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Aim: Establish a systematic way to find Sasaki-Einstein metrics.

1. Sasakian Geometry: Introduction

2. Sasakian-Ricci flow
(with K. Smoczyk (Hanover), Yongbing Zhang (Hefei) 2006)

3. Sasakian-Einstein metrics on Sasakian toric manifolds
(with A. Futaki, H. Ono (Tokyo)) arXivimath/0607586, JDG

4. Sasakian-Ricci flow on 3-dimensional Sasakian manifolds
(with Yongbing Zhang (Hefei) 2009)



Contact manifolds

Contact manifold: (M2"+1 ), a 1-form n (contact form)

n A (dn)" # 0.

Characteristic vector field or Reeb vector field: ¢

n(€)=1 and dn(,X)=0

Almost contact manifold: (M,n,®), ® — (1,1) tensor,

P*=—T+nRE

Metric contact manifold: (M,n, g, P), g — (compatible) metric,

g(®X,PY) = g(X,Y) — n(X)n(Y)



Sasakian Manifolds

e Sasakian Manifold: (M,g,n,& P), a metric contact manifold with
where the Nijenhuis bracket is defined by

[P, P](X,Y) ;= [PX,DPY] + ¢2[X, Y] — P[PX,Y] — P[X, DY]

A Riemannian manifold (M, g) is Sasakian if and only if one of the
following equivalent statements holds:

¢ (C(M),g) = (Ry x M,dr? + r2g) is Kahler.

e J a Killing field £ of |¢] = 1 with R(X,£)Y =g(§,Y)X —g(X,Y)E.



Examples

§2nt+1 - ¢cn+1 has a standard Sasakian structure (&,n, P, g)

5 ) > i~y
= 1aYj 1ALy = Z(‘?yi zami
® is a “restriction” of Jp and g the standard metric.
Other Sasakian structures (&, Nw, Pw, gw) on S2nt1:
for w = (wg, w1, -+ ,wn) € Rﬁ__l_l
> o(@idy; — yidxy) & 0 9
Nw = ——— , Sw= ) wilmi— —yis ),
P w0 T 2 Ty s,



Characteristic Foliation
Reeb field £ generates a foliation ]—"5. Let Z be the space of leaves.
A foliation .7—"5 IS quasi-regular if there is integer k such that in a
foliated chart U each leaf passing U at most k£ times. Otherwise .7-"5 IS

irregular. When k£ =1, ]—“5 IS regular.

When F¢ is regular, Z is a (Kdhler) manifold.
(The standard Sasakian Structure on S27*1 is regular, and 2 = CP".)

When F¢ is quasi-regular, Z is an (Kahler) orbifold.
(If w,; are integers, then (S2" 11 ¢, nw, Pw, gw) is quasi-regular. Z is a

weighted complex projective space.)

Other cases are irregular.



Sasaki-Einstein manifolds
A Sasaki-Einstein manifold is a Sasakian manifold with
Ric = )\g.
e )\ is always positive, since Ric(&,€) = 2n.
(M, g) is SE & C(M) = (Ry. x M,dr? 4 r?g),) is Calabi-Yau.
Boyer, Galicki, Kollar, --- constructed many new Einstein metrics on
S2nt1l 2£(S? x S3). Quasi-regular examples. (Kihler case: Yau,

Aubin-Yau, Tian, Tian-Yau, ---, )

Gauntlett, Martelli, Sparks, Waldram, --- new Einstein metrics on
S2 x 83, inspired by supergravity theory. Irregular examples.



n-Einstein Manifolds

Sasakian n-Einstein manifold: A Sasakian manifold M2"+1 with
(constants A\,v)

Ric=MAg+vn®n.

M?2nt1 s a Sasakian manifold with Ric = A(z)g+ v(z)n®n and n > 2,
then A\, v are constants (this is not true for n = 1) and A 4+ v = 2n.

o\ < —2.
o )\—= 2.

e A\ > —2. = a Sasakian-Einstein manifold by D-homothety:
D-homothety(Tanno): (a ¢, an, ®, a9+ ala — 1)n®@n)

A+ 2 —2a

a

Ricy = Ng +vneon, V=2n-



Transverse Geometry
Reeb vector field: &, 7n(¢§) =1 and dn(¢,X) = 0.

D .= kern, rank 2n vector bundle, contact bundle (contact
distribution)

TM =D& L,

where L¢ is the line bundle generated by ¢.
e F.: characteristic foliation generated by &.
e transverse metric: g1 : ¢1'(X,Y) = dn(X,JY) for X, Y € D

(g=g"®(mamn).
e transverse Levi-Civita connection V! w.r.t. g1

T _ [£,V]p if X :€
vV = { (VxV)P  if X e (D).

and the transverse Ricci tensor Ric! of V1.
Transverse Einstein metric: Ricl = (A 4+ 2)g¢!.

On a Sasakian manifold, n-Einstein < transverse Einstein.



Transverse Kahler Geometry
Reeb vector field: &, 7n(¢§) =1 and dn(¢,X) = 0.

D .= kern, rank 2n vector bundle, contact bundle (contact
distribution, contact strcture)

TM =D Lg,
where Lg Is the line bundle generated by &.

