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Variational model for plasticity

Our aim is to deduce a macroscopic energy of the type

F(µ, ψ) :=

∫
Ω
< Cψ : ψ > dx +

∫
Ω
ϕ

(
dµ

d |µ|

)
d |µ|.

µ represents the dislocation density measure;

ψ is the strain function satisfying Curl ψ = µ;

C is the elasticity tensor;

ϕ is the density of the plastic part of the energy.

The macroscopic energy is deduced as a limit of discrete energy

functionals Fε.
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Description of a screw dislocation line

A deformed crystal C can be described by

The displacement function U : C → R3.

The strain function ψ = ∇U.

A straight dislocation in the crystal can be described by an infinite

line L in the crystal and by a strain ψ such that

the circulation of ψ around L is a fixed vector b

called Burgers vector.

If b is parallel to L, the dislocation is called screw dislocation.

Locally in C \ L, ψ is the gradient of a multi-valued function U.
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Screw dislocation

Note: The Burgers vectors are determined by the crystalline structure
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The anti-planar setting

The reference configuration is an open set Ω ⊂ R2 which

represents a horizontal section of an infinite cylindrical crystal.

Screw dislocations can be represented by a measure on Ω

which is a finite sum of Dirac masses of the type

µ :=
∑

i zi |b| δxi .

The class of admissible strains associated with a dislocation µ

is given by the fields ψ : Ω→ R2 whose circulation around the

dislocations xi are equal to zi |b| (curl ψ = µ).
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The core radius ε and the elastic energy

The admissible strain ψ has a singularity at each dislocation point

xi and it does not have finite energy (ψ is not in L2(Ω; R2)).

To set up a variational formulation it is convenient to introduce an

internal scale ε called core radius, which is proportional to (the

ratio between the size of Ω and) the atomic scale.

We remove balls of radius ε around each point of singularity xi ,

and we compute the elastic energy out of this core region.

Eε(µ, ψ) :=

∫
Ωε(µ)

|ψ(x)|2 dx ,

where Ωε(µ) := Ω \ ∪iBε(xi ).
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The logarithmic energy regime

We compute the energy induced by a single dislocation.

Ω := BR and µ := δ0.

Consider the ”function” u(θ, r) := 1
2πθ, and let ψ := ∇u.

1) ψ is an admissible strain.

2) |ψ(θ, r)| = 1
2πr . Therefore

Eε(µ, ψ) :=

∫
BR\Bε

|ψ(x)|2 =

∫
BR\Bε

1

(2πr)2
=∫ R

ε

1

2πr
=

1

2π
(log(R)− log(ε))∼=

1

2π
| log(ε)|

3) ψ minimizes the elastic energy among all the admissible

strains (by Jensen inequality).
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The phenomenon of concentration of energy

Let Ω := BR and µ := δ0. Let ρε → 0 such that

| log(ρε)|
|log(ε)|

→ 0 as ε→ 0

Or equivalently

lim inf
ε→0

ρε
εs
→∞ for every fixed 0 < s < 1.

The region Bρε is called hard core region.

Almost all the energy is concentrated in Bρε :

∫
Bρε\Bε

|ψ(x)|2 =

∫ ρε

ε

1

2πr
=

1

2π
| log(ρε)− log(ε)| ∼=

1

2π
| log(ε)|.
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The rescaled elastic energy functionals

Given a dislocation µ, the class of admissible strains ASε(µ)

associated with µ is given (we consider for simplicity’s sake

|b| = 1) by

ASε(µ) := {ψ ∈ L2(Ωε(µ); R2) : curl ψ = 0 in Ωε(µ),∫
∂Bε(xi )

ψ(s) · τ(s) ds = µ(xi ) for every xi ∈ supp µ}.

The (rescaled) elastic energy associated with µ is given by

1

| log ε|
Fε(µ) :=

1

| log ε|
min

ψ∈ASε(µ)
Eε(ψ).
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Asymptotic behavior of Fε as ε→ 0

Let Ω := BR . The previous example shows that

1

| log ε|
Fε(zδ0)→ |z |

2

2π
.

