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Lecture 1: Basic Concepts

1. What is an optimal control problem (OCP)?

A typical OCP consists of 4 ingredients:

B a control function u;

a state equation, which associates with every control u a state function y;

a cost functional, which depends on u and y, to be minimized,;

various constraints to be obeyed by the control u and the state y.

Constraints on u are called control constraints, constraints on y state
constraints. Very often, the control and state constraints are pointwise
constraints. In this summer school, the state equation will be given by an
initial-boundary value problem for a PDE or by a variational inequality.
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Basic Concepts

Steps to be taken in the analysis on an OCP:

B Existence of a solution. Is it unique?

B Derivation of first-order necessary and second-order sufficient optimality
conditions

B Numerical approximation and analysis of the discretized problem. Do we have
convergence?

B Implementation of the discretized problem and calculation of an approximating
solution
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2. Examples: Linear state equations

Example 1: Optimal stationary heating

Let Q C R3 be the spatial location of a body to be heated/cooled at its boundary T.
We apply a heat source u (the control) to I" that is constant in time: u = u(x). We
aim to choose u in such a way that the corresponding temperature y = y(x) (the
state) is the “best approximation” to some desired yg = yq(x) in Q. Model:

min J(y,u) : 2/ |y (x) ’ dx+ = /|u (x) | ds(x),
subject to the state equation
—Ay = 0 in Q
dy

o(u—y) onTD

v

and the pointwise control constraints

ug(x) <u(x) <wup(x) onT.

Here, A > 0 is a parameter, and u,,u; are given.
This is a linear-quadratic elliptic boundary control problem.
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Examples: Linear state equations

Example 2: Optimal heat source

Assume here that Q is heated by a distributed heat source u acting in Q (e.g., by
electromagnetic induction). We then get:

min J(y,u) : 2/’)} dx+ /|u (x)|* dx
subject to
—Ay = Pu in Q
dy
— = O(yq— on I’
8\/ (ya y)
and

Here, y, = ext. temperature, B = B(x) given, e.g., B = xp for D C Q.

This is a linear-quadratic elliptic control problem with distributed control.
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Examples: Linear state equations

Example 3: Optimal nonstationary boundary control

This time we assume that Q C R? is heated over some time [0,7], T > 0. We want
to apply a control u = u(x,t) in such a way that a desired temperature distribution yq
isreachedat r =T.Weput Q:=Qx(0,T), Y :=Tx(0,T). Problem:

min J(y,u) : 2/’yxT —yo(x dx+2//|uxt\2ds
subject to
yp—Ay = 0 in O
dy
— = o(u— onXx
5y (u—y)
y(x0) = yox) in Q

and
ug(x,1) <u(x,t) <up(x,t) onkX.

This is a linear-quadratic parabolic boundary control problem.
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Examples: Nonlinear state equations

Example 4: Control of nonstationary flows

Nonstationary flows of incompressible media in Q ¢ R? (or R?) are described by the
Navier-Stokes equations

ut—RieAu—l—(u-V)u—i—Vp = f in Q
divu = 0 in O

u 0 onXx

u(+,0) = 1w in Q.

Here, typically, the velocity field u (which is in this case the state variable) is to be
controlled by the application of electromagnetic fields. In this case, f = gravity g +
Lorentz force j x B.

One then obtains a control problem with a nonlinear state equation.
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Examples: Nonlinear state equations

Example 5: Control of phase-field equations (C. Lefter + J. S., AMSA 17 (2007))

Consider a liquid-solid phase transition, and let y € [0, 1] denote the order
parameter: {y =0} < solid phase, {y =1} < liquid phase, {0 <y <1} <
“mush”. A typical model is (6 = absolute temperature)

F/
(o) =G0~ (b ) B0 - 2 no
, , . F,F smooth
Cv O+ (B1Fy(x) +F5(x))x: —A6 =0 In O, B (x) = k(xIn(x)
00 +(1—=x)In(1—x))
v —u-"0 onZ, | 0.
x(,0) = xo, 6(-,0) = 6y, in Q.

Control problem: Py
minJ (1, 0,u):= /Q (105,7) = 0 () + |2 (v.T) — 1o () 2) v+ 5 /Z u(x, )2 ds(x) dr

subject to the IBVP and the control constraints
0<ug <u(x,t) <uponkX.
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Nonlinear depencence on u

Example 6: A control-into-coefficients problem

Consider a clamped plate Q@ ¢ R?, which is described by the BVP

Abu(x)Ay) = f inQ

dy

= = =0 onl".
Y AY

Here, b > 0 and the load f are given; u € L”(Q) stands for the thickness (> 0!) of
the plate. A typical problem is:

minJ(y,u) 1= / u(x)dx (= the weight of the plate)
Q
subject to the BVP and the control and state constraints (= safety requirements)

O<m<ulkx) <M inQ

y(x) > —71 in Q,

where m,M,t > 0 are given.
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Examples: Optimal shape design problems

Example 7: Optimal layout of materials

Let Q ¢ R3 be a body composed of m different materials M; having thermal
conductivities k;, i = 1,...,m. Then the total thermal conductivity k of Q is

m
k(x) = Z xi(x) k;, where y; is the characteristic function of the region occupied by
i=1

M; .
Problem: Given a heat source f, what is the optimal distribution of the materials in
Q that maximizes the temperature y in a given subdomain o C Q? Model:

min {_ /w y(x) dx}

subject to

— =0 onI".

