Model Reduction Methods

Martin A. Grepl¹, Gianluigi Rozza²

1 IGPM, RWTH Aachen University, Germany ² MATHICSE - CMCS, Ecole Polytechnique Fédérale de Lausanne, Switzerland

> Summer School "Optimal Control of PDEs" Cortona (Italy), July 12-17, 2010

 2990

后

化重氮 化重氮

The rbMIT software package

- \triangleright rbMIT: Reduced Basis Software Library in Matlab(C) Environment
- ▶ developed at MIT by DBP Huynh, CN Nguyen, G Rozza and AT Patera
- \triangleright based on extensive use of Matlab ToolBoxes like Symbolic, PDEs, **Optimization**
- \triangleright The user must describe the problem. The input can be separated into three parts:

The User Input

- **Example 1** geometry: $\Omega_o(\mu)$ is defined by providing points coordinates, straight/curvy edges describing all regions $\Omega^k_o(\mu)$
- \triangleright material properties: coefficients are provided for differential operator in each region $\Omega^k_o(\mu)$ and for boundary conditions.
- **P** parameter control and settings: parameter domain D , reference parameters and other RB information (e.g. N_{max})

イロメ イ何メ イヨメ イヨメー

Ε

 Ω

The rbMIT software package

rbMIT Users' Interface

Problem Formulation, Offline and Online Steps

The Problem Formulation Step

- **Domain Decomposition/geometric transformations: coefficients** $\Theta_a(\mu)$ are generated for each sub-domain (coupled with material μ -properties)
- \blacktriangleright FE mesh is generated, discrete FE stiffness matrices/vectors are assembled for each sub-domain to form the μ -independent components

- \triangleright By a greedy algorithm the RB parameter sample set is obtained
- \blacktriangleright FE/RB matrices are saved in order to be used by the Online Step

 \triangleright Given $\mu \in \mathcal{D}$, the RB Online Evaluator returns output and error bound Online_RB (probname, μ , outputname, \ldots): $\quad \mu \to s_N^{\mathcal{N}}(\mu), \ \Delta_N^s(\mu)$ \triangleright The RB Visualizer renders the field variable(s) and provides error bounds (ロ) 서*권*) 서점) 서점) (점

 2990

Problem Formulation, Offline and Online Steps

The Problem Formulation Step

- **Domain Decomposition/geometric transformations: coefficients** $\Theta_a(\mu)$ are generated for each sub-domain (coupled with material μ -properties)
- \blacktriangleright FE mesh is generated, discrete FE stiffness matrices/vectors are assembled for each sub-domain to form the μ -independent components

The RB Offline Step

- \triangleright By a greedy algorithm the RB parameter sample set is obtained
- \blacktriangleright FE/RB matrices are saved in order to be used by the Online Step

 \triangleright Given $\mu \in \mathcal{D}$, the RB Online Evaluator returns output and error bound Online_RB (probname, μ , outputname, \ldots): $\quad \mu \to s_N^{\mathcal{N}}(\mu), \ \Delta_N^s(\mu)$ \triangleright The RB Visualizer renders the field variable(s) and provides error bounds

 $(\Box \rightarrow \Diamond \Box \rightarrow \Diamond \exists \rightarrow \Diamond \exists \bot \bot \exists \bot$

 2990

Problem Formulation, Offline and Online Steps

The Problem Formulation Step

- **Domain Decomposition/geometric transformations: coefficients** $\Theta_a(\mu)$ are generated for each sub-domain (coupled with material μ -properties)
- \blacktriangleright FE mesh is generated, discrete FE stiffness matrices/vectors are assembled for each sub-domain to form the μ -independent components

The RB Offline Step

- \triangleright By a greedy algorithm the RB parameter sample set is obtained
- \blacktriangleright FE/RB matrices are saved in order to be used by the Online Step

The RB Online Step

 \triangleright Given $\mu \in \mathcal{D}$, the RB Online Evaluator returns output and error bound Online_RB (probname, μ , outputname, \ldots): $\quad \mu \to s_N^{\mathcal{N}}(\mu), \ \Delta_N^s(\mu)$

 \triangleright The RB Visualizer renders the field variable(s) and provides error bounds Vis_RB (probname, μ): $\mu \to \Omega$, $u_N^{\mathcal{N}}(x;\mu)$ $u_N^{\mathcal{N}}(x;\mu)$ $u_N^{\mathcal{N}}(x;\mu)$ for all x in $\Omega_{\Omega}(\mu)$

 \overline{f} \overline{f}

 QQ

rbMIT Example: the Thermal Fin problem

Engineering aspects

- \blacktriangleright Heat sink designed for cooling of high-density electronic components
- \triangleright Shaded domain due to assumed periodicity and symmetry (multi-fin sink)
- \triangleright Flowing air is modelled though a simple convection HT coefficient: to compute temperature at the base of the spreader

