
Shape optimization (Lectures 3 & 4)

François Jouve
University Paris Diderot (Paris 7) & Laboratoire J.L.Lions
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Plan

• Lecture 1: Introduction to shape optimization. Homogenization method I

• Lecture 2: Homogenization method II. Algorithm and numerical issues

—

• Lecture 3: Domain variation. Level set method I

• Lecture 4: Level set method II and applications



Part 2: Level set method



1) Shape sensitivity optimization

• Hadamard method, revisited by many authors (Murat-Simon, Pironneau, Nice’s
school, etc.).

• Ill posed problem: many local minima, no convergence under mesh refinement.

• In practice, topology changes very difficult to handle.

• Very costly because of remeshing (3d).

• Very general: any constitutive equation or objective function.

• Widely used method.



2) Topology optimization

• Homogenization method (Murat-Tartar, Lurie-Cherkaev, Kohn-Strang, Bendsoe-
Kikuchi, Allaire-Bonnetier-Francfort-FJ, etc.).

−→ simple objective functions, linear models but well posed problem.

• Evolutionary algorithms (Schoenauer, etc.).

• Topological asymptotics, topological gradient (Soko lowski, Masmoudi, etc.).

• Very cheap because it captures shapes on a fixed mesh.



Level set method

• Combine some advantages of the shape sensitivity method and the topological
method (homogenization, topological gradient, SIMP)

• Based on the shape derivative (Hadamard, Murat-Simon).
* Easy handling of various objective functions
* Can be adapted to any direct problem (e.g. nonlinear)

• Shape representation by the 0 level set of a scalar field on a fixed mesh (Osher-
Sethian).
* Moderate cost
* No numerical instabilities due to remeshing
* Easy topology changes

• Remaining drawbacks:
1. reduction of topology (rather than variation) in 2d,
2. local minima.

Hint: coupling with the topological gradient



Setting of the problem

Linearly elastic material. Isotropic Hooke’s law A.
u displacement field, e(u) = 1

2

(

∇u+ ∇uT
)

deformation tensor.

Linearized elasticity system posed on ω ⊂ Ω (a
given open bounded domain):







−div
(

Ae(u)
)

= 0 in ω
u = 0 on ∂ω ∩ ΓD

(

Ae(u)
)

· n = g on ∂ω ∪ ΓN

It admits a unique solution.
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Objective functions

* Compliance:

J(ω) =

∫

ω

Ae(u) : e(u)dx =

∫

ω

A−1σ : σdx =

∫

∂ω

g · u ds = c(ω)

Global measurement of rigidity.
The most widely used in structural topology optimization.

Remark: the compliance maximization for 2 materials is related to damage models.

* Displacement dependent criterion: for example

J(ω) =

{
∫

ω

k(x)|u(x) − u0(x)|
αdx

}1/α

where u0 is a given target-displacement, α ≥ 2 and k a given multiplier.

Geometrical advantage: JGA(ω) = −
uout

uin
,

→ Micromechanical systems optimization (MEMS)



Objective functions

* Stress dependent objective functions:

Jσ(ω) =

{
∫

ω

|σ|α
}1/α

Jσtarget(ω) =

{
∫

ω

k(x)|σ − σ0|
α

}1/α

JVM(ω) =

{
∫

ω

(

(σ11 − σ22)
2 + (σ22 − σ33)

2 + (σ33 − σ11)
2 + 6(σ2

12 + σ2
23σ

2
31)

)α
}1/α



Objective functions

* Eigenfrequency(ies) maximization:

J(ω) = −ω1(ω)2

where ω1(ω) is the first eigenfrequency associated to the domain ω. It is given by the
Rayleigh quotient:

ω2
1 = min

v∈H1(ω)N, v 6=0
v=0 on ΓD

∫

ω

Ae(v) · e(v) dx
∫

ω

ρ|v|2dx

.

