

Weierstrass Institute for Applied Analysis and Stochastics

Mini-Course "Introduction to Optimal Control Problems for PDEs"

Jürgen Sprekels, Weierstrass Institute for Applied Analysis and Stochastics (WIAS), Berlin, Germany

Lecture 1: Basic Concepts

Lecture 2: Elliptic Control Problems

Lecture 3: Linear-quadratic Parabolic Control Problems

Lecture 4: Necessary Optimality Conditions for General Optimization Problems in Banach Spaces

Mohrenstrasse 39 · 10117 Berlin · Germany · Tel. +49 30 20372 0 · www.wias-berlin.de Cortona, July 2010

1. What is an optimal control problem (OCP)?

A typical OCP consists of 4 ingredients:

- **a control function** u;
- **a state equation**, which associates with every control *u* a **state function** *y*;
- **a cost functional**, which depends on u and y, to be minimized;
- various constraints to be obeyed by the control u and the state y.

Constraints on *u* are called **control constraints**, constraints on *y* **state constraints**. Very often, the control and state constraints are **pointwise constraints**. In this summer school, the state equation will be given by an initial-boundary value problem for a PDE or by a variational inequality.

Steps to be taken in the analysis on an OCP:

Existence of a solution. Is it unique?

Derivation of first-order necessary and second-order sufficient optimality conditions

- Numerical approximation and analysis of the discretized problem. Do we have convergence?
- Implementation of the discretized problem and calculation of an approximating solution

Example 1: Optimal stationary heating

Let $\Omega \subset \mathbb{R}^3$ be the spatial location of a body to be heated/cooled at its boundary Γ . We apply a heat source u (the control) to Γ that is constant in time: u = u(x). We aim to choose u in such a way that the corresponding temperature y = y(x) (the state) is the "best approximation" to some desired $y_\Omega = y_\Omega(x)$ in Ω . Model:

min
$$J(y,u) := \frac{1}{2} \int_{\Omega} |y(x) - y_{\Omega}(x)|^2 dx + \frac{\lambda}{2} \int_{\Gamma} |u(x)|^2 ds(x),$$

subject to the state equation

$$\begin{aligned} -\Delta y &= 0 & \text{in } \Omega \\ \frac{\partial y}{\partial v} &= \alpha \left(u - y \right) & \text{on } \Gamma \end{aligned}$$

and the pointwise control constraints

$$u_a(x) \le u(x) \le u_b(x)$$
 on Γ .

Here, $\lambda > 0$ is a parameter, and u_a, u_b are given.

This is a linear-quadratic elliptic boundary control problem.

Example 2: Optimal heat source

Assume here that Ω is heated by a distributed heat source *u* acting in Ω (e.g., by electromagnetic induction). We then get:

$$\min J(y,u) := \frac{1}{2} \int_{\Omega} \left| y(x) - y_{\Omega}(x) \right|^2 dx + \frac{\lambda}{2} \int_{\Omega} |u(x)|^2 dx,$$

subject to

$$\begin{aligned} -\Delta y &= \beta u & \text{in } \Omega \\ \frac{\partial y}{\partial v} &= \alpha (y_a - y) & \text{on } \Gamma \end{aligned}$$

and

$$u_a(x) \le u(x) \le u_b(x)$$
 in Ω .

Here, $y_a = \text{ext. temperature}$, $\beta = \beta(x)$ given, e.g., $\beta = \chi_D$ for $D \subset \Omega$.

This is a linear-quadratic elliptic control problem with distributed control.

Example 3: Optimal nonstationary boundary control

This time we assume that $\Omega \subset \mathbb{R}^3$ is heated over some time [0,T], T > 0. We want to apply a control u = u(x,t) in such a way that a desired temperature distribution y_{Ω} is reached at t = T. We put $Q := \Omega \times (0,T)$, $\Sigma := \Gamma \times (0,T)$. Problem:

$$\min J(y,u) := \frac{1}{2} \int_{\Omega} |y(x,T) - y_{\Omega}(x)|^2 dx + \frac{\lambda}{2} \int_{0}^{T} \int_{\Gamma} |u(x,t)|^2 ds(x) dt,$$

subject to

$$y_t - \Delta y = 0$$
 in Q
 $\frac{\partial y}{\partial v} = \alpha (u - y)$ on Σ
 $y(x, 0) = y_0(x)$ in Ω

and

$$u_a(x,t) \le u(x,t) \le u_b(x,t)$$
 on Σ .