Physical and geometrical parametrization

 Ω

rbMIT Example: the Thermal Fin problem

- ► Modeling: temperature $u_o(\mu)$ over $\Omega_o(\mu)$ satisfies the steady heat equation
- \triangleright Output: average temperature over the base of the spreader (component to be cooled, being the hottest location in the system)

$$
-\frac{\partial}{\partial x_{0i}} \Biggl(\underbrace{\begin{bmatrix} \mu_3 & 0 \\ 0 & \mu_3 \end{bmatrix}}_{\mathcal{R}^1_{\omega} i j} \frac{\partial}{\partial x_{0j}} u_o(\mu) \Biggr) = 0 \quad \text{in } \Omega^1_o
$$
\n
$$
-\frac{\partial}{\partial x_{0i}} \Biggl(\underbrace{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}}_{\mathcal{R}^2_{\omega} i j} \frac{\partial}{\partial x_{0j}} u_o(\mu) \Biggr) = 0 \quad \text{in } \Omega^2_o(\mu_2)
$$
\n
$$
n_o \frac{\kappa^2_{\omega}}{\kappa^2_{\omega} i j} \frac{\partial u_o}{\partial x_{0j}}(\mu) = 1 \quad \text{on} \quad \Gamma_o 1
$$
\n
$$
n_o \frac{\kappa^2_{\omega} i j}{\kappa^2_{\omega} i j} \frac{\partial u_o}{\partial x_{0j}}(\mu) = 0 \quad \text{on} \quad \Gamma_R = \Gamma_{o} 5 \cup \Gamma_{0} 6
$$
\n
$$
n_o \frac{\kappa^2_{\omega} i j}{\kappa^2_{\omega} i} \frac{\partial u_o}{\partial x_{0j}}(\mu) = 0 \quad \text{on} \quad \Gamma \setminus (\Gamma_{o} 1 \cup \Gamma_R)
$$
\n
$$
n_o \frac{\kappa_{o} i j}{\kappa_{o} i j} \frac{\partial}{\partial x_{oj}} u_o(\mu) = 0 \quad \text{on} \quad \Gamma \setminus (\Gamma_{o} 1 \cup \Gamma_R)
$$
\n
$$
n_o \frac{\kappa_{o} i j}{\kappa_{o} i j} \frac{\partial}{\partial x_{oj}} u_o(\mu) = 2 \int_{\Gamma_{o} 1} u_o(\mu)
$$
\n
$$
n_o \frac{\kappa_{o} i j}{\kappa_{o} i j} \frac{\partial}{\partial x_{oj}} u_o(\mu) = 2 \int_{\Gamma_{o} 1} u_o(\mu)
$$

rbMIT Example: the Thermal Fin problem

 \triangleright Example of geometry and field visualizations provided by rbMIT package

Example of initial geometry, domain decompostion, FE mesh and RB soluti[on v](#page-7-0)is[ual](#page-9-0)[iza](#page-7-0)[tion](#page-8-0) [f](#page-9-0)[or](#page-0-0) [a](#page-1-0) [th](#page-9-0)[er](#page-10-0)[m](#page-0-0)[al](#page-1-0) [fi](#page-9-0)[n](#page-10-0) [prob](#page-0-0)[lem](#page-40-0) $\log\phi$

Grepl, Rozza [Model Reduction Methods](#page-0-0)

rbMIT Example: the Thermal Fin problem

0.1 0.2 0.3 0.4 0.5

 μ_1 RB output/error bars -[s_N (μ) – $\Delta_N^s(\mu), s_N(\mu) + \Delta_N^s(\mu)$] as a function of μ_1 for $\mu_2 = 2, \mu_3 = 1$ and $N = 6$.

2

- \star Reduction of 400:1 in linear system dimension
- \star Online evaluation ≈ 5 6% of the FEM computational cost

