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Model problem
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ω

Ω

Find a structure ω included into a fixed
bounded domain Ω ⊂ IR2 or IR3 such
that it minimizes a cost function W

inf
ω⊂Ω,|ω|≤V

W (ω)



Cost functions (objective functions)

• Usually W dépends on ω through the resolution of a PDE (or a system of PDE’s)
posed on ω.

• Mathematicians use classical objective functions (sometimes because of theirs good
properties rather than their relevance for applications).

• Real applications have sometimes “fuzzy” needs...

• Example of a popular objective function: compliance for elastic solids →“find the
most rigid structure for a given set of external forces and a given volume of constitutive
material”.

• Example of “fuzzy” needs: Optimize the
structure for various solicitations with molding
constraints, minimal size of small parts, minimal
radii of curvature everywhere, cooling of the
molded piece in less than a given time, etc...



Shape representation

The problem can be considers in two different ways, according to the shape
representation chosen:

• Reduce the number of parameters: parametrize the boundary with a (small) number
of points (e.g. using splines) and optimize the control points with classical optimization
algorithms
→ parametric optimization

• Search for ω in its full generality
→ topology optimization



Example of natural optimized structure (termite mounds)



Shape optimization in history (trial-error 1)

Bent pyramid in Dashur (Saqqara, Egypt)



Shape optimization in history (trial-error 2)

Beauvais Cathedral (France) (built between 1247 and 1569 !)



Bar trusses

Forth bridge (England) (1890)



Experimental shape optimization (Antoni Gaud̀ı)



Experimental shape optimization (Antoni Gaud̀ı)

Sagrada Familia (Barcelona, Spain) (1884-1926-20XX)



Observing natural shapes: a (more complex) related problem

What are the “natural” objective functions ?



Ill posed problem

• Not always existence of solutions (counter examples available)

• Local minima

• Numerical instabilities. No convergence under mesh refinement.



Model problem: optimal radiator (Tartar)

• Two conducting materials 0 < α < β

• Optimization domain: Ω = unit disc in IR2

• Uniformly heated domain with prescribed temperature u = 0 on the boundary.

• χ(x) ∈ {0, 1} characterizes the good (and expensive) conductor
→ conductivity at x ∈ Ω : A(x) = χ(x)β + (1− χ(x))α

• For a given layout χ, the temperature u is solution of{
−div (A(x)∇u(x)) = 1 in Ω

u(x) = 0 on ∂Ω



Model problem: optimal radiator (Tartar)

• The most conducting material β is supposed to be more expensive

• Two interesting problems:

1/ Find the cheapest configuration maximizing the mean temperature over Ω:

max
χ

( ∫
Ω

u(x)dx− `
∫

Ω

χ(x)dx
)
, for a given ` > 0

2/ Find the cheapest configuration minimizing the mean temperature over Ω:

min
χ

( ∫
Ω

u(x)dx+ `

∫
Ω

χ(x)dx
)
, for a given ` > 0



Model problem: optimal radiator (Tartar)

• Problem 1: easy computation in polar coordinates.
explicit classical solution:

0 < r < R0 : material β,

R0 < r < 1 : material α, with R0 = 2α
√

l

β − α

• Problem 2: minimizing sequence converging to the
minimum of the functional :

0 < r < R0 : material α,

R1 < r < 1 : material β, with R1 = 2β
√

l

β − α
R0 < r < R1 : fine mixture of α and β



Optimal radiator: numerical solution using homogenization

Xd3d 8.3.2 (21 Nov 2007)
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Optimal radiator: numerical solution using homogenization

Xd3d 8.3.2 (21 Nov 2007)
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Optimal radiator: numerical solution using homogenization
(penalized design)



Ill posed problem

3 ways to change it into a well posed problem:

• Change the problem and enlarge the set of admissible solutions (shapes)
→ relaxation (homogenization method)

• Add constraints (e.g. smoothness of the boundaries, topology) or regularizing terms
(perimeter)
→ narrow the set of admissible solutions (e.g. level set method)

• Work on finite dimension sets and do
numerical computations
→ evolutionary algorithms



Part 1: homogenization method



Historical facts about the homogenization method

• First theoretical intuition: Tartar (early 80’s)

• First “computer” simulations: Cherkaev (80’s, published in russian)

• First real computer simulations: Bendsoe-Kikuchi (1988) (rectangular holes, then
approximated homogenized material → SIMP method).



