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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows

The rbMIT software package

I rbMIT: - Reduced Basis Software Library in Matlab(C) Environment
I developed at MIT by DBP Huynh, CN Nguyen, G Rozza and AT Patera
I based on extensive use of Matlab ToolBoxes like Symbolic, PDEs,

Optimization
I The user must describe the problem. The input can be separated into

three parts:

The User Input

I geometry: Ωo(µ) is defined by providing points coordinates,
straight/curvy edges describing all regions Ωko(µ)

I material properties: coefficients are provided for differential operator in
each region Ωko(µ) and for boundary conditions.

I parameter control and settings: parameter domain D, reference
parameters and other RB information (e.g. Nmax)
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows

The rbMIT software package
rbMIT Users’ Interface

Geometry

Parameters

PDE and BC

Output
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows

Problem Formulation, Offline and Online Steps

The Problem Formulation Step

I Domain Decomposition/geometric transformations: coefficients Θq(µ)
are generated for each sub-domain (coupled with material µ-properties)

I FE mesh is generated, discrete FE stiffness matrices/vectors are
assembled for each sub-domain to form the µ-independent components

The RB Offline Step

I By a greedy algorithm the RB parameter sample set is obtained
I FE/RB matrices are saved in order to be used by the Online Step

The RB Online Step

I Given µ ∈ D, the RB Online Evaluator returns output and error bound

Online_RB (probname, µ, outputname, . . .): µ→ sNN (µ), ∆s
N(µ)

I The RB Visualizer renders the field variable(s) and provides error bounds

Vis_RB (probname, µ): µ→ Ω, uNN (x;µ) for all x in Ωo(µ)
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows

rbMIT Example: the Thermal Fin problem
Engineering aspects

I Heat sink designed for cooling of high-density electronic components
I Shaded domain due to assumed periodicity and symmetry (multi-fin sink)
I Flowing air is modelled though a simple convection HT coefficient: to

compute temperature at the base of the spreader

Physical and geometrical parametrization

µ1 = Bi = h̃cd̃per/κ̃fin Biot number µ1 ∈ [0.01, 0.5]

µ2 = L = L̃/d̃per nondimensional fin height µ2 ∈ [2, 8]
µ3 = κ = κ̃sp/κ̃fin spreader/fin conductivity ratio µ3 ∈ [1, 10]
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows

rbMIT Example: the Thermal Fin problem
I Modeling: temperature uo(µ) over Ωo(µ) satisfies the steady heat

equation
I Output: average temperature over the base of the spreader (component

to be cooled, being the hottest location in the system)
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows

rbMIT Example: the Thermal Fin problem
I Example of geometry and field visualizations provided by rbMIT package

Example of initial geometry, domain decompostion, FE mesh and RB solution visualization for a thermal fin problem

Grepl, Rozza Model Reduction Methods



The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows

rbMIT Example: the Thermal Fin problem

Approximation property

# of mesh nodes N 4198
# of RB functions N ≈ 10

Reduced Basis vs Finite Elements

RB online 0.13s (N = 7)
evaluation time 0.15s (N = 13)

FEM sol. µ→ sN (µ) 1.96s
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μ1

RB output/error bars -[sN (µ)−∆sN (µ), sN (µ) + ∆sN (µ)]

as a function of µ1 for µ2 = 2, µ3 = 1 and N = 6.

? Reduction of 400:1 in linear
system dimension

? Online evaluation ≈ 5− 6% of
the FEM computational cost

RB temperature field for different choices of parameters:
µ = (0.5, 2, 1), µ = (0.5, 2, 5), µ = (0.01, 2, 10).
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows

Geometrical Parametrization: the goal

I The parametrized (original) domain Ωo(µ) is the image of a fixed
(reference) domain Ω through a map T (·;µ) : Ω→ Ωo(µ)

I In order to recover the affine parameter dependence, the parametric
map T (·;µ) has to be an affine map.

I The rbMIT software allows to deal with more complex configurations
by means of automatically built affine mappings
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows

Geometrical Parametrization: Domain Decomposition

Domain decomposition: definition
Original Domain Ωo(µ) , ue

o ∈ Xe
o(Ωo(µ))

Ωo(µ) =
⋃Kdom

k=1 Ω
k

o(µ) ;

Reference domain Ω , ue ∈ Xe(Ω)

Ω =
⋃Kdom

k=1 Ω
k
, common configuration

where Ω = Ωo(µref ) for µref ⊂ D†.

For Ωk, Ωk
o(µ) we choose in R2 triangles, elliptical triangles and curvy

triangles. In R3 we choose parallelepipeds (and in theory tetrahedra).