RB temperature field for different choices of parameters: $\mu = (0.5, 2, 1), \mu = (0.5, 2, 5), \mu = (0.01, 2, 10)$ $\mu = (0.5, 2, 1), \mu = (0.5, 2, 5), \mu = (0.01, 2, 10)$ $\mu = (0.5, 2, 1), \mu = (0.5, 2, 5), \mu = (0.01, 2, 10)$ $\mu = (0.5, 2, 1), \mu = (0.5, 2, 5), \mu = (0.01, 2, 10)$ $\mu = (0.5, 2, 1), \mu = (0.5, 2, 5), \mu = (0.01, 2, 10)$ $\mu = (0.5, 2, 1), \mu = (0.5, 2, 5), \mu = (0.01, 2, 10)$ $\mu = (0.5, 2, 1), \mu = (0.5, 2, 5), \mu = (0.01, 2, 10)$ $\mu = (0.5, 2, 1), \mu = (0.5, 2, 5), \mu = (0.01, 2, 10)$ $\mu = (0.5, 2, 1), \mu = (0.5, 2, 5), \mu = (0.01, 2, 10)$ $\mu = (0.5, 2, 1), \mu = (0.5, 2, 5), \mu = (0.01, 2, 10)$ $\mu = (0.5, 2, 1), \mu = (0.5, 2, 5), \mu = (0.01, 2, 10)$ $\mu = (0.5, 2, 1), \mu = (0.5, 2, 5), \mu = (0.01, 2, 10)$ $\mu = (0.5, 2, 1), \mu = (0.5, 2, 5), \mu = (0.01, 2, 10)$ $\mu = (0.5, 2, 1), \mu = (0.5, 2, 5), \mu = (0.01, 2, 10)$ $\mu = (0.5, 2, 1), \mu = (0.5, 2, 5), \mu = (0.01, 2, 10)$ $\mu = (0.5, 2, 1), \mu = (0.5, 2, 5), \mu = (0.01, 2, 10)$ $\mu = (0.5, 2, 1), \mu = (0.5, 2, 5), \mu = (0.01, 2, 10)$ $\mu = (0.5, 2, 1), \mu = (0.5, 2, 5), \mu = (0.01, 2, 10)$.

Geometrical Parametrization: the goal

- \triangleright The parametrized (original) domain $\Omega_o(\mu)$ is the image of a fixed (reference) domain Ω through a map $T(\cdot;\mu): \Omega \to \Omega_o(\mu)$
- \blacktriangleright In order to recover the affine parameter dependence, the parametric map $T(\cdot; \mu)$ has to be an **affine map**.
- \triangleright The rbMIT software allows to deal with more complex configurations by means of automatically built affine mappings

 $\langle \langle \langle \langle \langle \rangle \rangle \rangle \rangle$ and $\langle \langle \rangle \rangle$ and $\langle \rangle$

 Ω

Geometrical Parametrization: Domain Decomposition

Domain decomposition: definition Original Domain $\Omega_{\rm o}(\mu)$,

$$
u_{\rm o}^{\rm e}\in X_{\rm o}^{\rm e}(\Omega_{\rm o}(\mu))
$$

 $\overline{\Omega}_{\text{o}}(\mu) = \bigcup_{k=1}^{K_{\text{dom}}} \overline{\Omega}_{\text{o}}^k$ $\tilde{\mathfrak{g}}(\mu)$;

Reference domain Ω ,

$$
\overline{\Omega} = \bigcup_{k=1}^{K_{\mathrm{dom}}}\, \overline{\Omega}^k
$$

 $u^{\mathbf{e}} \in X^{\mathbf{e}}(\Omega)$

 2990

, common configuration

where $\Omega=\Omega_\mathrm{o}(\mu_\mathrm{ref})$ for $\mu_\mathrm{ref}\subset\mathcal{D}^\dagger.$

For $\Omega^k,\ \Omega^k_\mathrm{o}(\mu)$ we choose in R^2 triangles, elliptical triangles and curvy triangles. In \mathbb{R}^3 we choose parallelepipeds (and in theory tetrahedra).

[†]Connectivity requirement: subdomain intersections must be an entire edge, a vertex, $\mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{A} \oplus \mathcal{B} \rightarrow \mathcal{B}$

Geometrical Parametrization: Domain Decomposition

Domain decomposition: definition Original Domain $\Omega_{\rm o}(\mu)$,

$$
u_{\rm o}^{\rm e}\in X_{\rm o}^{\rm e}(\Omega_{\rm o}(\mu))
$$

$$
\overline{\Omega}_{\rm o}(\mu)=\textstyle\bigcup_{k=1}^{K_{\rm dom}}\,\overline{\Omega}_{\rm o}^k(\mu)\;;
$$

Reference domain Ω ,

 $u^{\mathbf{e}} \in X^{\mathbf{e}}(\Omega)$

 Ω

$$
\overline{\Omega} = \bigcup_{k=1}^{K_{\rm dom}} \overline{\Omega}^k \ ,
$$
 common configuration

where $\Omega=\Omega_\mathrm{o}(\mu_\mathrm{ref})$ for $\mu_\mathrm{ref}\subset\mathcal{D}^\dagger.$

For $\Omega^k,~\Omega^k_\mathrm{o}(\mu)$ we choose in R^2 triangles, elliptical triangles and curvy triangles. In \mathbb{R}^3 we choose parallelepipeds (and in theory tetrahedra).