This is a linear-quadratic parabolic boundary control problem.

Example 4: Control of nonstationary flows

Nonstationary flows of incompressible media in $\Omega \subset \mathbb{R}^2$ (or \mathbb{R}^3) are described by the Navier–Stokes equations

$$u_t - \frac{1}{Re} \Delta u + (u \cdot \nabla) u + \nabla p = f \quad \text{in } Q$$

$$\operatorname{div} u = 0 \quad \text{in } Q$$

$$u = 0 \quad \text{on } \Sigma$$

$$u(\cdot, 0) = u_0 \quad \text{in } \Omega.$$

Here, typically, the velocity field u (which is in this case the state variable) is to be controlled by the application of electromagnetic fields. In this case, $f = \text{gravity } g + \text{Lorentz force } j \times B$.

One then obtains a control problem with a nonlinear state equation.

Example 5: Control of phase-field equations (C. Lefter + J. S., AMSA 17 (2007))

Consider a liquid-solid phase transition, and let $\chi \in [0,1]$ denote the order parameter: $\{\chi = 0\} \Leftrightarrow$ solid phase, $\{\chi = 1\} \Leftrightarrow$ liquid phase, $\{0 < \chi < 1\} \Leftrightarrow$ "mush". A typical model is (θ = absolute temperature)

$$\begin{split} \mu(\theta)\chi_t &= -F_1'(\chi) - \left(\frac{\beta_1}{\theta} + \beta_2\right)F_2'(\chi) - \frac{F_3'(\chi)}{\theta} & \text{in } Q, \\ C_V\theta_t + (\beta_1F_2'(\chi) + F_3'(\chi))\chi_t - \Delta\theta &= 0 & \text{in } Q, \\ \frac{\partial\theta}{\partial\nu} &= u - \theta & \text{on } \Sigma, \\ \chi(\cdot, 0) &= \chi_0, \ \theta(\cdot, 0) &= \theta_0, & \text{in } \Omega. \end{split}$$

Control problem:

$$\min J(\boldsymbol{\chi},\boldsymbol{\theta},\boldsymbol{u}) := \frac{1}{2} \int_{\Omega} \left(|\boldsymbol{\theta}(\boldsymbol{x},T) - \boldsymbol{\theta}_{\Omega}(\boldsymbol{x})|^2 + |\boldsymbol{\chi}(\boldsymbol{x},T) - \boldsymbol{\chi}_{\Omega}(\boldsymbol{x})|^2 \right) d\boldsymbol{x} + \frac{\lambda}{2} \int_{\Sigma} |\boldsymbol{u}(\boldsymbol{x},t)|^2 d\boldsymbol{s}(\boldsymbol{x}) dt$$

subject to the IBVP and the control constraints $0 < u_a \le u(x,t) \le u_b$ on Σ .

Example 6: A control-into-coefficients problem

Consider a clamped plate $\,\Omega \subset \mathbb{R}^2$, which is described by the BVP

$$\Delta(b u^3(x) \Delta y) = f$$
 in Ω
 $y = \frac{\partial y}{\partial v} = 0$ on Γ .

Here, b > 0 and the load f are given; $u \in L^{\infty}(\Omega)$ stands for the thickness (>0!) of the plate. A typical problem is:

min
$$J(y,u) := \int_{\Omega} u(x) dx$$
 (= the weight of the plate)

subject to the BVP and the control and state constraints (= safety requirements)

$$\begin{array}{ll} 0 < m \leq u(x) \leq M & \text{ in } \Omega \\ y(x) \geq -\tau & \text{ in } \Omega \,, \end{array}$$

where $m, M, \tau > 0$ are given.