The optimization parameters are the subsets of 2 occupied by the various materials.
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Examples: Optimal shape design problems

Example 8: Electrochemical machining

This is an OCP with a variational inequality as state
equation:

. 1 )
J(D) = = d
_min J(D) = 5 [ [y(x)Pds

E\C
subject to
/Vy Viy—2)(x)dx < /f —z(x))dx,
D\C D\C

VzeS={weH (D\C):w|ye=0

wlgp=1,w>0 a.e.inD\C},

C: core

D : machine

dC,dD: electrodes

E \ C: desired shape
(choice of E)

E,={xeD\C:y(x)=0}:

final shape obtained
To guarantee: E, D E\ C'!
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3. Review of finite-dimensional theory

1. Let: J=J(y,u) : R" x R — R cost functional to be minimized
AeRY BeR"™" U,; CR™ nonempty. We consider:

minJ(y,u)

Convention: All vectors are column vectors!
Ay=Bu,uec U,y

A
2

1 , :
Example: J(y,u) = §|y—Yd|2 + Z|ul?, y; € R" given; | -| = Euclidean norm

Assume: JA~! = y = Su, with the solution matrix S:=A"!B.

— reduced cost functional f(u) :=J(y,u) =J(Su,u).

A
Su—yd\2+§\u|z-

1
In the example: f(u) = 3

— reduced problem | minf(u), u€Uy
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Review of finite-dimensional theory

2. Existence:

Def.: If u e U, satisfies f(a) < f(u) VYueU,, then i is called optimal control,
and vy := Si is called associated optimal state.

Theorem: Let J:R" xU,; — R be continuous, U,; # 0, closed, bounded. If
3A~!, then 3 an optimal pair (i,7).

Proof: f is continuous on the compact set U, .
3. First-order necessary optimality conditions:

We use the notation: for differentiable f: R™ — R we write
f'(u)h=Vf(u)-h,heR™. Let J be continuously differentiable w.r.t. y,u.
— f(u) =J(Su,u) is C!

Theorem: Let U,; be convex. Then any optimal control iz satisfies the variational
inequality: f"(u)(u—i) >0 YueUy,y.
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Review of finite-dimensional theory

Chainrule:  f'=D,JS+D,J, and thus

fl(@h = DyJ(Si,ia)Sh+D,J(Si,i)h
= (VyJ(3.a), A" Bh) g, + (VuJ (5,0) , h) g

— (BT(AT)—IV)’J(yaﬁ)+Vu]()771/_t)7h)Rm'

—> Variational inequality becomes

(B"(ANT'VYIG,0) + Ve (F.0), t — 1) g >0 Vi € Upg.

This requires to evaluate the inverse of A' , which is usually a bad idea. We therefore
introduce the adjoint state p, givenby p = (A")~'V,J(3,i), which solves the
adjoint state equation

Al p=V,J(3,i).
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Review of finite-dimensional theory

A

1
Example: J(y,u) = §|y—yd|2+§|u|2 — A'p=y—y.

Advantages: First-order condition simplifies, use of A~! is avoided. Also the form
of Vf(it) simplifies: Vf(ii) =B' p+V,J(3,i).

— f/<lz)h — (BTp—’—VuJ()_/,IZ),h)Rm -

Theorem 1: Suppose JA~!. Let (7,i) be an optimal pair. Then there exists an
associated adjoint state p such that (y,u,p) = (3,i, p) solves

Ay=Bu, uecU,y
A'p=VyJ(y,u)

(BTerVuJ(y,u), V—u)Rm >0 VYveUy.

In the case U,; = R™ follows: B' p+V,J(3,i) = 0.
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Review of finite-dimensional theory

1 A
Example: J(y,u) = 3 ICy—yal* + ) ul?, CeR™",

— VyJ(,u)=C"(Cy—y4),  VuJ(yu)=Au
—> Optimality system:

Ay=Bu, uelU,y
Alp=C"(Cy—ya)
(BTp—l—?Lu, V_”)Rm >0 VveUy.