[†]Connectivity requirement: subdomain intersections must be an entire edge, a vertex, or null. $\langle \langle \langle \langle \langle \rangle \rangle \rangle \rangle$, $\langle \langle \rangle \rangle \rangle$, $\langle \rangle \rangle$, $\langle \rangle \rangle$, $\langle \rangle \rangle$, $\langle \rangle$, $\langle \rangle$, $\langle \rangle$, $\langle \rangle$

Geometrical Parametrization: Affine Mappings

$$
\forall \mu \in \mathcal{D}
$$

イロメ イ団メ イモメ イモメー

重

 Ω

$$
\overline{\Omega}^k_\text{o}(\mu) = \mathcal{T}^{\text{aff},k}(\overline{\Omega}^k;\mu) \text{ , } 1 \leq k \leq K_\text{dom} \text{ , }
$$

where

$$
\mathcal{T}^{\text{aff},k}(x;\mu) = C^{\text{aff},k}(\mu) + G^{\text{aff},k}(\mu)x ,
$$

is an invertible affine mapping from $\overline{\Omega}^k$ onto $\overline{\Omega}^k_{\rm o}$ $\int_{0}^{\infty}(\mu).$

$$
\begin{aligned} \text{Further require} & \forall \mu \in \mathcal{D} \\ \mathcal{T}^{\text{aff},k}(x;\mu) = \mathcal{T}^{\text{aff},k'}(x;\mu), & \forall \, x \in \overline{\Omega}^k \cap \overline{\Omega}^{k'}, \\ & 1 \leq k, k' \leq K_{\text{dom}} \,, \end{aligned}
$$

to ensure a *continuous* piecewise-affine global mapping $T^{\text{aff}}(\,\cdot\,;\mu)$ from $\overline{\Omega}$ onto $\overline{\Omega}_{\rm o}(\mu)^{\dagger}$.

[†]It follows that for $w_0 \in H^1(\Omega_0(\mu))$, $w_0 \circ T^{\text{aff}} = H^1(\Omega)$.

 $\overline{\Omega}^{\bm{k}}_\alpha$

Geometrical Parametrization: Affine Mappings

$$
\begin{array}{ll} \mathsf{Required} & \forall \mu \in \mathcal{D} \\\\ \overline{\Omega}_\mathrm{o}^k(\mu) = \mathcal{T}^{\mathrm{aff},k}(\overline{\Omega}^k;\mu) \text{ , } 1 \leq k \leq K_\mathrm{dom} \text{ , } \end{array}
$$

where

$$
\mathcal{T}^{\text{aff},k}(x;\mu)=C^{\text{aff},k}(\mu)+G^{\text{aff},k}(\mu)x\;,
$$

is an invertible affine mapping from $\overline{\Omega}^k$ onto $\overline{\Omega}^k_{\rm o}$ $\int_{0}^{\infty}(\mu).$

Further require
$$
\mathcal{T}^{\text{aff},k}(x;\mu) = \mathcal{T}^{\text{aff},k'}(x;\mu), \quad \forall \ x \in \overline{\Omega}^k \cap \overline{\Omega}^{k'},
$$

$$
1 \leq k, k' \leq K_{\text{dom}},
$$

to ensure a *continuous* piecewise-affine global mapping $\mathcal{T}^{\text{aff}}\left(\;\cdot\;\text{; }\mu\right)$ from $\overline{\Omega}$ onto $\overline{\Omega}_{\rm o}(\mu)^{\dagger}$.

[†]It follows that for $w_0 \in H^1(\Omega_0(\mu))$, $w_0 \circ \mathcal{T}^{\text{aff}} = H^1(\Omega)$.

 $\langle \sqrt{16} \rangle \rightarrow \langle \sqrt{2} \rangle \rightarrow \langle \sqrt{2} \rangle \rightarrow \langle \sqrt{2} \rangle \rightarrow \langle \sqrt{2} \rangle$

Geometrical Parametrization: Affine Mappings

Elliptical Triangles: definition

Outwards:
$$
\Omega_o^2(\mu) \rightarrow \overline{x}_o^4(\mu)
$$

\n $\overline{x}_o^3(\mu)$
\n $\overline{x}_o^3(\mu)$
\n $\overline{x}_o^2(\mu)$
\n $\overline{x}_o^1(\mu)$
\n $\overline{x}_o^1(\mu)$
\n $\overline{x}_o^1(\mu)$
\n $\overline{C}_{\mu}(\mu)$
\

 $-10⁻¹$

 $\langle \langle \langle \langle \rangle \rangle \rangle \rangle$ and $\langle \rangle$ and $\langle \rangle$ and $\langle \rangle$

 \equiv Ω

Geometrical Parametrization: Affine Mappings

Elliptical Triangles: constraints

Given
$$
\overline{x}_o^2(\mu), \overline{x}_o^3(\mu)
$$
, find $\overline{x}_o^1(\mu), \overline{x}_o^4(\mu)$ $(\Rightarrow \mathcal{T}^{\text{aff},1\&2})$
\n(*i*) produce desired elliptical arc
\n(*ii*) satisfy internal angle criterion $\rightarrow \forall \mu \in \mathcal{D};$

these conditions ensure continuous invertible mappings.