Basic equations of linearized elasticity

Linear elastic and isotropic material. Hooke’s law denoted A and characterized by Lamé
coefficients λ, µ.

If u is the displacement field, e(u) =
1
2

(∇u +∇uT ) the strain tensor, and the stress

tensor
σ = Ae(u) = λtr(e(u))I + 2µe(u)

On ω, the elasticity system is: −divσ = 0 in ω
σ · n = f on ∂ωN

u = u0 on ∂ωD

It admits a unique solution if meas(ωD) > 0 or if the external forces are well balanced,
i.e. ∫

∂ωN

fds = 0



Basic equations of linearized elasticity - fictitious material

ω is characterized by a characteristic function χ : Ω −→ {0, 1} such that

ω = {x ∈ Ω ;χ(x) = 1}

The system of elasticity can be written on the whole Ω:
−divχ(x)Ae(u) = 0 in Ω

σ · n = f on ∂Ω
σ · n = 0 on ∂ω \ ∂Ω

σ = 0 in Ω \ ω

with a natural (zero traction) on the boundaries of holes of ω

Remark: in numerical computations of topology optimization,“void” is often replaced by
a “soft” material in order to get a well posed problem over Ω. (fictitious material)



Various objective functions

• Compliance :

W (ω) =
∫

Ω

χ(x)Ae(u) : e(u)dx =
∫

Ω

A−1σ : σdx =
∫
∂Ω

f · u ds = c(ω)

Global measurement of the rigidity.
The most popular in topology optimization of structures (for practical and mathematical
reasons).
Achieved theory and powerful numerical methods.

• Cost function depending on the displacement: example

W (ω) =
{∫

ω

C(x)|u(x)− u0(x)|αdx
}1/α

where u0 is a given target displacement and α ≥ 2 a constant
→ compliant micromechanisms optimization (MEMS)

• Cost function depending on the stresses: example W (ω) =
∫

Ω

|σ|2



Other objective functions

• Weighted sum of compliances :

W (ω) =
∑
i

Ci

∫
Ω

χ(x)Ae(ui) : e(ui)dx =
∑
i

Ci

∫
Ω

A−1σi : σidx

=
∑
i

Ci

∫
∂Ω

fi · uids

Find the best compromise for a structure successively submitted to several loadings fi.
Displacement fields ui are solutions of the elasticity system for the loading case fi.

• Eigenfrequencies : The relevant problem is to maximize the smallest eigenvalues of
the structure. Using Rayleigh quotient, the problem is similar to the compliance case.



Compliance case

To get rid of the volume constraint, we introduce a positive Lagrange multiplier `:

inf
ω⊂Ω
{c(ω) + `|ω|}

Sum of two contradictory terms:
Find the best compromise between rigidity and weight

Complementary energy principle:

c(ω) =
∫
∂Ω

f · u ds = min8>>><>>>:
−divτ=0 in ω

τ ·n=f on ∂ω∩∂Ω

τ ·n=0 on ∂ω\∂Ω

∫
ω

A−1τ · τ



Compliance case

If τ is extended by 0 inside holes:

c(ω) =
∫
∂Ω

f · uds = min8<: −divτ=0 in Ω

τ ·n=f on ∂Ω

∫
Ω

(χ(x)A)−1τ · τ

Minimize c(ω) over all ω ⊂ Ω → double minimization. Switch the two minimization:

inf
ω⊂Ω
{c(ω) + `|ω|} = inf8<: −divτ=0 in Ω

τ ·n=f on ∂Ω

∫
Ω

F (τ)

where F (τ) =
{
A−1τ · τ + ` if τ 6= 0
0 if τ = 0



Ill posed problem (again)

• Mathematical hints: The minimizing sequences of characteristic functions can
converge to something else than a characteristic function.