* Robust optimization (worst case compliance):

Jr(ω) = max
αadmissible perturbation

∫

∂ω

(g + α) · u ds



Objective functions

* Optimization of the buckling criterion:

Jb(ω) =
1

λ

where λ is the critical buckling load (solution of a generalized eigenvalue problem)

* Multiple loads:

J(ω) =

n
∑

k=1

∫

ω

Ae(uk) : e(uk)dx =

n
∑

k=1

∫

∂ω

gk · uk ds

(uk)k=1...n are n displacement fields solutions of n different elasticity problems where
(gk)k=1...n are independent loadings.

* Any linear combination of the above objective functions



Existence theory

Minimal set of admissible shapes

Uad =
{

ω ⊂ Ω, vol(ω) = V0, ΓN ⊂ ∂ω, meas(ΓD ∩ ∂ω) > 0
}

where Ω is open and bounded in IRN .

Usually, the minimization problem has no solutions in Uad.

Existence under additional conditions:

• Uniform cone condition (D.Chenais)
• Regularity condition (F.Murat, J.Simon)
• Perimeter constraint (L.Ambrosio, G.Buttazzo)
• In 2d, a uniformly bounded number of connected components of Ω \ ω (A.Sverak,
A.Chambolle, C.Larsen)



Existence theorem 1: Uniform cone condition

Definition: let θ ∈ (0, π/2), h > 0, ξ ∈ IRN , |ξ| = 1, the
cone of direction ξ, angle θ and height h is defined by

C(θ, h, ξ) = {x ∈ IRN , x.ξ > |x| cos θ, |x| < h}
θ

ξ
h

Definition: ω ⊂ IRN verifies the uniform cone condition if and only if ∃θ ∈
(0, π/2), h > 0, r > 0 such that ∀x ∈ ∂ω, ∃ξ(x) such that

∀y ∈ B(x, r) ∩ ∂ω, y + C(θ, h, ξ(x)) ⊂ ω

Remark 1: the cone condition does not imply regularity (corners allowed)

Remark 2: the cone condition avoids highly oscillating boundaries and cusps



Existence theorem 1: Uniform cone condition

Theorem [Chenais 75]: D ⊂ IRN a given domain. If

Uad1 = {ω ∈ Uad, ω verifies the uniform cone condition}

then
inf

ω∈Uad1

J(ω)

admits at least one solution.

Remark:: not useful for applications



Existence theorem 2: Regularity condition

Definition: diffeomorphisms of IRN :

T = {T : IRN → IRN , (T−Id) ∈W 1,∞(IRN , IRN) and (T−1−Id) ∈W 1,∞(IRN , IRN)}

If ω0 ⊂ IRN is a given open reference domain, bounded and smooth (e.g. C1) and

D(ω0) = {ω ⊂ IRN , ∃T ∈ T such that ω = T (ω0)}

then for ω1, ω2 ∈ D(ω0) we can define the pseudo-distance

d(ω1, ω2) = inf
T∈T ,T (ω1)=ω2

(

||T − Id||1,∞ + ||T−1 − Id||1,∞

)



Existence theorem 2: Regularity condition

Theorem [Murat-Simon 76]: if C > 0 and

Uad2 = {ω ∈ Uad ∩ D(ω0), d(ω, ω0) ≤ C}

then
inf

ω∈Uad2

J(Ω)

admits at least one solution.

Remark:: not useful for applications



Existence theorem 3: Additional regularizing term

Theorem [Ambrosio-Buttazzo 93]: if J̃(ω) = J(ω) + P (∂ω), where P (∂ω)
is an ad-hoc regularizing term involving the perimeter of the shape, then

inf
ω∈Uad

J̃(ω)

admits at least one solution.

Remark 1: avoids highly oscillating boundaries (like the cone condition)

Remark 2: useful in practice. The perimeter is easy to compute (e.g. using the
level set representation).



Existence theorem 4: Topological condition in 2d

Theorem [Sverak 93, Chambolle-Larsen 03]: for a given k ∈ IN,

Uad4 = {ω ∈ Uad, Ω \ ω has less than k connected components}

then
inf

ω∈Uad4

J(ω)

admits at least one solution.

Remark 1: strongly restricted to the 2d case

Remark 2: not (very) useful for applications



Numerical method strategy

1) Computation of the shape derivatives of the objectives functions (in a continuous
framework). → Murat-Simon method.