†Connectivity requirement: subdomain intersections must be an entire edge, a vertex,
or null.
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows

Geometrical Parametrization: Affine Mappings

Require ∀µ ∈ D

Ω
k

o(µ) = T aff ,k(Ω
k
;µ) , 1 ≤ k ≤ Kdom ,

where
T aff ,k(x;µ) = Caff ,k(µ) +Gaff ,k(µ)x ,

is an invertible affine mapping from Ω
k
onto Ω

k

o(µ).

Further require ∀µ ∈ D

T aff ,k(x;µ) = T aff ,k′(x;µ), ∀ x ∈ Ω
k ∩ Ω

k′

,
1 ≤ k, k′ ≤ Kdom ,

to ensure a continuous piecewise-affine global mapping T aff ( · ;µ) from
Ω onto Ωo(µ)†.
†It follows that for wo ∈ H1(Ωo(µ)), wo ◦ T aff = H1(Ω).
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows

Geometrical Parametrization: Affine Mappings

Elliptical Triangles: definition

Inwards:

Outwards:

︷ ︸︸ ︷
O(µ) = (xcen

o1 , x
cen
o2 )T

Qrot(µ) =
(

cosφ(µ) − sinφ(µ)
sinφ(µ) cosφ(µ)

)
S(µ) = diag(ρ1(µ), ρ2(µ))
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows

Geometrical Parametrization: Affine Mappings

Elliptical Triangles: constraints

Given x2
o(µ), x3

o(µ), find x1
o(µ), x4

o(µ) (⇒ T aff ,1&2)

(i) produce desired elliptical arc

(ii) satisfy internal angle criterion

}
∀µ ∈ D;

these conditions ensure continuous invertible mappings.

†Explicit recipes for admissible x1
o(µ) (Inwards case)

and x4
o(µ) (Outwards case) are readily obtained.

Grepl, Rozza Model Reduction Methods



The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows

Geometrical Parametrization: Affine Mappings

Elliptical Triangles: example (CinS triangulation)

Ωo(µ) : µ = (µ1, µ2, . . .) ⊂ D ≡ [0.8, 1.2]2 × . . .
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows

Affine Mappings

Elliptical Triangles: example (CinS triangulation)
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows

Geometrical Parametrization: Affine Mappings

Curvy Triangles: definition

Inwards:

Outwards:

︷ ︸︸ ︷
O(µ) = (xcen

o1 , x
cen
o2 )T

Qrot(µ) =
(

cosφ(µ) − sinφ(µ)
sinφ(µ) cosφ(µ)

)
S(µ) = diag(ρ1(µ), ρ2(µ))
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows

Geometrical Parametrization: Affine Mappings

Curvy Triangles: constraints

Given x2
o(µ), x3

o(µ), find x1
o(µ), x4

o(µ) (⇒ T aff ,1&2)

(i) produce desired curvy arc

(ii) satisfy internal angle criterion

}
∀µ ∈ D;

these conditions ensure continuous invertible mappings.

†Quasi-explicit recipes for admissible x1
o(µ) and x4

o(µ) can
(sometimes) be obtained in the convex/concave case.
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows

Geometrical Parametrization: Affine Mappings

Elliptical Triangles: example (Cosine triangulation)

(say)

Ωo(µ) : µ = (µ1, . . .) ⊂ D ≡ [1
6
, 1

2
]× . . .
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows

Geometrical Parametrization: Affine Mappings

Elliptical Triangles: example (Cosine triangulation)
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows

Geometrical Parametrization: Tensor Transformations

Transformation: Formulation on original domain (IR2)

For w, v ∈ H1(Ωo(µ))† ue
o(µ) ∈ H1

0(Ωo(µ))

ao(w, v;µ) =
Kdom∑
k=1

∫
Ωko(µ)

[
∂w

∂xo1

∂w
∂xo2

w
]
Kk

oij(µ)


∂v

∂xo1

∂v
∂xo2

v


where Kk

o : D → R3×3, SPD for 1 ≤ k ≤ Kdom

(note Kk
o affine in xo is also permissible).

† We consider the scalar case; the vector case
(linear elasticity) admits an analogous treatment.
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows

Geometrical Parametrization: Tensor Transformations

Transformation: Formulation on reference domain

For w, v ∈ H1(Ω) ue(µ) ∈ H1
0(Ω)

a(w, v;µ) =
Kdom∑
k=1

∫
Ωk

[
∂w
∂x1

∂w
∂x2

w
]
Kk

ij(µ)

 ∂v
∂x1
∂v
∂x2

v


Kk(µ) = | detGaff ,k(µ)|D(µ)Kk

o(µ)DT (µ), and

D(µ) =

 (Gaff ,k)−1 0
0

0 0 1

 .
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows

Geometrical Parametrization: Tensor Transformations

Transformation: Affine form

Expand

a(w, v;µ) = K1
11(µ)︸ ︷︷ ︸

Θ1(µ)

∫
Ω1

∂w

∂x1

∂v

∂x1︸ ︷︷ ︸
a1(w,v)

+ . . .

with as many as Q = 4K terms.