1
If U,y =R™,then B' p+Aia=0,andif A >0, then i1 = —IBTp. We obtain the

optimality system

1
Ay = —IBBTp

Alp=C"(Cy—yyg)
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Review of finite-dimensional theory

4. Lagrangians

Def.: The function L: R?""" — R, L(y,u,p) :=J(y,u) — (Ay — Bu, p)g~, is called the
Lagrangian function of the OCP.

Using L, we can eliminate the equality constraint Ay = Bu from the problem. The
second and third optimality conditions read:

— (y,u) solves the necessary optimality conditions of a minimization problem
without equality constraints:

min L(y,u, p), ucU,,, yeR".
(v, u)

Remark: p plays the role of a Lagrange multiplierto Ay =Bu.
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Review of finite-dimensional theory

5. Discussion of the variational inequality

We now assume box constraints for u:
Upg ={ueR" :ug <u<up}, wuq,up € R™ (componentwise)
Variational inequality yields
(B'p+VuJ(3,0), ) gn < (B' p+VuJ(F,00), t) g Vit € Uyy

— 11 Solves

m

B'p+V,J — mi B' p+V,JG,i)) . u;
ulgtlfﬂld< PVl (3,0), u) g, ulgll]gdi;l( pAVud(3,i)),u;
Since u; are independent of each other —-
(B'p+VuJ(G,i)).4;= min (B'p+V,JF,a))u;, 1<i<m.

Ug.i <u; Sub i
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Review of finite-dimensional theory

Hence, we must have:

We have no direct information if (B' p4V,J(3,i)); = 0.

Notice that we only need information about (B' p+V,J(3,i)), not about p, i

directly!

Moreover, putting (with z; := %(!zl +2), z— = %(Iz| —2))
o = (BTp_+VuJ()7, ﬁ))_|_
Hp = (BTp_‘i‘VuJ()_’aﬁ))_a
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Review of finite-dimensional theory

We find that
Ua Z Oa Ug — u S 07 (ua T IZ, ua)Rm —
uy > 0, a—uy < 0, (@—up, Wp)gn =

These are the so-called complementary slackness conditions.

Remark: We obviously have u, —u, =V, J(3,i)+B' p

(1) — Vuj(yaﬂ)+BTp__Na‘|‘ub:O
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Review of finite-dimensional theory

6. The Karush—Kuhn-Tucker conditions

Introduce the extended Lagrangian . by adding the inequality constraints in the
form

"%(yauapmuaaub) = J(y,l/t) — (Ay_Buap)Rn + (ua —Uu, Ua)Rm + (u_uba.ub)Rm-

Then, using (1),
Vuog(yaﬁapmuanub) =0.

Moreover, since V,.2 =V, L, the adjoint equation can be written as
Vyg(yal’_tap_a.uamub) = 0.

Hence, u,, u; are the Lagrange multipliers corresponding to the inequality
constraints, and we have:
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Review of finite-dimensional theory

Theorem 2 (Karush—Kuhn—Tucker conditions)

Suppose A Let Uy = {u € R™ : u, <u<up}.lf (i) is an optimal pair, then 3
multipliers p € R" and u,, 1, € R™ such that:

Vyog(yﬂzaﬁnu(l?ub) =0
Vug(iaﬁapvuanub) =0
HaZOa ;ubZO

(g —it, Ha) = (@—up, 4p) =0
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4. General existence results

We assume:

(A1) V.U are reflexive Banach spaces with duals V*, U™ ; H is a Hilbert space with
V C H with continuous embedding

(A2) U,; is nonempty, closed and convex in U ;
C is nonempty, closed and convex in H

(A3) Ac Z(V,V*), BeZU,V*), feV*
(Ad) J:V xU — (—oo,+00| is proper, convex, l.s.c.

We consider the control and state constrained OCP:;
min J(y,u) subjectto Ay=Bu+f, ucU,, y€eC.

We assume admissibility:
(A5) d(yo,ug) € C x U,y suchthat Ayg=Bug+ f and J(yg,uy) < +oo.
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General existence results

Theorem 3: Suppose 3A~! € Z(V*,V).If Uy is bounded or J is uniformly
coercive in u, i.e.,

(2) lim J(y,u) = +eo uniformly in y,

lul[y—oo

then OCP has at least one optimal pair (y,i) € Cx U,y .

Proof: If U,; is bounded, redefine J outside V x U,; by +co. We thus may
assume that (2) holds. By (A5), 3 minimizing sequence {u,} such that, with
ya =A"1Bu, € C, we have

lim J(y,,u,) = inf(OCP) =: ¢§.

n—oo

By (2) {u,} is bounded in U, and therefore {y,} is bounded in V. We thus may
assume that (y,,u,) — (7,i) weakly in V x U, and hence in H x U . Consequently,
by (A2), we have (¥,i) € C x U,y . Moreover, 3 =A~! Bi. Since J is weakly I.s.c. on
V x U, we find that

J(y,0) < ligi;lf](yn,un) =0. O
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General existence results

We now consider the more general state equation

(3) A(u)y +9o(y) > Bu+ f.