• Mechanically: Many small holes may be more effective than a big one having the
same volume. Composite material having micro-holes may be solutions.

• Remedies:

• Fight: reduce the space of admissible shape to be sure that the computed solution
belong to it: add constraints and look for classical solutions (cf. part 2: level set).

• Give up: admit there is a problem and allow the weird things: enlarge the space of
admissible solution to allow composite materials with micro-holes→ homogenization
method.



Example

≥ ≥ ≥ ?



Homogenization

Rigorous way of computing the effective properties (macroscopic) of heterogeneous and
composite media.

For an heterogeneous medium where (small)
ε is the typical size of small details, the direct
computation is too expensive. We look for an
equivalent material, at the macroscopic scale,
that will be the limit material when ε→ 0.

Ω

ε



1d example

Consider a > 0 a 1-periodic function and the following problem: −
d

dx

(
a
(x
ε

) du
dx

)
= f in ]α, β[

u(α) = u(β) = 0

The limit problem as ε→ 0 writes: −
d

dx

(
a∗

du
dx

)
= f in ]α, β[

u(α) = u(β) = 0

where

a∗ =
1

1
β − α

∫ β

α

dy

a(y)

Harmonic mean value: not so intuitive!



Homogenization - Periodic case

If the microstructure is periodic, the homogenized coefficients can be computed
solving PDEs posed on the periodicity cell. In practice this computation is not explicit
except in some particular cases.

Two steps :

• Formal asymptotic expansion of the solution leading to the cell problems.

• Proof of the convergence to the homogenized equation (Tartar energy method) as
ε→ 0 and estimation of the error between the exact solution and the homogenized one
for a given value of ε.



Homogenization - Periodic case

Consider a Y−periodic Hooke’s law A(y) and the following elasticity problem with
oscillating coefficients: {

−div
(
A
(
x
ε

)
e(uε)

)
= f in Ω

uε = 0 on ∂Ω,

Ansazt for the two-scales asymptotic expansion:

uε(x) =
+∞∑
i=0

ui

(
x,
x

ε

)
,

where ui(x, y) is a function of both variables x and y, periodic in y with period Y =
(0, 1)N . The following derivation rule is used

∇
(
ui

(
x,
x

ε

))
=
(
ε−1∇yui +∇xui

) (
x,
x

ε

)
,

where ∇y and ∇x denote the partial derivative with respect to the first and second
variable of ui(x, y).



Homogenization - Periodic case

This series is plugged in the equation

f(x) = −ε−2 [divy (Aey(u0))]
(
x,
x

ε

)
−ε−1 [divy (A(ex(u0) + ey(u1))) + divx (Aey(u0))]

(
x,
x

ε

)

−
+∞∑
i=0

εi [divx (A(ex(ui) + ey(ui+1))) + divy (A(ex(ui+1) + ey(ui+2)))]
(
x,
x

ε

)
Identifying each coefficient as an individual equation yields a cascade of equations that
lead to the homogenized equation

−divx (A∗ex(u(x))) = f(x) in Ω,



Homogenization - Periodic case

The homogenized Hooke’s law A∗ is given by

A∗ijkl =
∫
Y

(A(y)ey(wij)kl +Aijkl(y)) dy

where the fields wij are solutions of the cell problems{
−divy (A(y) (eij + ey(wij(y)))) = 0 in Y
y → wij(y) Y -periodic,

where eij are the elements of the canonical basis of the space of symmetric matrices in
dimension d.



Homogenization - Non periodic case

In non periodic settings there is no explicit characterization of the homogenized
Hooke’s law but the limit problem can be established as well using the H-convergence
(or G-convergence) theory.