2) The derivatives are discretized. The shapes are modeled by a level set function on a
fixed mesh. The shape is varied by advecting the level set function following the flow of
the shape gradient.
−→ transport equation of Hamilton-Jacobi type.

3) From time to time, additional computation of the topological gradient to guess where
it may be advantageous to dig new holes (and back to point 1)).
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Shape derivative (Murat-Simon, Céa)

ω0 reference domain. We are interested in
variations of the form

ω = {x+ θ(x) | x ∈ ω0} =
(

Id + θ
)

ω0

with θ ∈W 1,∞(IRd; IRd).

θ(x) is a vector field that deforms the reference
domain ω0.

Lemma: For any θ ∈W 1,∞(IRd; IRd) such that ‖θ‖W 1,∞(IRd;IRd) < 1,

( Id + θ) is a diffeomorphism in IRd.

Definition:
The shape derivative of ω 7→ J(ω) at ω0 is the Fréchet derivative of
θ 7→ J

(

( Id + θ)ω0

)

at 0.



Shape derivative (Murat-Simon)

The shape derivative J ′(ω0)(θ)
depends only of θ · n on the
boundary ∂ω0.

(x)θ

(x)θ

x

n(x)

x+

ω

+θ)ω(I

0

0

Lemma: Let ω0 be a smooth bounded open set and J(ω) at differentiable function at
ω0. Its derivative satisfies

J ′(ω0)(θ1) = J ′(ω0)(θ2)

if θ1, θ2 ∈W 1,∞(IRN ; IRN) are such that

{

θ2 − θ1 ∈ C1(IRN ; IRN)
θ1 · n = θ2 · n on ∂ω0.



Examples of shape derivatives (I)

Objective-function defined in the domain: Let ω0 be a smooth bounded open set of class
C1 of IRN . Let f(x) ∈W 1,1(IRN) and J defined by

J(ω) =

∫

ω

f(x) dx.

Then J is differentiable at ω0 and

J ′(ω0)(θ) =

∫

ω0

div
(

θ(x) f(x)
)

dx =

∫

∂ω0

θ(x) · n(x) f(x) ds

for all θ ∈W 1,∞(IRN ; IRN).



Examples of shape derivatives (II)

Objective-function defined on the boundary: Let ω0 be a smooth bounded open set of
class C1 of IRN . Let f(x) ∈W 2,1(IRN) and J defined by

J(ω) =

∫

∂ω

f(x) ds.

Then J is differentiable at ω0 and

J ′(ω0)(θ) =

∫

∂ω0

(

∇f · θ + f
(

div θ −∇θn · n
))

ds

for all θ ∈W 1,∞(IRN ; IRN). Moreover if ω0 is smooth of class C2, then

J ′(ω0)(θ) =

∫

∂ω0

θ · n

(

∂f

∂n
+Hf

)

ds,

where H is the mean curvature of ∂ω0 defined by H = div n.



Shape derivative of the compliance

J(ω) =

∫

∂ω∪ΓN

g · u ds =

∫

ω

Ae(u) · e(u) dx,

J ′(ω0)(θ) =

∫

∂ω0

(

2

[

∂(g · u)

∂n
+Hg · u

]

−Ae(u) · e(u)

)

θ · nds,

where u is the state (displacement field) in ω0, and H the mean curvature of ∂ω0.

No adjoint state involved. The compliance problem is self-adjoint.



Shape derivative of the least-square criterion

J(ω) =

(
∫

ω

k(x)|u− u0|
αdx

)1/α

,

J ′(ω0)(θ) =

∫

∂ω0

(

∂(g · p)

∂n
+Hg · p−Ae(p) · e(u) +

C0

α
k|u− u0|

α

)

θ · nds,

where the state u is solution of the elasticity system and the adjoint state p is solution

of







−div (Ae(p)) = C0k(x)|u− u0|
α−2(u− u0) in ω0

p = 0 on ΓD
(

Ae(p)
)

· n = 0 on ΓN ∪ ∂ω0,

with C0 =

(
∫

ω0

k(x)|u(x) − u0(x)|
αdx

)1/α−1

.