∢何 ▶ (ヨ) (ヨ) (

重

 Ω

[†]Explicit recipes for admissible $x_\mathrm{o}^1(\mu)$ (Inwards case) and $x_\mathrm{o}^4(\mu)$ (Outwards case) are readily obtained.

Geometrical Parametrization: Affine Mappings

Elliptical Triangles: example (CinS triangulation)

 $\Omega_{\rm o}(\mu)$: $\mu = (\mu_1, \mu_2, \ldots) \subset \mathcal{D} \equiv [0.8, 1.2]^2 \times \ldots$

 QQ

医阿里氏阿里氏

Affine Mappings

Elliptical Triangles: example (CinS triangulation)

イロト イ母ト イヨト イヨト

Þ

Geometrical Parametrization: Affine Mappings

Curvy Triangles: definition

Outwards:
$$
\Omega_o^2(\mu) \rightarrow \overline{x}_o^4(\mu)
$$

\n $\overline{x}_o^3(\mu)$
\n $\overline{x}_o^3(\mu)$
\n $\overline{x}_o^2(\mu)$
\n $\overline{x}_o^1(\mu)$
\n $\overline{x}_o^1(\mu)$
\n $\overline{x}_o^1(\mu)$
\n $\overline{O(\mu)} = (x_{o1}^{\text{cen}}, x_{o2}^{\text{cen}})^{\text{T}}$
\n $Q_{\text{rot}}(\mu) = (x_{o1}^{\text{cen}}, x_{o2}^{\text{cen}})^{\text{T}}$
\n $Q_{\text{rot}}(\mu) = (\begin{array}{cc} \cos \phi(\mu) & -\sin \phi(\mu) \\ \sin \phi(\mu) & \cos \phi(\mu) \end{array})$
\n $S(\mu) = \text{diag}(p_1(\mu), p_2(\mu))$

 $-10⁻¹$

 $\langle \langle \langle \langle \rangle \rangle \rangle \rangle$ and $\langle \rangle$ and $\langle \rangle$ and $\langle \rangle$

 \equiv Ω

Geometrical Parametrization: Affine Mappings

Curvy Triangles: constraints

Given
$$
\overline{x}_o^2(\mu), \overline{x}_o^3(\mu)
$$
, find $\overline{x}_o^1(\mu), \overline{x}_o^4(\mu)$ $(\Rightarrow \mathcal{T}^{\text{aff},1\&2})$
\n(*i*) produce desired curly arc
\n(*ii*) satisfy internal angle criterion $\left\{\forall \mu \in \mathcal{D};\right.$

these conditions ensure continuous invertible mappings.

化重氮 化重氮

 209

[†]Quasi-explicit recipes for admissible $\overline{x}_{\text{o}}^1(\mu)$ and $\overline{x}_{\text{o}}^4(\mu)$ can (sometimes) be obtained in the convex/concave case.

Geometrical Parametrization: Affine Mappings

Elliptical Triangles: example (Cosine triangulation)

∢何 ▶ (ヨ) (ヨ)

 Ω

Geometrical Parametrization: Affine Mappings

Elliptical Triangles: example (Cosine triangulation)

 $\langle \langle \overline{r} \rangle \rangle$, $\langle \rangle \rangle$, $\langle \rangle$, $\langle \rangle$, $\langle \rangle$

 $-10⁻¹$

 2990

Ε

Geometrical Parametrization: Tensor Transformations

Transformation: Formulation on original domain $(\mathrm{I\!R}^2)$

For
$$
w, v \in H^1(\Omega_o(\mu))^{\dagger}
$$
 $u_o^e(\mu) \in H_0^1(\Omega_o(\mu))$

$$
a_{\mathrm{o}}(w,v;\mu) = \sum_{k=1}^{K_{\mathrm{dom}}} \int_{\Omega_{\mathrm{o}}^k(\mu)} \left[\begin{array}{cc} \frac{\partial w}{\partial x_{\mathrm{o}1}} & \frac{\partial w}{\partial x_{\mathrm{o}2}} & w \end{array} \right] \mathcal{K}_{\mathrm{o}ij}^k(\mu) \left[\begin{array}{c} \frac{\partial v}{\partial x_{\mathrm{o}1}} \\ \frac{\partial v}{\partial x_{\mathrm{o}2}} \\ v \end{array} \right]
$$

where $\mathcal{K}_{\mathrm{o}}^{k}\colon\ \mathcal{D}\to \mathrm{R}^{3\times3}$, SPD for $1\leq k\leq K_{\mathrm{dom}}$ (note \mathcal{K}_{o}^{k} affine in x_{o} is also permissible).

[†] We consider the scalar case; the vector case (linear elasticity) admits an analogous treatment.