Here, we assume B¢ Z(U,V*), f € V* (as above) and:

(AB) ¢ :V — (—oo,+oo| is proper, convex, l.s.c., with subdifferential
Ip(x) ={w eV o) —@(v) < (wx—Vv)yixy VveV}

(A7) (i) A(u) € Z(V,V*) YueUy
(ii) up — u strongly in U = A(u,,) — A(u) strongly in Z(V,V*)

(i) (A(u)y.y)v-xy = mly|} ¥y eV, for some m>0.

J,U,s,C have the same properties as above.
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General existence results

Theorem 4: Let the above conditions be satisfied, and suppose (yg,ug) € C X Uyy
such that A(ug)yo+0¢(yg) > Bug+ f and L(yg,up) < 4+ (admissibility).

Then the OCP
minJ(y,u), subject to (y,u) € C x U,; and (3)

has a solution provided that one of the following conditions is satisfied:

(a) U,y C U is compact (but not necessarily convex!)

(b) C CV is compact (but not necessarily convex!), U,; C U is bounded, and the
mapping u — A(u) is linear and bounded.
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General existence results

Proof (only of (a)): Pick a minimizing sequence {u,} C U, , J(yn,u,) — inf (OCP),
where {y,} C C and A(u,)y, +3®(y,) 2 Bu,+ f .

Since U, is compact, we may assume that ||u,, —u||y — 0 for some u € U, .
Then Bu, — Bu strongly in V*,and A(u,) — A(u) strongly in Z(V,V*).
Now, VneN Jv, € do(y,) : A(up) yn+ Vi = Bupy + f .

The monotonicity of the graph d¢ (¢ is convex!) yields:

(Bup+ f,yn —y1)vexv
= (A(Un)Yn,Yn —Y1)vexv + (Vo — Vi, Y0 — V1) vexv + (V1,0 — Y1) vexv

> (A(tn) Yn —31)sYn —=Y1)vexv + (An)y1, 90 — Y1) vexv — Vi v |lyn = y1llv-
By (A7), we thus can find some C; > 0 such that

mHyn_)’1||\2/ < (i H)’n_)’lHV VneN.

—> {y,} is bounded in V, and we may assume there is some subsequence,
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General existence results

again indexed by n, such that

yn —y weakly in V andclearly yeC.

Denoting by A(u)* : V ~ V** — V* the dual operator of A(u), we find VveV:

[(A(un)yn, V)vesv — (A(u)y, V)vexv|
< |(A(un)yn> V)V*XV — (A(u)yna V)V*XV|
+[(A(u)yn, VIvexy — (A(u)y, V)vexy|

< Vv |A(un)yn — A(w)ynlve + |(yn — 3, A(U)*V)y xv+|

< Vv [A(un) = A vy Yalv 410 =3, A@)" V)yxv+| =0
aS n — oo,

Moreover, it follows from (A7) that
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General existence results

(4) liminf (A(un)yn, Yn — Y)vexv

n—oo

= liminf [(A(un)(Yn =), Yn = Y)vexv + (A(Un) Y, 90 —Y)vexv]

n—oo

> liminf (A(up)y,yn —y)v+xv

Nn— o0

Now, the definition of d¢ implies that
VveV:ov) — on) > (Buy + f — A(un) Yn, V— uy)vsxv

= (A(tn)YnsYn = Y)vexv +@On) < (Btn + f,¥n —Y)vexv + @)

But then, owing to the lower semicontinuity of ¢,

(5) limsup (A(un) yn,y = yn)vexv < @(y) _lir{r_l)igf ®(yn) <0

n—oo
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General existence results

From (4), (5), we conclude that

lim (A(un)yn,yn —y) = 0.

n—oo

On the other hand,

(Atn)Yn = A(tn)y, Y0 = ¥)vsv = mllyn =¥,
thatis, y, — y strongly in V, for a subsequence indexed by 7.

Moreover, since A(u,) — A(u) strongly in Z(V,V*) and y, — y strongly in V, we
have

A(un)yn — A(u)y weakly in V*.
Finally, observe that the maximal monotone operator d¢ is demiclosed, i.e., we

have: whenever v, € d¢(z,), ||zn —z|]lyv — 0 and v, — v weakly in V*, then
ve Jdo(z).

Mini-Course “Introduction to Optimal Control Problems for PDEs” - Cortona, July 2010 -
Page 30 (31)

I\

A



General existence results

Now,
Vo =Bup+ f—A(up)yn — v=Bu+f—A(u)y weaklyinV*.
Then,
V=Bu+f—A(u)y € 9p(y),

and the pair (y,u) € C x U,,; is admissible. The minimality follows again from the
lower semicontinuity of J. ]
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