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Homogenization 1D
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Velocity

Potential

Dislocations
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Modelling

ẋi = −∇xiE

with
E =

∑
i

V0(xi) +
∑
i<j

V (xi − xj)

and
V0(x+ 1) = V0(x)

V (x) = ln |x|

ẋi = −V0(xi)−
∑
j 6=i

V ′(xi − xj).
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ẋi = −V0(xi)−
∑
j 6=i

V ′(xi − xj).

N. Forcadel Homogenization of the dislocation dynamics



Physical motivations
Homogenization of a particle system

Homogenization of the dynamics of dislocation lines
Qualitative properties of the effective Hamiltonian

Homogenization 1D

γ(x)

x3 x4x1 x2

1

2

3

4

0 x

Plastic deformation: γ(x, t) =
∑

iH(x− xi(t))
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Rescalling

γ(x)

0 x

ε

Plastic deformation: γε(x, t) = εγ
(
x
ε ,

t
ε

)
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Limit ε = 0 : Homogenization result

Theorem ( NF,Imbert, Monneau)

Under certain assumptions on the initial data and on V0, there exists H such
that γε(x, t) converges to the solution u0(x, t) of ∂u0

∂t
= H(I1[u0(·, t)], Du0)

+I.C.
(1)

where

I1[U ](x) =
∫

R
(U(x+ z)− U(x)−∇xU(x) · z1B(z))

1
|z|2dz
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Idea of the proof

γε is a (discontinuous) solution of
∂γε

∂t
=
(
c
(x
ε

)
+M ε

[
γε(·, t)
ε

]
(x)
)
|Dγε|

+I.C.
(2)

where M ε is a non-local operator of order 0 defined by

M ε [U ] (x) =
∫

R
dz J(z)E (U(x+ εz)− U(x))
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Assumptions on V

We make the following assumptions on V :

V ∈W 1,∞
Loc (R) and V ′′ ∈W 1,1(R\{0}),

V is symmetric i.e. V (−y) = V (y),

V is non-increasing and convex on (0,+∞),

V ′(y)→ 0 as |y| → +∞,

there exists a constant g0 such that V ′′(y)y2 = g0 for |y| ≥ 1.
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Idea of the proof

Lemma

We have ∑
j 6=i

V ′(xi − xj) = J ? E(γ∗(·)− γ∗(xi))(xi).
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Proof that γ∗ is a sub-solution

t

xi
x

ϕ

γ∗

i

i− 1

t0

t 7→ ϕ(xi(t), t) reaches a local minimum in t0
=⇒ ϕt(xi(t0), t0) + ẋi(t0)Dϕ(xi(t0), t0) = 0.
=⇒ ϕt(xi(t0), t0) =

(
J ? E(γ∗(·)− γ∗(xi))(xi) + c(x)

)
|Dϕ(xi(t0), t0)|.
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Model

We consider the following model
∂uε

∂t
=
(
c
(x
ε

)
+M ε

[
uε(·, t)
ε

]
(x)
)
|Duε| in RN × [0,+∞)

uε(·, t = 0) = u0 on RN

where M ε is a non-local operator of order 0 defined by

M ε [U ] (x) =
∫

RN

dz J(z)E (U(x+ εz)− U(x))
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Assumptions on J

We make the following assumptions on J :

J ∈W 1,1(RN ) and J ≥ 0,

J is symmetric, i.e. J(−y) = J(y),

there exists a function g ∈ C0(SN−1), g ≥ 0 such that

J(z) = 1
|z|N+1 g

(
z
|z|

)
for |z| ≥ 1,
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Cell problem

Cell problem:

λ =
(
c(y) + L+Mp[v(τ, ·)](y)

)
|p+Dv| (3)

where

Mp[U ](y) =
∫
dz J(z) {E (U(y + z)− U(y) + p · z)− p · z} .

λ = H(L, p).
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Ergodicity

Theorem (NF, Imbert, Monneau)

Under certain assumptions on J and c, there exists a unique λ such that
there exists a solution v of (3). Moreover, the oscillation of v is bounded.
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Convergence result

Theorem (NF, Imbert, Monneau)

Under certain assumptions on J , c and u0, u
ε converges to the unique

viscosity solution u0 of
∂u0

∂t
= H(I1[u0(·, t)], Du0)

u0(·, t = 0) = u0

(4)

where

I1[U ](x) =
∫

RN

g
(
z
|z|

)
|z|N+1

(U(x+ z)− U(x)−∇xU(x) · z1B(z)) dz
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Some works on dislocation density dynamics

[Groma, Balogh]

[El Hajj]

[Ibrahim]

[Monneau]
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Qualitative properties

Theorem (NF, Imbert, Monneau)

We assume that N = 1 and that
∫
c = 0. Then we have the following

properties:

1 If c ≡ 0 then H(L, p) = L|p|
2 LH(L, p) ≥ 0.

3 If c 6≡ 0 then
H(L, p) = 0 for (L, p) ∈ Bδ(0).

4 H(L, p) = 0 if L = 0.

5 For all L > 0,
H(L, p) > 0 for p big enough
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Schematic representation of the effective Hamiltonian

H = 0

H > 0

H < 0

σ

ρ
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Simulation of the effective Hamiltonian (Amin Ghorbel)
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Simulation de l’Hamiltonien effectif (Amin Ghorbel)
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Simulation of the dislocation dynamics

Animation
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Perspectives

Homogenization of Frenkel-Kontorova model (joint work with C. Imbert
and R. Monneau)

Homogenization of more realistic models

Numerical analysis
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