We can often greatly reduce the requisite Q.

Achtung! Many interesting problems are not affine (or require Q very
large).

For example, Kk
o(x;µ) for general x dependence; and nonzero Neumann

conditions on curvy ∂Ω yield non-affine a( · , · ;µ).
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows
RB Simulation / Output Evaluation
Flow Control and Optimal Design with RB Methods

Automatic Geometrical Parametrization: Airfoil Example
I Airfoil of the NACA 4-digits family

(symmetric case)

Thickness distribution 4-digits profile

x2 =
µ1

20
(0.2969

√
x1−0.1260x1−0.3520x

2
1+0.2832x

3
1−0.1021x

4
1

Geometries, Software: Geometrical Problems
Basic parametrized geometries

Basic setup: Airfoil of the NACA 4-digits family (symmetric case)
in parallel flow

µ1

u∞

L

Ω

∂Ω

x1

x2

Additional setups involving:

Angle of attack != 0

Ground effects

Two Profiles
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Airfoil geometry description for the rbMIT software
„
x1
x2

«
=

„
1
0

«
+

„
−1 0

0 ±µ1/20

«  
1− t2

0.2969t− 0.1260t2 − 0.3520t4 + 0.2832t6 − 0.1021t8

!
, t ∈ [0,

√
0.3]

„
x1
x2

«
=

„
0
0

«
+

„
1 0
0 ±µ1/20

« 
1− t2

0.2969t− 0.1260t2 − 0.3520t4 + 0.2832t6 − 0.1021t8

!
, t ∈ [

√
0.3, 1]

§ Complexity (potential flow):

# of subdomains K = 42/84

# of bilinear forms Q = 16/20
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows
RB Simulation / Output Evaluation
Flow Control and Optimal Design with RB Methods

Potential Flows: Output Evaluation

I Parameters: thickness µ1∈ [4, 24], angle of attack µ2∈ [0.01, π/16]
and profiles distance (µ3, µ4)∈ [0.85, 1]× [1.2, 1.6]

I Output: pressure coefficient cp = p−pin
1
2
ρ|uin|2

around the profiles
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows
RB Simulation / Output Evaluation
Flow Control and Optimal Design with RB Methods

Thermal Flows: Output Evaluation

I Thermal Flows around an airfoil with ground effect included
I Physical and geometrical parametrization: thickness µ1 ∈ [4, 24], ground

distance µ2 ∈ [1.5, 3], Peclet number µ3 ∈ [1, 100]

I The thermal boundary layer on the ground and on profile becomes
thinner and more separated for higher Peclet numbers
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows
RB Simulation / Output Evaluation
Flow Control and Optimal Design with RB Methods

Potential/Thermal Flows: Computational Costs
Potential Flow

mesh nodes N 3693
subdomains 163
affine operator components Qa 102
affine rhs components Qf 3
reduced basis functions N 20
tonlineFE 17.15s
tonlineRB 0.08s
speedup 195

RB online time as funcion of N
(potential flow)

Thermal Flow

mesh nodes N 6727
subdomains 88
affine operator components Qa 42
reduced basis functions Npr 70
reduced basis functions Ndu 61
tonlineFE 16.97s
tonlineRB 0.26s
speedup 65

Average outflow temperature w.r. to
ground distance µ2 (thermal flow)
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows
RB Simulation / Output Evaluation
Flow Control and Optimal Design with RB Methods

Potential Flow: Shape Optimization Problem

Airfoil inverse design problem

min
µ∈D

„Z 1

0

|p(s, µ)− ptarget(s)|2 ds
«1/2

+ λ
ˆ
α(µ)− 5◦

˜2
,

s.t.
Z

Ωo(µ)

∇u · ∇v dΩo =

Z
Ωo(µ)

fv dΩo ∀v ∈ H1(Ωo(µ))

u = 0 on Γout,
∂u

∂n
= −1 on Γin,

∂u

∂n
= 0 elsewhere

I Choose target airfoil (ex: NACA4412) and
compute pressure distribution ptarget on its surface
using the Bernoulli equation (p = p0 − 1

2
|∇u|2)

I Objective: find small perturbation of reference
airfoil NACA0012 s.t. pressure distribution on the
airfoil surface is close to ptarget

I Add penalty term to enforce the constraint on the
angle of attack (AOA = 5◦)
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows
RB Simulation / Output Evaluation
Flow Control and Optimal Design with RB Methods

Potential Flow: Shape Optimization Problem

Geometrical parametrization: Free-Form Deformation Techniques

I Geometrical parameters µ1, . . . , µP are chosen as the perturbations
of a (small) lattice of FFD control points

Grepl, Rozza Model Reduction Methods



The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows
RB Simulation / Output Evaluation
Flow Control and Optimal Design with RB Methods