Cermelli P., Leoni G.: Energy and forces on dislocations. SIAM J.

Math. Anal. (2005), 37, no. 4, 1131–1160.

Theorem 1

Let µ :=
∑N

i=1 ziδxi . We have

1

| log ε|
Fε(µ)→ 1

2π

N∑
i=1

|zi |2.

For ε small 1
| log ε|Fε counts the dislocations. Therefore the

logarithmic rescaling corresponds to a finite number of dislocations.
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Γ-convergence of the energy functionals Fε.

Let X be the space of measures of the type µ :=
∑N

i=1 ziδxi .

The Γ-limit of Fε is the functional F : X → R defined by

F(µ) :=
1

2π
|µ|(Ω) for every µ ∈ X .

P.: Elastic energy stored in a crystal induced by screw dislocations,

from discrete to continuous. SIAM J. Math. Anal. (2007).

Theorem 2

The following Γ-convergence result holds.

i Γ-limsup equality. For every µ ∈ X there exists a sequence

µε ⇀ µ such that 1
| log ε|Fε(µε)→ F(µ).

ii Γ-liminf inequality. For every µε ⇀ µ we have

F(µ) ≤ lim infε
1

| log ε|Fε(µε).
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Γ-limsup inequality: linear V quadratic

Consider for a while µ = 2δx . We have

1

| log ε|
Fε(µ)→ 4

2π
= 2F(µ).

µε ≡ µ IS NOT the recovery sequence.

We have to split multiple dislocations...

Let vn → x , wn → x . We have

1

| log ε|
Fε(δvn + δwn)→ 2

2π
= F(µ).

By a diagonal argument there exists a recovery sequence

µε := δvn(ε)
+ δwn(ε)

such that

µε → µ,
1

| log ε|
Fε(µε)→ F(µ).
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Convergence of minimizers

Let A ⊂⊂ Ω. Consider the following problem

min
1

| log ε|
Fε(µ)

among all dislocations µ with |µ(A)| = |µ(Ω)| = N.

N could be considered as the geometrically necessary dislocations.

It is easy to construct a sequence with finite energy, so that we

know that the minimizers µε have finite energy.

We have 1
| log ε|Fε(µε) ≤ E . Can we deduce µε ⇀ µ ?

This is the so called equi-coercivity property.

If this is the case, we deduce |µ(A)| = N, and by the

Γ-convergence result we have

1

| log ε|
Fε(µε)→ F(µ) =

1

2π
|µ|(A) =

1

2π
N.

Unfortunately, the equi-coercivity property does not hold...
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Short dipoles

A dipole is a pair of dislocations of the type

µε := δx − δy .

Consider now a sequence of pairs (xn, yn) with |xn − yn| → 0, and

let µn be the corresponding dipole. It is easy to see that

1

| log ε|
Fε(µε)→ 0 as n→∞.

We can easily construct a sequence µε such that

|µε|(Ω)→∞, 1

| log ε|
Fε(µε)→ 0 as ε→ 0.

For ε small, the functional 1
| log ε|Fε does not count short dipoles
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The flat norm

Let us define the flat norm as follows.

If µ = δx − δy is a dipole, then ‖µ‖f = |x − y |.
In general, ‖µ‖f is given by the minimal connection:

‖µ‖f := inf{H1(R) : ∂R = µ}. (1)

Here R is a finite formal sum of oriented segments with integer

multiplicity.

Note that by definition if µn := δxn − δyn with |xn − yn| → 0,

‖µn‖f = |xn − yn| → 0.

The flat norm, as well as the elastic energy, does not see short

dipoles.
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The Γ-convergence result

Theorem 3

The following Γ-convergence result holds.

i) Equi-coercivity. Let ε→ 0, and let {µε} be a sequence such

that 1
| log ε|Fε(µε) ≤ E .