Formal computation of the shape derivative (Céa 86)

Consider a general objective function

J(ω) =

∫

ω

j
(

x, u(x)
)

dx+

∫

∂ω

l
(

x, u(x)
)

ds,

Introduce the Lagrangian defined for (v, q) ∈
(

H1(IRd; IRd)
)2

by

L(ω, v, q) =

∫

ω

j(v) dx+

∫

∂ω

l(v) ds+

∫

ω

Ae(v) · e(q) dx−

∫

ω

q · f dx

−

∫

ΓN

q · g ds−

∫

ΓD

(

q ·Ae(v)n+ v ·Ae(q)n
)

ds.

v and q belong to a functional space that does not depend on ω, so we can apply the
usual differentiation rule to L.



Formal computation of the shape derivative (Céa 86)

The stationarity of the Lagrangian gives the optimality conditions of the minimization
problem.

〈
∂L

∂q
(ω, u, p), φ〉 = 0 = −

∫

ω

φ ·
(

div (Ae(u)) + f
)

dx

+

∫

ΓN

φ ·
((

Ae(u)
)

n− g
)

ds

−

∫

ΓD

u ·Ae(φ)nds.

• φ with compact support in ω → state equation

• vary the trace of φ on ΓN → Neumann boundary condition on u

• vary
(

Ae(φ)
)

n on ΓD → Dirichlet boundary condition on u



Formal computation of the shape derivative (Céa 86)

〈
∂L

∂v
(ω, u, p), φ〉 = 0 =

∫

ω

j′(u) · φdx+

∫

∂ω

l′(u) · φds

+

∫

ω

Ae(φ) · e(p) dx

−

∫

ΓD

(

p ·Ae(φ)n+ φ ·Ae(p)n
)

ds.

Integration by parts leads to

〈
∂L

∂v
(ω, u, p), φ〉 =

∫

ω

(

j′(u) − div (Ae(p))
)

· φdx+

∫

ΓN

φ ·
(

Ae(p)n+ l′(u)
)

ds

+

∫

ΓD

(

φ · l′(u) − p ·Ae(φ)n
)

ds.



Formal computation of the shape derivative (Céa 86)

• φ with compact support in ω → adjoint state equation:

−div (Ae(p)) = −j′(u) in ω.

• vary the trace of φ on ΓN → Neumann boundary condition on p:

(

Ae(p)
)

n = −l′(u) on ΓN .

• vary
(

Ae(φ)
)

n on ΓD → Dirichlet boundary condition on p:

p = 0 on ΓD.

We have found a well-posed boundary value problem for the adjoint state p.



Formal computation of the shape derivative (Céa 86)

The shape derivative of the objective function is obtained by differentiating L with
respect to ω in the direction θ

∂L

∂ω
(ω, u, p)(θ) =

∫

∂ω

θ · n
(

j(u) +Ae(u) · e(p) − p · f
)

ds

+

∫

∂ω

θ · n

(

∂l(u)

∂n
+H l(u)

)

ds

−

∫

ΓN

θ · n

(

∂(g · p)

∂n
+H g · p

)

ds

−

∫

ΓD

θ · n

(

∂h

∂n
+Hh

)

ds,

where h = u · Ae(p)n + p · Ae(u)n and H = div n is the mean curvature of the
boundary.



Formal computation of the shape derivative (Céa 86)

Taking into account the boundary conditions u = p = 0 on ΓD gives (after computation)

∂L

∂ω
(ω, u, p)(θ) =

∫

ΓN

θ · n

(

j(u) +Ae(u) · e(p) − p · f −
∂(g · p)

∂n
−H g · p

)

ds

+

∫

ΓD

θ · n
(

j(u) −Ae(u) · e(p)
)

ds

+

∫

∂ω

θ · n

(

∂l(u)

∂n
+H l(u)

)

ds.

Remark: this computation is only valid for a domain (1 phase + void).
In the 2 phases case, the spirit is the same but the result is much more complicated (see
damage evolution problem).



Front propagation by level set

Shapes are not meshed, but captured on a fixed mesh of a large box Ω.