Geometrical Parametrization: Tensor Transformations

Transformation: Formulation on reference domain

For
$$
w, v \in H^1(\Omega)
$$
 $u^e(\mu) \in H_0^1(\Omega)$

$$
a(w,v;\mu) = \sum_{k=1}^{K_{\rm dom}} \int_{\Omega^k} \left[\begin{array}{cc} \frac{\partial w}{\partial x_1} & \frac{\partial w}{\partial x_2} & w \end{array} \right] \mathcal{K}_{ij}^k(\mu) \left[\begin{array}{c} \frac{\partial v}{\partial x_1} \\ \frac{\partial v}{\partial x_2} \\ v \end{array} \right]
$$

$$
\mathcal{K}^k(\mu) = |\det G^{\text{aff},k}(\mu)| D(\mu) \mathcal{K}^k_{\text{o}}(\mu) D^T(\mu), \text{ and}
$$

$$
D(\mu) = \begin{pmatrix} (G^{\text{aff},k})^{-1} & 0 \\ 0 & 0 & 1 \end{pmatrix}.
$$

 $-10⁻¹$

 $AD \rightarrow AB \rightarrow AB \rightarrow AB$

Geometrical Parametrization: Tensor Transformations

Transformation: Affine form

Expand

$$
a(w,v;\mu)=\underbrace{\mathcal{K}^{1}_{11}(\mu)}_{\Theta^{1}(\mu)}\underbrace{\int_{\Omega^{1}}\frac{\partial w}{\partial x_{1}}\frac{\partial v}{\partial x_{1}}}_{a^{1}(w,v)}+\cdots
$$

with as many as $Q = 4K$ terms.

メラト メミト メミト

重

 Ω

We can often greatly reduce the requisite Q.

Achtung! Many interesting problems are **not** affine (or require Q very large).

For example, $\mathcal{K}^k_{\rm o}(x;\mu)$ for general x dependence; and nonzero Neumann conditions on curvy $\partial\Omega$ yield non-affine $a(\cdot, \cdot; \mu)$.

Geometrical Parametrization: Tensor Transformations

Transformation: Affine form

Expand

$$
a(w,v;\mu)=\underbrace{\mathcal{K}^{1}_{11}(\mu)}_{\Theta^{1}(\mu)}\underbrace{\int_{\Omega^{1}}\frac{\partial w}{\partial x_{1}}\frac{\partial v}{\partial x_{1}}}_{a^{1}(w,v)}+\ldots
$$

with as many as $Q = 4K$ terms.

We can often greatly reduce the requisite Q .

Achtung! Many interesting problems are **not** affine (or require Q very large).

For example, $\mathcal{K}^{\bm{k}}_\mathrm{o} (x;\mu)$ for general x dependence; and nonzero Neumann conditions on curvy $\partial\Omega$ yield non-affine $a(\cdot, \cdot; \mu)$.

RB Simulation / Output Evaluation RB Simulation / Output Evaluation
[Flow Control and Optimal Design with RB Methods](#page-32-0)

in parallel flow of the state of
The state of the st

Automatic Geometrical Parametrization: Airfoil Example and

 $\frac{\mu_1}{20}(0.2969\sqrt{x_1}{-0.1260} {x_1}{-0.3520} {x_1^2}{+0.2832} {x_1^3}{-0.1021} {x_1^4}$

 \triangleright Airfoil of the NACA 4-digits family (symmetric case)

Thickness distribution 4-digits profile

 $x_2 = \frac{\mu_1}{2}$

 μ_1 u[∞] L Ω ∂Ω \vec{x}_1 x_2

つへへ

of subdomains $K = 42/84$ # of bilinear forms $Q = 16/20$

 $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$ $(1, 1)$

RB Simulation / Output Evaluation RB Simulation / Output Evaluation
[Flow Control and Optimal Design with RB Methods](#page-32-0)

> Complexity (potential flow): # of subdomains $K = 42/84$ $\#$ of bilinear forms $Q = 16/20$

Automatic Geometrical Parametrization: Airfoil Example and

 $\frac{\mu_1}{20}(0.2969\sqrt{x_1}{-0.1260} {x_1}{-0.3520} {x_1^2}{+0.2832} {x_1^3}{-0.1021} {x_1^4}$

Airfoil geometry description for the rbMIT software

 \blacktriangleright Airfoil of the NACA 4-digits family (symmetric case)

Thickness distribution 4-digits profile

 $x_2 = \frac{\mu_1}{2}$

in parallel flow of the state of
The state of the st μ_1 u[∞] L Ω ∂Ω \vec{x}_1 x_2

 Ω

$$
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} -1 & 0 \\ 0 & \pm \mu_1/20 \end{pmatrix} \begin{pmatrix} 1-t^2 \\ 0.2969t - 0.1260t^2 - 0.3520t^4 + 0.2832t^6 - 0.1021t^8 \end{pmatrix}, t \in [0, \sqrt{0.3}]
$$

$$
\begin{pmatrix} x_1 \\ x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & \pm \mu_1/20 \end{pmatrix} \begin{pmatrix} 0.2969t - 0.1260t^2 - 0.3520t^4 + 0.2832t^6 - 0.1021t^8 \end{pmatrix}, t \in [\sqrt{0.3}, 1]
$$