° ]—"5: characteristic foliation generated by ¢.
e D ~ the normal bundle of F¢, v(Fg) = TM\ L

O0— Le—TM — v(Fe) — 0

¢ J = & p a complex structure on D, J? = —1I.

° d77|1> a symplectic form.

o gl 1 I (X,)Y)=dn(X,JY) for X, Y €D (g =g' ® (n®n))

o (F¢,D,J dnp,gl) gives F; a transverse Kahler structure.



Basic forms
p-form « is called basic if

ica = Lea = 0.
Examples: dn is basic, n is not basic. (n(§) =1, dn(&,X) =0.)
basic function: &£(f) = 0.

AL Sheaf of germs of basic p-forms
Q. Set of section of AL, CX¥(M) = QY.

d preserves the basic forms =
Basic cohomology of (M, F¢), H(F¢) = Kerd/Imd.

By transverse Kahler structure of (M, F;), one consider the
complexifaction D¢ of D and decompose it w.r.t J, Dg = D10 @ DO:1,
Similarly, we have AL ® C = /\jg’O D /\OB’1



Basic Chern forms

Basic first Chern Form: cf = c1(D!9). ¢f can be represented by a
basic real closed (1,1) form ppg .

A Sasakian structure (M,&,n,®,g) is ¢ >0 (P <0, P =0), if pp is
positive (negative, null).

transverse Ricci form: p}(X,Y) = Ric! (X, ®Y). It is closed

of = [o"]p € Hy™ (F¢)

Ricl' = Mg" & p) = Xdn (transverse Kahler-Einstein)



Deformations of Sasakian structures

Decompose d = dg + dp by 9 : 3T — A%+1’q, Op 1 NT — /\%"—H']L and
dCB = —'2_1(53 — 83) We have dBdCB = \/—18353.

e Deformations preserving &: Fix a Sasakian structure (&€, n, P, g).
V basic function ¢, Then (¢,7,P,g) is also a Sasakian structure,
where 1 =n 4 2dgp, P =P —£Q (2dip) o P and
g=dno(®P®I)+ n®n. (Boyer-Galicki)

dn = dn + 2ddze

[dn] g = [dn] g and clf is invariant under such deformations.

e D-homothetic deformation: (¢ 1¢ an, ®,a9 + ala — 1)n R n)
e (=& —1,—P,9).

e Deformations preserving the contact structure {D}: n = fn
with f > 0 & other conditions.



Sasakian Calabi Problem

Sasakian Calabi Problem (Boyer-Galicki): Give a manifold M with
Sasakian structure (&, n, P, g) and clf iSs positive, negative or null, can
one deform it to another Sasakian structure (&,7', ®/,¢") with an
n-Einstein metric ¢'7?

Recall Ricg = A\g+vn®mn. Ric! = Ric+ 2g. Hence, n-Einstein <
transverse Einstein metric

Ric' = (A+2)g", or pg = (A+2)dp

cF>0(P<0andcf=0) e A>-2 (A< -2and A= -2).

The existence of n-Einstein metric implies ¢ = k[dn] z.



| ocal coordinates and Deformations

One can choose local coordinates (z, z1, 22, - --

nelghborhood U such that

o £ = 5%

°«n = G+ /= 137y hjdz) — /=130 hzdZ?,
e & =+-1{3" 1{( — \/flhj%} ® dz) — c.c
og_n®n—|—22ﬂ_ —dz9d2l=:n®77—|—gT,
o dn=2y-1%7_, h]l-dzj A dZ,

,2™) on a small

where h : U — R is a (local) basic function, i.e. a@h 0 and
o a = 92
hj = z5h and h; azﬂazlh

° DC IS spanned by X; 1= a 7 \/ h]ax, X; a =5 TV hgax
JX; =+/—1X; and JX— —v/—1X 7

Deformation. If (£,n, ®,g) is Sasakian, so is (§,n + dgp, Py, g,) for a
basic function ¢, i.e., £&(p) = 0. Locally, h = h + .

2 2

0
RL=— -log det(gl-) =

— =log det(h
iz 027 0z! 027 0z! J (hmi)




Transverse Monge-Ampere equation

Assuming 6119 = k[dn] g, there is a basic function F (ElI Kacimi-Alaoui)

pT — kdn = /—10505F.

Transverse Kahler-Einstein equation

det(gg + ¢z§) B
det(¢)

L

Here ¢ is basic, i.e., £(¢) = 0.

e It is not elliptic, but transversal elliptic.



Sasakian Ricci flow

Sasakian Ricci flow:(Smoczyk, W., Y. Zhang (2006)) On a
compact manifold with Sasakian structure (M,&,n, P, g), c’lB = k[dn]p.
There is a smooth family of Sasakian structures (&,n(t), (), g(t))
satisfying (£,1(0), ®(0),9(0)) = (§,n,®,g) and

d

g7 (1) = ~(Ricl ) — rg"(1)).

d
@ =logdet(g;; + ¢;7) — log(det g;3) + kp — F.