Parameterization of the shape ω by a level set function:







ψ(x) = 0 ⇔ x ∈ ∂ω ∩ Ω
ψ(x) < 0 ⇔ x ∈ ω
ψ(x) > 0 ⇔ x ∈ (Ω \ ω)

• Exterior normal to ω : n = ∇ψ/|∇ψ|.
• Mean curvature: H = div n.
• These formula make sense everywhere in Ω, not only on the boundary ∂ω.
−→ natural extension



Level set



Hamilton-Jacobi equation

If the shape ω(t) evolves in pseudo-time t with a normal speed V (t, x), then ψ
satisfies a Hamilton-Jacobi equation:

ψ
(

t, x(t)
)

= 0 for all x(t) ∈ ∂ω(t).

deriving in t yields

∂ψ

∂t
+ ẋ(t) · ∇ψ =

∂ψ

∂t
+ V n · ∇ψ = 0.

As n = ∇ψ/|∇ψ| we obtain
∂ψ

∂t
+ V |∇ψ| = 0.

This equation is valid on the whole domain Ω, not only on the boundary ∂ω, assuming
that the velocity is known everywhere.
→ the description of the boundary of ω can remain implicit during the algorithm.



Application to shape optimization

If the shape derivative can be expressed as an integral of the form:

J ′(ω0)(θ) =

∫

∂ω0

v θ · nds,

then a valid descent direction, allowing J to decrease at the first order, is

θ = −v · n

Thus, solving
∂ψ

∂t
− v|∇ψ| = 0 in Ω

is equivalent to perform a descent algorithm where t is a descent parameter



Numerical algorithm

1. Initialization of the level set function ψ0 (e.g. a product of sinus).

2. Iterations until convergence for k ≥ 1:

(a) Computation of uk and eventually pk by solving a linearized elasticity problem on
the shape ψk. Computation of the shape gradient → normal velocity Vk

(b) Transport of the shape by the speed Vk (Hamilton-Jacobi equation) to obtain a new
shape ψk+1. (Several successive time steps can be applied for a same velocity field).
The descent step is controlled by the CFL condition on the transport equation and
by the decreasing of the objective function.

(c) Possible reinitialization of the level set function such that ψk+1 is the signed
distance to the interface.

3. Optionally: computation of the topological gradient to guess where holes may be dig,
and return to loop 2.



Topological Gradient (Soko lowski et al., Masmoudi et al.)

A scalar criterion used to guess where it may be useful to dig additional holes in a
converged solution that could be a local minimum.

Examples of topological gradients (2d elasticity, plane strains, Neuman boundary
conditions for the holes):

• Example 1 (Compliance optimization):

TG =
π(λ+ 2µ)

2µ(λ+ µ)
{4µσ(u) : e(u) + (λ− µ)trσ(u)tre(u)}

• Example 2 (Minimization of

∫

k(x)|u− u0|
α):

TG =
π

α
C0k(x)|u(x)−u0(x)|

α+
π(λ+ 2µ)

2µ(λ+ µ)
{4µσ(u) : e(p) + (λ− µ)trσ(u)tre(p)}
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Some technical points

• Q1 quadangular structured meshes (2d-3d) −→ classical upwind transport schemes.

• Possibilities of unstructured meshes −→ more complicated schemes for Hamilton-
Jacobi equation (Abgrall).

• ψ discretized at mesh nodes.

• Resolution of elasticity systems by finite elements:

{

−div
(

θ(x)Ae(u)
)

= 0 in Ω
+B.C.

with θ(x) a piecewise constant field defined by







θ = ε (≈ 10−3) if ψ > 0 for all the nodes of the element
θ = ad-hoc proportion if the 0 level set goes through the element
θ = 1 si ψ < 0 for all the nodes of the element



Transport (structured mesh)

Resolution of
∂ψ

∂t
− j|∇ψ| = 0 in Ω

by an explicit upwind scheme of 1st or 2nd order

ψn+1
i − ψn

i

∆t
− max(jn

i , 0) g+(D+
x ψ

n
i , D

−
x ψ

n
i ) − min(jn

i , 0) g−(D+
x ψ

n
i , D

−
x ψ

n
i ) = 0

with D+
x ψ

n
i =

ψn
i+1 − ψn

i

∆x
, D−

x ψ
n
i =

ψn
i − ψn

i−1

∆x
, and

g−(d+, d−) =
√

min(d+, 0)2 + max(d−, 0)2,

g+(d+, d−) =
√

max(d+, 0)2 + min(d−, 0)2.