[RB Simulation / Output Evaluation](#page-27-0) [Flow Control and Optimal Design with RB Methods](#page-32-0)

 QQ

STATES

 \Rightarrow 目

Potential Flows: Output Evaluation

► Parameters: thickness $\mu_1 \in [4, 24]$, angle of attack $\mu_2 \in [0.01, \pi/16]$ and profiles distance $(\mu_3, \mu_4) \in [0.85, 1] \times [1.2, 1.6]$

▶ Output: pressure coefficient $c_p = \frac{p - p_{in}}{\frac{1}{2}\rho |u_{in}|^2}$ around the profiles

[RB Simulation / Output Evaluation](#page-27-0) [Flow Control and Optimal Design with RB Methods](#page-32-0)

 2990

重

Thermal Flows: Output Evaluation

 \triangleright Thermal Flows around an airfoil with ground effect included

- ► Physical and geometrical parametrization: thickness $\mu_1 \in [4, 24]$, ground distance $\mu_2 \in [1.5, 3]$, Peclet number $\mu_3 \in [1, 100]$
- \triangleright The thermal boundary layer on the ground and on profile becomes thinner and more separated for higher Peclet n[um](#page-29-0)[ber](#page-31-0)[s](#page-29-0) - 一、一、一、 重き

Potential/Thermal Flows: Computational Costs

Average outflow temperature w.r. to ground distance μ_2 (thermal flow)

[RB Simulation / Output Evaluation](#page-27-0) [Flow Control and Optimal Design with RB Methods](#page-32-0)

Potential Flow: Shape Optimization Problem

Airfoil inverse design problem

$$
\min_{\mu \in \mathcal{D}} \left(\int_0^1 |p(s,\mu) - p_{\text{target}}(s)|^2 ds \right)^{1/2} + \lambda \left[\alpha(\mu) - 5^\circ \right]^2,
$$
\n
$$
\text{s.t.} \quad \int_{\Omega_o(\mu)} \nabla u \cdot \nabla v \, d\Omega_o = \int_{\Omega_o(\mu)} f v \, d\Omega_o \, \forall v \in H^1(\Omega_o(\mu))
$$
\n
$$
u = 0 \text{ on } \Gamma_{out}, \quad \frac{\partial u}{\partial n} = -1 \text{ on } \Gamma_{in}, \quad \frac{\partial u}{\partial n} = 0 \quad \text{elsewhere}
$$

- ▶ Choose target airfoil (ex: NACA4412) and compute pressure distribution p_{target} on its surface using the Bernoulli equation $(p = p_0 - \frac{1}{2}|\nabla u|^2)$
- \triangleright Objective: find small perturbation of reference airfoil NACA0012 s.t. pressure distribution on the airfoil surface is close to p_{target}
- \triangleright Add penalty term to enforce the constraint on the angle of attack $(AOA = 5^{\circ})$

[RB Simulation / Output Evaluation](#page-27-0) [Flow Control and Optimal Design with RB Methods](#page-32-0)

イロメ イ母メ イヨメ イヨメ

 2990

重

Potential Flow: Shape Optimization Problem

Geometrical parametrization: Free-Form Deformation Techniques

Geometrical parameters μ_1, \ldots, μ_P are chosen as the perturbations of a (small) lattice of FFD control points

[RB Simulation / Output Evaluation](#page-27-0) [Flow Control and Optimal Design with RB Methods](#page-32-0)

Potential Flow: Shape Optimization Problem

Pressure distributions and computational cost (online solution of the parametric PDE) [∗]

∗Results from T. Lassila, G. Rozza, Comput. Methods Appl. Mech. Engrg. 199 (2010) 1583–1592

†Reduction of 50:1 in parametric complexity compared to explicit nodal deformation

 \ddagger Reduction of 200:1 in linear system dimension

 Ω

[RB Simulation / Output Evaluation](#page-27-0) [Flow Control and Optimal Design with RB Methods](#page-32-0)

Thermal Flows: Optimal Design of Airfoils

Optimal heat exchange problem

$$
\min_{\mu \in \mathcal{D}} \quad \left[\overline{u}_{target} - \frac{1}{|\Gamma_{out}|} \int_{\Gamma_{out}} u \, d\Gamma \right]^2 + \lambda \left[\alpha(\mu) - \alpha_0 \right]^2,
$$
\n
$$
\text{s.t.} \quad \int_{\Omega_o(\mu)} \left(\varepsilon \nabla u \cdot \nabla v + v \vec{b} \cdot \nabla u \right) \, d\Omega_o = \int_{\Omega_o(\mu)} f v \, d\Omega_o
$$
\n
$$
\frac{\partial u}{\partial n} = 0 \text{ on } \Gamma_{out}, \ u = T_0 \text{ on } \Gamma_{in} \cup \Gamma_{free},
$$
\n
$$
u = T_1 \text{ on } \Gamma_{surf}, \quad u = T_2 \text{ on airfoil}
$$