Moreover, if

Gθ =
{

all Hooke’s laws that can be built by homogenization
mixing 2 materials A1 and A2 in proportions θ and (1− θ)

}
,

some bounds of the energy over Gθ can be computed and are achieved by a particular,
explicit, class of periodic materials: the sequential laminates.



Sequential laminates

• Particular composites built sequentially

• Described by a small number of
parameters: global proportion of each
constitutive material, lamination rank,
lamination directions and lamination
proportions along each direction.

• Explicit formulas for A∗ function of these
parameters



Optimal bounds of the energy

• If d = 2, consider given 2 symmetric matrix τ whose eigenvalues are τ1 and τ2
(“principal stresses”). Let A be a given isotropic Hooke’s law characterized by its bulk
modulus κ and its shear modulus µ, and θ ∈ [0, 1] a given constant. If Gθ is the set of
all materials that can be built in mixing A and void in proportions θ and (1− θ) then

min
A∗∈Gθ

A∗−1τ · τ = A−1τ · τ +
(κ+ µ)(1− θ)

4κµθ
(|τ1|+ |τ2|)2

This minimum is attained for a rank 2 laminate whose lamination directions are the
eigenvectors of τ . The lamination proportions are |τ1|

|τ1|+|τ2|
and |τ2|

|τ1|+|τ2|
.

• Easy optimization over θ ∈ [0, 1]: θoptimal = min
{

1, (|τ1|+ |τ2|)
√

(κ+ µ)
4κµ`

}
• If d = 3 there is an analogous result, although involving more complicated formulas.

The energy bounds are attained for a rank 3 laminate (or rank 1 or 2 in some particular
cases) and the lamination directions are aligned with the principal directions of τ .



Remarks

• Non uniqueness of the optimal microstructures: there exist other, less usable,
optimal microstructures: confocal ellipsoids (2d, 3d), Vidgergauz inclusions (2d).

• Non uniqueness of the optimal laminate: example if τ = pI (hydrostatic pressure),
the lamination directions can be any directions. For a given τ in 2d, it is also possible
to find rank 2n optimal laminates, for any n.



Relaxation

Definition: enlarge just what is necessary the set of admissible shapes and change the
less possible the cost function so that the modified problem has a solution in the new
set of admissible solutions.

Initial formulation of the shape optimization problem:

inf
χ∈L∞(Ω;{0,1})

J(χ) =
∫

Ω

(χ(x)A)−1τ · τdx+ `

∫
Ω

χ(x)dx,

where τ is solution of {
−divτ = 0 in Ω
τ · n = f on ∂Ω,

relaxed formulation:

min
(θ,A∗)∈CD

J∗(θ,A∗) =
∫

Ω

(A∗)−1τ · τdx+ `

∫
Ω

θ(x)dx,

where τ is solution of {
−divτ = 0 in Ω
τ · n = f on ∂Ω,

and CD denotes the set of the generalized shapes that include composite materials.



Relaxation

The new set of admissible shapes is

CD =
{
θ ∈ L∞ (Ω; [0, 1]) , A∗(x) ∈ Gθ(x), ∀x ∈ Ω

}
,

where for each given θ(x) ∈ [0, 1], Gθ is the set of all homogenized Hooke’s laws
obtained by mixing A and void in respective proportions θ and (1− θ).

Gθ is unknown for elasticity !

But: it can be proved that Gθ is the set of all the Hooke’s law obtained by mixing A
and void in a periodic way with proportions θ and (1− θ).



Relaxation does not change (too much) the problem

inf
χ∈L∞(Ω;{0,1})

J(χ) = min
(θ,A∗)∈CD

J∗(θ,A∗)

• All the homogenized solutions can be attained as limits of minimizing sequences of
classical designs.

• If the initial problem admits a classical solution, it is solution of the relaxed problem
as well.



Miracle !

The relaxed formulation is expressed as a minimization problem over a set that is
partially unknown.