Complex geometries

To deal with complex geometries of the design domain (i.e. non rectangular
geometries), 2 possibilities :

• Use an unstructured mesh (triangular or tetrahedral) → special schemes for
Hamilton-Jacobi resolution

• Use a large rectangular bounding box and a structured rectangular mesh. Introduce
an additional level set to define the fixed domain

Example of use of an additional level set (optimization of the inner part of a wing) :



Reinitialization of the level set

• The level set function is periodically reinitialized to avoid it to be too flat (→ poor
precision on ψ) or too steep (→ poor precision on ∇ψ i.e. the normal) after some
transport steps. It is done by solving

∂ψ

∂t
+ sign(ψ)

(

|∇ψ| − 1
)

= 0 in Ω,
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

1

0.5

0

0.1

0.2
0.3

0.4
0.5

0.6
0.7

1

0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

whose stationary solution is the signed distance to the interface
{

ψ(t = 0, x) = 0
}

.

Well well well...
That’s what you read in all the papers dealing with level sets
That is certainly true at the continuous level
Let’s see what happens for the discrete problem



Reinitialization of the level set

Example of function ψ on a rough mesh



Reinitialization of the level set

Manual and exact computation of the signed distance and plot of the new level sets !



Reinitialization of the level set

Level set after 100 iterations of exact computation of the signed distance !!



No reinitialization !
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Natural extension vs regularized velocity

• The natural extension of the velocity in the whole domain is less efficient than an
Hilbertian extension obtained by solving an elliptic problem taking the velocity at the
interface as Dirichlet boundary conditions.
−→ better convergence properties.

• Natural extension: the formula of the shape gradient is established on ∂Ω, but it
can be computed on the whole computational domain Ω.

• Hilbertian extension: obtained by solving an elliptic problem taking the velocity at
the interface ∂ω as a Dirichlet boundary condition.
−→ better convergence properties.

Xd3d 8.2.3 (21 Jun 2005)
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First eigenfrequency maximization

Boundary conditions, initialization and optimal shape of the double cantilever



Multi loads

Single load Multi loads



Additional perimeter term

No perimeter term 3 different perimeter terms



Nonlinear elasticity

Linear f = 1

f = 2 f = 3



No trick. You can see the large displacements

f = 3



Robust optimization

Optimize the structure for the“worst” perturbation of a given load.



Pressure applied on the (variable) boundary



Other objective-function: micromechanism design (MEMS)

input force

output force



What about the “weak material” ?



Multi loads MEMS



Why a stress based criterion ?



Why a stress based criterion ?



Shape derivative of a criterion depending on the stresses

J(ω) =

(
∫

ω

k(x)|σ − σ0|
αdx

)1/α

,

J ′(ω0)(θ) =

∫

∂ω0

(

∂(g · p)

∂n
+Hg · p−Ae(p) · e(u) +

C0

α
k|σ − σ0|

2

)

θ · nds,

where p is the adjoint state, solution of the adjoint problem:







−div (Ae(p)) = C0k(x)|σ − σ0|
α−2(σ − σ0) dans ω0

p = 0 sur ΓD
(

Ae(p)
)

· n = 0 sur ΓN ∪ ∂ω0,

avec C0 =

(
∫

ω0

k(x)|σ(x) − σ0(x)|
αdx

)1/α−1

.