- \triangleright Objective: find airfoil shape and vertical position s.t. average temperature over outflow equals \overline{u}_{target} and angle of attack equals α_0
- \blacktriangleright Heat exchange of an airfoil in exterior flow with $\vec{b} = [1; 0]$ and $\varepsilon = 0.2$ is considered
- \blacktriangleright Penalty term enforces the constraint on the angle of attack (AOA = α_0)

[RB Simulation / Output Evaluation](#page-27-0) [Flow Control and Optimal Design with RB Methods](#page-32-0)

Thermal Flows: Optimal Design of Airfoils^{*}

†Reduction of 100:1 in parametric complexity compared to explicit nodal deformation

 \ddagger Reduction of 436:1 in linear system dimension

∗Results from G. Rozza, T. Lassila, A. Manzoni, Proc. of Icosahom C[onfe](#page-35-0)r[enc](#page-37-0)[e,](#page-35-0) [200](#page-36-0)[9,](#page-37-0) [in](#page-31-0) [p](#page-32-0)[ress](#page-40-0) QQ

[RB Simulation / Output Evaluation](#page-27-0) [Flow Control and Optimal Design with RB Methods](#page-32-0)

Environmental Flows: Control of Air Pollution

Control of Air pollution

$$
\min_{\mu \in \mathcal{D}} J(\mu) = \int_{D_o(\mu_g)} |y(u(\mu_u)) - z_d|^2 d\Omega,
$$
\n
$$
\text{s.t.} \quad \int_{\Omega_o(\mu_g)} (\nu(\mu_p) \nabla y \cdot \nabla v + \mathbf{V}(\mu_p) \cdot \nabla y) \ d\Omega_o = \int_{\Omega_o(\mu_g)} u(\mu_p) v \ d\Omega_o
$$
\n
$$
\frac{\partial y}{\partial n} = 0 \text{ on } \Gamma_N, \qquad y = 0 \text{ on } \Gamma_D
$$

- \triangleright Goal: to regulate the pollutant emission by industrial plants in order to keep the pollutant level below a fixed threshold over an observation area
- **Parameters: control input** μ_u , which define the control function $u = u(\mu_u)$; physical input μ_p (e.g. viscosity, advection velocity); geometrical input μ_q (domain configuration)

[RB Simulation / Output Evaluation](#page-27-0) [Flow Control and Optimal Design with RB Methods](#page-32-0)

Environmental Flows: Control of Air Pollution[∗]

Control input μ_u : variable emission rate

 \blacktriangleright Use of reduced basis method for the efficient solution of the state and the adjoint parametrized problems

[∗]Results from A. Quarteroni, G. Rozza, A, Quaini, Advances in Nume[rical](#page-37-0) [Mat](#page-39-0)[he](#page-37-0)[mat](#page-38-0)[ic](#page-39-0)[s,](#page-31-0) [20](#page-32-0)[07,](#page-40-0) [p.](#page-26-0) [1](#page-27-0)[93-2](#page-40-0)[16](#page-0-0) 209

[RB Simulation / Output Evaluation](#page-27-0) [Flow Control and Optimal Design with RB Methods](#page-32-0)

Environmental Flows: Control of Air Pollution[∗]

Physical Input μ_p : wind direction

 \blacktriangleright Use of reduced basis method for the efficient solution of the state and the adjoint parametrized problems

[∗]Results from A. Quarteroni, G. Rozza, A, Quaini, Advances in Nume[rical](#page-38-0) [Mat](#page-40-0)[he](#page-38-0)[mat](#page-39-0)[ic](#page-40-0)[s,](#page-31-0) [20](#page-32-0)[07,](#page-40-0) [p.](#page-26-0) [1](#page-27-0)[93-2](#page-40-0)[16](#page-0-0) 209

[RB Simulation / Output Evaluation](#page-27-0) [Flow Control and Optimal Design with RB Methods](#page-32-0)

Environmental Flows: Control of Air Pollution[∗]

Geometrical Input μ_q : parametrized domain

 \blacktriangleright Use of reduced basis method for the efficient solution of the state and the adjoint parametrized problems

[∗]Results from A. Quarteroni, G. Rozza, A, Quaini, Advances in Nume[rical](#page-39-0) [Mat](#page-40-0)[he](#page-39-0)[matic](#page-40-0)[s,](#page-31-0) [20](#page-32-0)[07,](#page-40-0) [p.](#page-26-0) [1](#page-27-0)[93-2](#page-40-0)[16](#page-0-0) 209