But the 2 minimizations, over the designs (θ,A∗) and the admissible stresses τ
can be exchanged. Moreover, thanks to the local character of the G − closure, the
minimization over the admissible designs can be put under the integral:

min8<: −divτ=0 in Ω

τ ·n=f on ∂Ω

∫
Ω

min
A∗∈Gθ
0≤θ≤1

(A∗−1τ · τ + `θ)

Then, for a given τ , minimizing A∗−1τ · τ over Gθ amounts to compute the bound of
the energy → explicit solution using sequential laminates.



Numerical algorithm

min8<: −divτ=0 in Ω

τ ·n=f on ∂Ω

∫
Ω

min
A∗∈Gθ
0≤θ≤1

(A∗−1τ · τ + `θ)

• First minimization: solve an elasticity problem for a given A∗(x)→ classical FEM
(or any efficient method).

• Second minimization: minimization over the shape parameters (θ,A∗) for given
τ(x) → explicit optimality conditions and optimal composites

Algorithm (alternate directions like):

1. Initialization of the design parameters (θ0, A
∗
0) (e.g. θ0 = 1 and A∗0 = A).

2. Itérations until convergence:

(a) Compute τn solving elasticity for the design variables (θn−1, A
∗
n−1).

(b) Update the design variable (θn, A∗n) using the explicit optimal composites for the
stress tensor τn.



Remarks

• The energy decreases at each iteration

• Not sensitive to initial guess and to mesh refinement

• Convergence ⇔ energy and shape parameters are stationary

• The weight parameter ` can be adjusted numerically to satisfy a volume constraint

•“void” is replaced by a “weak” material in order to have a valid system on all Ω.

• In 2d, rank 2 laminates are degenerate: their Hooke’s law has to be regularized

• In 2d, with square elements, some“checkerboard instabilities”can appear (no clear
explanation). They are easily filtered...

• After convergence to a generalized solution (with composites) it is possible to
penalize the composites to find a classical solution (mesh dependent)

• Displacement u is discretized by the FEM, and the shape parameters (θ,A∗) are
taken constant in each cell
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Stable by mesh refinement

Composite designs

Penalized designs



Other methods

• Rectangular holes + rotation in each cell. Homogenization computed numerically
and tabulated (Bendsoe-Kikuchi 88).

Drawbacks:

• No explicit properties of the composites

• Suboptimal composites → less efficient

• Isotropic composites. Consider only the isotropic composite in Gθ. The energy
bound over this subset is attained by rank 3 laminates in 2d and rank 6 laminates in 3d
with given direction:

Advantages: only 1 remaining shape parameter (θ) → simpler

Drawbacks: suboptimal composites



Other methods
• Convexification:

min
τ

∫
Ω

min
0≤θ≤1

((θA)−1τ · τ + `θ)

→ explicit and simple optimization of θ (the only shape parameter).
Some admissible shapes lie outside of Gθ. The local information of the lamination
direction is lost → poorer solutions.

Iterations
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Relaxation               
Convexification          
Penalizing from the start

Variant:
min

0≤θ≤1
((θpA)−1τ · τ + `θ), where p is a (quite) secret parameter → SIMP method



Multiple loads

W (ω) =
∑
i

∫
Ω

A−1σi : σidx =
∑
i

∫
∂Ω

fi · uids

fi are different loadings applied successively to the structure.

Relaxed problem can be written in the same way:

min
(θ,A∗)∈CD

J∗(θ,A∗) =
∫

Ω

∑
i

(
(A∗)−1τi · τi

)
dx+ `

∫
Ω

θ(x)dx,

where ∀i, τi is solution of {
−divτi = 0 in Ω
τi · n = fi on ∂Ω,

It can be proved (Francfort-Tartar) that there exists a rank 3 laminate in 2d and a rank
6 laminate in 3d that attains the bound on a sum of energies. But these laminate cannot
computed explicitly like in the single load case.