Potential Flow: Shape Optimization Problem
Pressure distributions and computational cost (online solution of the parametric PDE) ∗

(a) Inverse design (b) Target airfoil
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Real−time barrier (response time < 1 s)

 

 
Finite element method
Reduced basis method

(c) Computational costs

Number of mesh nodes N 8043
Lattice of FFD control points 6× 4
Number of shape parameters† 8
Number of reduced basis functions N‡ 52
Error tolerance for RB greedy εRBtol 10−4

Number of affine expansion terms Qa 80
Error tolerance for EIM greedy εEIMtol 2.5× 10−3

∗Results from T. Lassila, G. Rozza, Comput. Methods Appl. Mech. Engrg. 199 (2010) 1583–1592
†Reduction of 50:1 in parametric complexity compared to explicit nodal deformation
‡Reduction of 200:1 in linear system dimension
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows
RB Simulation / Output Evaluation
Flow Control and Optimal Design with RB Methods

Thermal Flows: Optimal Design of Airfoils

Optimal heat exchange problem

min
µ∈D

»
utarget −

1

|Γout|

Z
Γout

u dΓ

–2

+ λ [α(µ)− α0]2 ,

s.t.
Z

Ωo(µ)

“
ε∇u · ∇v + v~b · ∇u

”
dΩo =

Z
Ωo(µ)

fv dΩo

∂u

∂n
= 0 on Γout, u = T0 on Γin ∪ Γfree,

u = T1 on Γsurf , u = T2 on airfoil

I Objective: find airfoil shape and vertical position
s.t. average temperature over outflow equals
utarget and angle of attack equals α0

I Heat exchange of an airfoil in exterior flow with
~b = [1; 0] and ε = 0.2 is considered

I Penalty term enforces the constraint on the
angle of attack (AOA = α0)

Grepl, Rozza Model Reduction Methods



The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows
RB Simulation / Output Evaluation
Flow Control and Optimal Design with RB Methods

Thermal Flows: Optimal Design of Airfoils∗

α0 = 7◦, utarget = 4.1 α0 = −5◦, utarget = 4.5

Number of mesh nodes N 15718
Lattice of FFD control points 6× 6
Number of shape parameters† 8
Number of reduced basis functions N‡ 36
Error tolerance for RB greedy εRBtol 10−5

Number of affine expansion terms Qa 108
Error tolerance for EIM greedy εEIMtol 10−4

†Reduction of 100:1 in parametric complexity compared to explicit nodal deformation
‡Reduction of 436:1 in linear system dimension
∗Results from G. Rozza, T. Lassila, A. Manzoni, Proc. of Icosahom Conference, 2009, in press
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows
RB Simulation / Output Evaluation
Flow Control and Optimal Design with RB Methods

Environmental Flows: Control of Air Pollution
Control of Air pollution

min
µ∈D

J(µ) =

Z
Do(µg)

|y(u(µu))− zd|2dΩ,

s.t.
Z

Ωo(µg)

(ν(µp)∇y · ∇v + V(µp) · ∇y) dΩo =

Z
Ωo(µg)

u(µp)v dΩo

∂y

∂n
= 0 on ΓN , y = 0 on ΓD

I Goal: to regulate the pollutant emission by
industrial plants in order to keep the pollutant
level below a fixed threshold over an
observation area

I Parameters: control input µu, which define
the control function u = u(µu); physical
input µp (e.g. viscosity, advection velocity);
geometrical input µg (domain configuration)
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows
RB Simulation / Output Evaluation
Flow Control and Optimal Design with RB Methods

Environmental Flows: Control of Air Pollution∗

Control input µu : variable emission rate

I Use of reduced basis method for the efficient solution of the state
and the adjoint parametrized problems

∗Results from A. Quarteroni, G. Rozza, A, Quaini, Advances in Numerical Mathematics, 2007, p. 193-216
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows
RB Simulation / Output Evaluation
Flow Control and Optimal Design with RB Methods

Environmental Flows: Control of Air Pollution∗

Physical Input µp : wind direction

I Use of reduced basis method for the efficient solution of the state
and the adjoint parametrized problems

∗Results from A. Quarteroni, G. Rozza, A, Quaini, Advances in Numerical Mathematics, 2007, p. 193-216
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The rbMIT software package
Problem “Scope”: Geometry

Applied Problems: Potential and Thermal Flows
RB Simulation / Output Evaluation
Flow Control and Optimal Design with RB Methods

Environmental Flows: Control of Air Pollution∗

Geometrical Input µg : parametrized domain

I Use of reduced basis method for the efficient solution of the state
and the adjoint parametrized problems

∗Results from A. Quarteroni, G. Rozza, A, Quaini, Advances in Numerical Mathematics, 2007, p. 193-216
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