Then (up to a subsequence) µε
f→ µ for some µ ∈ X .

ii) Γ-convergence. The functionals 1
| log ε|Fε Γ-converge to F as

ε→ 0 with respect to the flat norm, i.e., the following
inequalities hold.

Γ-liminf inequality: F(µ) ≤ 1
| log ε| lim inf Fε(µε) for every

µ ∈ X , µε
f→ µ in X .

Γ-limsup inequality: given µ ∈ X , there exists {µε} ⊂ X with

µε
f→ µ such that lim sup 1

| log ε|Fε(µε) ≤ F(µ).
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Convergence of minimizers

Let A ⊂⊂ Ω. Consider the following problem

min
1

| log ε|
Fε(µ)

among all dislocations µ with |µ(A)| = |µ(Ω)| = N.

The minimizers µε have finite energy, so that by the equi-coercivity

property we have

µε
f→ µ for some µ ∈ X .

By the Γ-convergence result we have

1

| log ε|
Fε(µε)→ F(µ) =

1

2π
N.

Moreover, since ‖µε‖f is uniformly bounded, we deduce that µε

has a finite number of clusters with non-zero effective multiplicity.
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A comment about the use of linear elasticity in our model

Let C > 0. The Γ-convergence result holds even if in the definition

of Ωε we remove balls of radius Cε instead of ε.

This fact gives a partial justification of the use of linearized

elasticity in ΩCε(µ). In fact, the recovering sequence ψε satisfies

‖ψε‖L∞(ΩCε(µε);R2) ≤
1

2πCε
+ O(n),

Since the admissible strains should be rescaled by ε (like the

Burgers vector), we deduce that |ψε| can be chosen arbitrarily

small, choosing C big enough.
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The discrete model

We consider the illustrative case of a square lattice of size ε with

nearest-neighbor interactions, following along the lines of the more

general theory introduced in

Ariza M. P., Ortiz M.: Discrete crystal elasticity and discrete

dislocations in crystals. Arch. Rat. Mech. Anal. 178 (2006),

149-226.

The discrete model seems very natural, and provides a theoretical

justification of the continuum model.
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A line tension model

The asymptotic elastic energy as ε→ 0 is essentially given by the

number of dislocations present in the crystal.

The energy per unit volume is proportional to the length of the

dislocation lines, so that our result provides in the limit as ε→ 0 a

line tension model.

Garroni A., Müller S.: Γ-limit of a phase-field model of

dislocations. SIAM J. Math. Anal. 36 (2005), no. 6, 1943–1964.

Garroni A., Müller S.: A variational model for dislocations in the

line tension limit. Arch. Rat. Mech. Anal. 181 (2006), no. 3,

535–578.
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Case of planar elasticity

The reference configuration is an open set Ω ⊂ R2 which

represents an horizontal section of the cylindrical crystal.

The Burgers vectors are a finite set S ⊂ R2

S := {b1, . . . , bs}.

The dislocations are represented by a measure on Ω, which is

a finite sum of Dirac masses, µ :=
∑

i zibi δxi .

The class of admissible strains corresponding to µ is given by

the functions ψ : Ωε → M2×2 whose circulation around each

xi is equal to zibi .

The elastic energy corresponding to a pair (µε, ψε) is given by

Fε(µε, ψε) =

∫
Ωε

W (ψε)dx =

∫
Ωε

Cψ : ψ dx
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The self energy

The self energy corresponding to a dislocation measure

µε :=
∑

ziδxi bi is equal to the sum of the energies corresponding

to ziδxi bi

E self
ε (µε) :=

∑
i

Fε(ziδxi bi ).

In view of the concentration phenomenon of the energy we have

E self
ε (zδxb) ∼= min

ψ

∫
Bρε(x)

W (ψ) ∼= | log ε||z |2f (b)

where | log(ρε)|
|log(ε)| → 0 as ε→ 0

E self
ε (µε) ∼=

∑
i

min
ψ

∫
Bρε (xi )

W (ψ) ∼= | log ε|
∑

i

z2
i f (bi )

The self energy is the energy stored in the hard core region.