Multiple loads

The explicit phase of optimization over the shape parameters is replaced by a
numerical optimization:

• We look for a quasi-optimal composite in the class of the sequential laminates

• The number of lamination directions q is fixed as well as the directions: typically
q = 12 directions in 2d and q = 100 in 3d are enough to cover the whole half space

• The remaining parameters θ (global proportion) and (mi)1≤i≤q are optimized in
each cell of the mesh

• The optimization of mi is done by a gradient method. It is efficient since the
problem is convex in mi for fixed θ and lamination directions

• The optimization of θ remains explicit



Multiple loads example

1 2 3 4 5

Solution for loading 1

Solution for the 5 loadings together Solution for loading 2

Multi-loadings solution Solution for loading 3



Another cost function depending on the displacement

W (ω) =
{∫

ω

C(x)|u(x)− u0(x)|αdx
}1/α

where u0 is a given target displacement, α ≥ 2 and C ∈ L∞(Ω) is a given function
used to localize

u solution of {
−div(Ae(u)) = 0 in ω

Ae(u) · n = f on ∂ω ∩ ∂Ω
2 objectives:

• Minimize the displacement over a given area ( u0 = 0)→ more local criterion than
the compliance to optimize the rigidity

•Minimize the difference to a target displacement. It can be used as well to maximize
the displacement along a given direction → compliant mechanisms, MEMS



Relaxed formulation (total relaxation)

Find
min

(θ,A∗)∈CD
J∗(θ,A∗),

J∗(θ,A∗) =
(∫

Ω

θ(x)C(x)|u(x)− u0(x)|αdx
) 1
α

+ `

∫
Ω

θ(x) dx,

where u is solution of {
−div (A∗e(u)) = 0 in Ω

A∗e(u) · n = f on ∂Ω,

and CD is the set of admissible generalized shapes

CD =
{
θ ∈ L∞ (Ω; [0, 1]) , A∗(x) ∈ Gθ(x), ∀x ∈ Ω

}
,



Partial relaxation

min
(θ,A∗)∈LD

J∗(θ,A∗),

with
LD =

{
θ ∈ L∞ (Ω; [0, 1]) , A∗(x) ∈ Lθ(x), ∀x ∈ Ω

}
,

where Lθ(x) = { set of all the Hooke’s laws obtained by sequential lamination of A and
void in proportions θ and 1− θ }.



Remarks

• In the compliance case or Σ compliances, partial relaxation ⇔ total relaxation.

• For all other objective functions, it is not true (it is maybe true but not proved
yet...)

• An ill posed problem is replaced by another a priori ill posed problem. We expect
that it is at least “less ill posed”...

• In practical computations, the set of admissible composites is further restricted to
rank q laminates (q is fixed) with fixed lamination directions, just like in the multi-loads
case



Adjoint state

Since we derive with respect to shape parameters a function depending on the solution
of a PDE posed on this domain, the computation of the adjoint state in needed.

Remark: compliance is self-adjoint

The adjoint state p is solution of{
−div (A∗e(p)) = cαθC|u− u0|α−2(u− u0) on Ω

+boundary conditions

where cα =
(∫

Ω

θ(x)C(x)|u(x)− u0(x)|αdx
)1−α

α

.

p allows to compute the derivatives of J∗ with respect to the shape parameters θ and
(mi).



Numerical algorithm (projected gradient like)

• Initialization of the shape parameters θ0 and (mi)0 in each cell.

• Iteration until convergence k ≥ 0:

* Computation of uk (displacement) and pk (adjoint) for fixed θk and (mi)k.

* Updating of the shape parameters:

θk+1 = max(0,min(1, θk − tk∇θJ∗k))
mi,k+1 = max(0,mi,k − t′k∇mi

J∗k)

* The constraint
∑
mi,k = 1 is adjusted by a Lagrange multiplier.

* Descent steps tk and t′k are such that J∗(θk+1,mi,k+1) < J∗(θk,mi,k)



Examples of numerical simulations