Optimal cantilevers for ||σ||α

Compliance α = 2 α = 4



Optimal “L” for ||σ||α

α = 2 α = 3

α = 5 α = 10



Reentering corner for ||σ||α

Compliance α = 2 α = 4 α = 6



A compliant gripper

GA

∫

(|σ|4)1/4



A compliant gripper (deformed configuration)

GA

∫

(|σ|4)1/4



Compliant gripper (stress distribution for free jaws)

GA

∫

(|σ|4)1/4



Compliant gripper (stress distribution for blocked jaws)

GA
∫

(|σ|4)1/4



Compliance optimization of an electric mast



Stress optimization of an electric mast



Damage



Damage

• Damage of an healthy elastic material under a static or variable exterior force field

• Micro-structural phenomenons (e.g. micro-cracks) preserving a residual elasticity
in the damaged zones

• Irreversibility of the process: once damaged, a zone remains damaged for the rest
of the evolution

• Many mechanical models



The Francfort-Marigo model (1993)

• Quasi-static: dynamic and thermal effects are neglected.

• Two phases: “healthy” and “damaged” material, both linear elastic. Hooke’s laws
A0 and A1 well ordonned (in the sense of the quadratic forms): A1 ≥ A0.

• Typical rigidity ratio = 3 to 10, but A0 → 0 is also interesting.

• At each point x ∈ Ω, the material is damaged if the strain tensor e(u(x)) verifies

1

2
(A1 −A0) e(u(x)) : e(u(x)) ≥ κ,

where κ is the release of elastic energy per unit mass at critical strain values.

→ Griffith criterion = energetic criterion of damage.

Damage model ⇔ design problem
Layout of two materials in a given domain



The Francfort-Marigo model (1993)

• Linear elasticity but nonlinear model: the damaged zone depends on the strain
tensor, that depends on the damaged zone...

• Minimization problem: χ characteristic function of the damaged zone:

Aχ(x) = χ(x)A0 + (1 − χ(x))A1,

inf
χ

(

JD(χ) + κ

∫

Ω

χ(x)dx
)

JD(χ) = min
u∈V

(

1

2

∫

Ω

(

Aχ(x)e(u) : e(u) − fu
)

dx−

∫

ΓN

g.u ds

)

where
V = {u ∈ H1(Ω)d, u = uD on Γd}

e(u) =
1

2

(

∇u+ ∇uT
)



The Francfort-Marigo model (1993)

Double minimum (over u and χ). If there is an interface between the two materials,
for a given u, ∀x ∈ Ω:

min
χ∈{0,1}

{
1

2
Aχe(u) : e(u) + κχ}(x)

and the functionnal to minimize over all u ∈ V :

1

2

∫

Ω

min
(

A1e(u) : e(u), A0e(u) : e(u) + 2κ
)

dx−

∫

Ω

fu dx−

∫

ΓN

gu ds

• Ill posed problem

• Francfort-Marigo: relaxation by homogenization (use of fine mixtures of the two
phases and optimal microstructures)

• Global minima



Numerical example with homogenization

(Allaire, Aubry, FJ 1998)



Propagation of interfaces

• We are looking for local minima: quasi-static evolution of a damaged zone.

• Interface between two materials.

• Admissible interface variations: domain derivation (Hadamard, Murat-Simon)

• No new damage zones not connected to initialy damaged zones.

• Interface representation and propagation using level set techniques.
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Compliance minimization vs damage evolution

The variational formulation of the Francfort-Marigo is similar to the classical problem
of compliance minimization in topology structural optimization:

• Compliance minimization: find the best compromise between rigidity and weight.
The parameter κ governs the total volume of the optimized structure.

• Damage model: find the least rigid structure minimizing the volume of the damaged
zone under the constraint of the Griffith criterion.

• Main differences:

* Sign
* Time discretization + Irreversibility of the damaged zone
* Two non degenerated phases (→ more complicated formula for the shape derivative).



Outline of the numerical algorithm (classical level set method)

Time loop: at time ti, initialization of the level set function ψi
0 associated to the domain

χi−1 found at the previous time step

1. Initialization of the level set function ψ0.

2. Iterations for k ≥ 1:

(a) Computation of uk: for a given layout associated to ψk, solve the elasticity problem.
(b) Computation of the shape derivative.
(c) Propagation of the interface using the shape derivative (Hamilton-Jacobi equation)

→ New interface characterized by ψk+1.

Irreversibility: χi
k(x) ≥ χi−1(x), ∀k,∀x ∈ Ω.



