 and that $\int c = 0$. Then we have the following properties:

• If
$$c \equiv 0$$
 then $\overline{H}(L,p) = L|p$

- $2 \ L\overline{H}(L,p) \ge 0.$
- $\textbf{ If } c \not\equiv 0 \textit{ then }$

 $\overline{H}(L,p) = 0 \quad \text{for } (L,p) \in B_{\delta}(0).$

(日) (同) (三) (三)

Schematic representation of the effective Hamiltonian

< E.

Simulation of the effective Hamiltonian (Amin Ghorbel)

Effective hamiltonian

Simulation of the effective Hamiltonian (Amin Ghorbel)

▲ 同 ▶ → 三 ▶

-∢ ≣ →

Simulation de l'Hamiltonien effectif (Amin Ghorbel)

N. Forcadel Homogenization of the dislocation dynamics

Simulation of the dislocation dynamics

▲ 同 ▶ → 三 ▶

Perspectives

- Homogenization of Frenkel-Kontorova model (joint work with C. Imbert and R. Monneau)
- Homogenization of more realistic models
- Numerical analysis

▲ □ ▶ ▲ □ ▶ ▲ □ ▶