(Transverse Ricci flow for Riemannian foliations studied by Lovric,
Min-Oo, Ruh)

e \When c{? IS negative or null, then the flow converges to n-Einstein
metric. (El Kacimi-Alaoui, Boyer-Galicki) (Cao, Kahler case)
Maximum principle holds.

e \WVhen C{; IS positive, it is a difficult problem. = Sasaki-Ricci solitons



Sasakian Ricci solitons

Let (&,7n,P,g) be a Sasakian manifold. If there is a transverse
(Hamiltonian) holomorphic vector field X on M with

Ricl, —g' = £x(g"),

then (&,7n, P, g9, X) is called Sasakian Ricci soliton.

A transverse (Hamiltonian) holomorphic vector field X on M can be
local expressed as

X=nX)—4+ ) X'——n(> X'—)—
I )8x +Z. 0z 77(7;:1 8z2)8x7

=1
where X' are local holomorphic and uy := +/—1n(X) satisfies

\/_—11'(X)d77.

Opux = —



Existence of Solitons

Assume ci = ldnlp (c1(D) = 0 and c1 > 0) 3 a basic function A such
that p —dn = +/— 8Bth

Sasaki Futaki invariant: (Boyer-Galicki-Simanca, Futaki-Ono-W.)

SF(X) = / X (R)n A (dn)™

This is an invariant.

Obstruction. If SF does not vanish, then there is no n-Einstein
metrics.

e (Futaki, Ono, W.(2006)) Let M be a compact toric Sasaki manifold
with c{? > 0 and ¢1(D) = 0. Then there exists a Sasaki metric which
is a Sasaki-Ricci soliton. In particular M admits a Sasaki-Einstein
metric if and only if the Sasaki Futaki invariant vanishes.

(X.-J. Wang and X. Zhu, Kahler)



Sasakian-Einstein metrics

e (Futaki, Ono, W.(2006)) Let M be a compact toric Sasakian
manifold with ¢f > 0. Then by deforming the Sasakian structure
varying the contact structure we get a Sasakian structure with
vanishing SF invariant. Hence, there is a Sasaki-Einstein metric.

S2 x S3 admits irregular Sasaki-Einstein metrics (Gauntlett, Martelli,
Sparks and Waldrum (2004)).

2#S2 x S3 (k= 2) is a toric Sasakian manifold, there is a
Sasakian-Einstein structure, which is irregular



Toric Sasakian manifolds

M is Sasakian toric «<— C(M) is Kahler toric, ie, the product metric
g is invariant under a holomorphic action of the n 4 1-torus T+l

e Momemt map p: C(M) — R 1 =2 ¢ (4, X) = r2n(X) and

e its image C := u(C(M)) is a strictly convex rational polyhedral cone
of the form

C={yeR" ! =¢|(y,v4)>0,a=1,2, --d}.
E=beC* = {zeR"L1 =2 |(z,y) >0,Vy € C} dual cone of C.

u(M) =CnN He, where He :={y € R"T1 = ¢*| (y,b) = 1}, the
charateristic plane. CmHg IS @ compact polytope.

o CN He is rational iff M is quasi-regular.



A volume functional

e The set of Sasakian structure preserving D = {£ € C*}.

(Martelli-Sparks-Yau) Volume functional V : C* — R:

V(§) = c(n)vol(CN Hg) = c(n)vol(CN{y € R | {(y,b) = 1}).
e V is convex and V(£) — oo as & — 9C*, hence V has a (unique)

minimizer.

e (Martelli-Sparks-Yau, FOW) € is a critical points of V iff its
Sasaki-Futaki invariant is O.



3-dimensional Sasaki Ricci flow

On a 3-dimensional Sasakian manifold, R}, = 3RT g

d p ~T1T 4., _ T
agij—(T—R )gz'ja @dn—(r—R )dn.

Here r is the average of the transverse scalar curvature.
4 rodnAn =0

df JardnAn=0.

4RT = AgRT 4+ RT(RT —r)

e Entropy (Hamilton) [ R'log RTn A dn is non-increasing.



Convergence

(Zhang-W.) The Sasaki Ricci flow converges to a (gradient) Sasaki
Ricci soliton. The soliton is unique.

X = —3Vf with £(f) =0 and VIVTf - Sapfel =o0.

e 1. Regular case (Hamilton), 2-sphere
e 2. Quasi-regualr case (Langfang Wu, B. Chow-L.F. Wu) 2-orbifold

Uniqueness: weighted structures on S3 (Gauduchon-Ornea, Belgun).
We find the same ODE as Hamilton and Wu did.

Convergence: Idea of Proof for the irregular case:
Proof 1. Approximated by (2)

Proof 2. Direct proof (using methods in (1))



Comparison Theorem
Transverse distance between = and y
d
d7 = 'nf/ ad d
(2,9) = nf | [2v()lgrds,
where ~(s) are curves joining = to y

Harnack inquality (with d%).

On the Sasakian 3-sphere M3 of positive transverse scalar curvature
RT

(1) diam? < c—-=

T
Rmin

N

where T(p,r) ;= {x € M |d! (x,p) < r}.

(2) Vol(T(p, > C'/Rh\ax



Thank Youl