Outline of the numerical algorithm (damage evolution)

Time loop: at time ti, initialization of the level set function ψi
0 associated to the domain

χi−1 found at the previous time step

1. Initialization of the level set function ψi
0.

2. Iterations for k ≥ 1:

(a) Computation of ui
k: for a given layout associated to ψi

k, solve the elasticity problem.
(b) Computation of the shape derivative.
(c) Propagation of the interface using the shape derivative (Hamilton-Jacobi equation)

→ New interface characterized by ψi
k+1.

Irreversibility: χi
k(x) ≥ χi−1(x), ∀k,∀x ∈ Ω.



Shape derivative of the compliance

JC(ω) =

∫

Γ∪ΓN

f · u ds =

∫

ω

Ae(u) · e(u) dx,

J ′
C(ω0)(θ) =

∫

∂ω0

(−Ae(u) · e(u)) θ · nds,



Shape derivative for the damage model

Additional difficulty: two materials instead of one material + void. → more terms...

J ′
D(ω0)(θ) =

∫

Σ

d(x)θ.n ds

with

d(x) =
[ 1

2(λ+ 2µ)

]

|σnn(u)|2 +
[ 1

2µ

]

|σtn(u)|2 − [µ] |ett(u)|
2

−
[ λµ

λ+ 2µ

]

| tr
(

ett(u)
)

|2 −
[ λ

λ+ 2µ

]

σnn(u) tr
(

ett(u)
)

,

enn = e(u)n.n ∈ IR, ett = e(u)t.t ∈ IR(d−1)×(d−1), ent = e(u)n.t ∈ IRd−1

[µ] = µ1 − µ0



Shape derivative for the damage model

Alternative expression to avoid degeneracy when Young modulus of A0 tends to 0:

d(x) =
1

2

(

σnn(u) · [enn(u)] − ett(u) · [σtt(u)] + 2σtn(u) · [etn(u)]
)

.

J ′
D → −1

2J
′
C when A0 → 0.

Remaining implementation problem: how to compute the jump terms (e.g. [σtt(u)])
across the implicit interface ?

Hint: Extension and regularization of the velocity. The regularized velocity have to
preserve the positivity of the red and green terms in the above expression.

Unexpected property of the model when A0 → 0: seems to give a model of crack
propagation quite easy to implement !



Shape derivative for the damage model

Alternative expression to avoid degeneracy when Young modulus of A0 tends to 0:

d(x) =
1

2

(

σnn(u) · [enn(u)] − ett(u) · [σtt(u)] + 2σtn(u) · [etn(u)]
)

.

J ′
D → −1

2J
′
C when A0 → 0.

Remaining implementation problem: how to compute the jump terms (e.g. [σtt(u)])
across the implicit interface ?

→ Extension and regularization of the velocity. The regularized velocity have to preserve
the positivity of some terms in the above expression.



Remarks

• The limit of the Francfort-Marigo model implemented using the level set
representation seem to numerically converge to a quite efficient model of crack
propagation

• Mesh refinement → scaling of κ with the mesh size

• The shape derivative for the interface between two materials could be useful to
make two-phases shape optimization



2d cracks



2d cracks (mode 2 - mesh refinements



Damage with a non-degenerated material



2d cracks



2d cracks



Bittencourt problem 1



Bittencourt problem 2



3d cracks - Mode 1



3d cracks - Mode 2



3d cracks - Mode 3



One technical issue

• The level set method can only evolve an existing interface. It includes damage
initiation starting from the boundary of the domain or evolution of existing damaged
areas.

But it cannot create a new damaged zone inside the domain starting from a fully
healthy structure.

• Solution: topological gradient: a scalar criterion that allows to guess where it may
be advantageous to dig new infinitesimally small holes (Soko lowski et al., Masmoudi et
al., Ammari).



Topological gradient
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Topological gradient



Another technical issue

Real materials show different behaviours in traction and compression: they are more
prone to damage under traction than compression.

→ Simple numerical trick: introduce 2 Griffith constants κ1 < κ2 for traction and
compression to get more realistic simulations.