Roma, December 2007 A variational model for plasticity via homogenization



Homogenization of straight dislocations

In collaboration with A. Garroni and G. Leoni.

We study the Γ-convergence of elastic functionals as the number of

dislocations

Nε →∞ per ε→ 0.

More precisely we rescale the elastic energy functionals considering

1

Nε| log ε|
Fε.

In this case, in contrast with the case Nε ≡ N, we also have to

take into account the interaction energy.

E inter
ε (µε, ψε) :=

∫
Ω\Hard Core of µε

W (ψε) dx .

E self
ε
∼= Nε| log ε|.

E inter
ε
∼= ......?

Roma, December 2007 A variational model for plasticity via homogenization



Asymptotic behavior of E inter
ε (Heuristically...)

Assume that Nε dislocations are uniformly distributed in B1(0).

Then

A ball of radius r contains almost πr 2Nε dislocations.

Therefore the average |ψτ (r)| of the tangential component of the

strain on ∂Br (0) is of the order

|ψτ (r)| ∼= πr 2Nε/2πr = Nεr/2.

E inter
ε (µ, ψ) ∼=

∫ 1

0
dr

∫ 2πr

0
|ψτ (r , θ)|2 dθ ∼=∫ 1

0
dr

∫ 2πr

0
N2
ε r 2/4 = CN2

ε .
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Energy regimes: Nε| log ε|V N2
ε

Fix ε→ Nε. The behavior of Nε as ε→ 0 determines three

different energy regimes:

1. Well separated dislocations (Nε << | log(ε)|): In this regime

we have that the self energy is of order Nε| log ε|, and it is

predominant with respect to the interaction energy.

2. Critical regime (Nε ≈ | log(ε)|): The self energy and the

interaction energy have the same magnitude Nε| log ε|.
3. Super-critical regime (Nε >> | log(ε)|): The interaction

energy is of order |Nε|2 and it is predominant with respect to

the self energy.
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The class of admissible dislocations

Let us fix the sequence of hard core radii ρε satisfying

i) lim infε→0
ρε
εs →∞ for every 0 < s < 1;

ii) |Nε|ρ2
ε → 0 for ε→ 0.

Assumption: The distance between the dislocations is at least 2ρε.

Xε := {µ ∈M(Ω) : µ =
M∑
i=1

δxi bi , M ∈ N, Bε(xi ) ∈ Ω,

|xj − xk | ≥ 2ρε for every j 6= k , bi ∈ S}. (2)

Here S := {b1, . . . , bs} is the set of Burgers vectors and S is the

span generated by S in Z.
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Γ-convergence in the critical case

Theorem 4

i) Compactness. Let {(µε, ψε)} be a sequence in

M(Ω)× L2(Ω; M2×2) with 1
| log ε|2Fε(µε, ψε) ≤ C . Up to

subsequences we have

1

| log ε|
µε

∗
⇀ µ with µ ∈M; (3)

1

| log ε|
ψε ⇀ ψ with ψ ∈ L2(Ω; M2×2) (4)

Moreover µ ∈ H−1(Ω), Curl ψ = µ.

ii) Γ-convergence. The functionals 1
| log ε|2Fε Γ-converge to

F(µ, ψ) :=

∫
Ω
< Cψ : ψ > dx +

∫
Ω
ϕ

(
dµ

d |µ|

)
d |µ|.
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Definition of the density of the plastic energy

Let S := {b1, . . . , bs} be the set of Burgers vectors and S be its

span on Z.

The density of the plastic energy ϕ : R2 → R is defined through

the following relaxation procedure

ϕ(b) := min{
N∑

k=1

λk f (ξk),
N∑

k=1

λkξk = b, ξk ∈ S}. (5)

Remark: ϕ is positively 1-homogeneous
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Dislocation walls
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