Example 7: Optimal layout of materials

Let $\Omega \subset \mathbb{R}^3$ be a body composed of *m* different materials M_i having thermal conductivities k_i , i = 1, ..., m. Then the total thermal conductivity *k* of Ω is $k(x) = \sum_{i=1}^m \chi_i(x) k_i$, where χ_i is the characteristic function of the region occupied by M_i .

Problem: Given a heat source f, what is the optimal distribution of the materials in Ω that maximizes the temperature y in a given subdomain $\omega \subset \Omega$? Model:

$$\min_{k} \left\{ -\int_{\boldsymbol{\omega}} y(x) \, dx \right\}$$

subject to

$$-
abla \cdot (k(x) \nabla y) = f \quad \text{in } \Omega$$
 $\frac{\partial y}{\partial v} = 0 \qquad \text{on } \Gamma.$

The optimization parameters are the subsets of Ω occupied by the various materials.

Example 8: Electrochemical machining

This is an OCP with a variational inequality as state equation:

$$\min_{E \subset D \subset \Omega} J(D) = \frac{1}{2} \int_{E \setminus C} |y(x)|^2 dx,$$

subject to

$$\begin{split} & \int \nabla y(x) \cdot \nabla (y-z)(x) \, dx \leq \int f(x) \left(y(x) - z(x) \right) dx, \\ & D \setminus C & D \setminus C \\ & \forall z \in S = \left\{ w \in H^1(D \setminus C) : w |_{\partial C} = 0, \\ & w |_{\partial D} = 1, \, w \geq 0 \text{ a.e. in } D \setminus C \right\}, \end{split}$$

C: core D: machine $\partial C, \partial D$: electrodes $E \setminus C$: desired shape (choice of E) $E_y = \{x \in D \setminus C : y(x) = 0\}$: final shape obtained To guarantee: $E_y \supset E \setminus C$!

1. Let: $J = J(y, u) : \mathbb{R}^n \times \mathbb{R}^m \to \mathbb{R}$ cost functional to be minimized $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{n \times m}, U_{ad} \subset \mathbb{R}^m$ nonempty. We consider:

 $\min J(y, u)$ $Ay = Bu, \ u \in U_{ad}$

Convention: All vectors are column vectors!

Example: $J(y,u) = \frac{1}{2}|y-y_d|^2 + \frac{\lambda}{2}|u|^2, y_d \in \mathbb{R}^n$ given; $|\cdot| =$ Euclidean norm

Assume: $\exists A^{-1} \implies y = Su$, with the solution matrix $S := A^{-1}B$.

 \implies reduced cost functional f(u) := J(y, u) = J(Su, u).

In the example:
$$f(u) = \frac{1}{2} |Su - y_d|^2 + \frac{\lambda}{2} |u|^2$$
.
 \implies reduced problem $\min f(u), \quad u \in U_{ad}$

2. Existence:

Def.: If $\bar{u} \in U_{ad}$ satisfies $f(\bar{u}) \leq f(u) \quad \forall u \in U_{ad}$, then \bar{u} is called **optimal control**, and $\bar{y} := S\bar{u}$ is called associated **optimal state**.

Theorem: Let $J : \mathbb{R}^n \times U_{ad} \to \mathbb{R}$ be continuous, $U_{ad} \neq \emptyset$, closed, bounded. If $\exists A^{-1}$, then \exists an optimal pair (\bar{u}, \bar{y}) .

Proof: f is continuous on the compact set U_{ad} .

3. First-order necessary optimality conditions:

We use the notation: for differentiable $f : \mathbb{R}^m \to \mathbb{R}$ we write $f'(u) h = \nabla f(u) \cdot h, h \in \mathbb{R}^m$. Let *J* be continuously differentiable w.r.t. *y*, *u*. $\implies f(u) = J(Su, u)$ is C^1

Theorem: Let U_{ad} be convex. Then any optimal control \bar{u} satisfies the variational inequality: $f'(u)(u-\bar{u}) \ge 0 \quad \forall u \in U_{ad}$.

Review of finite-dimensional theory

Chain rule: $f' = D_y J S + D_u J$, and thus

$$f'(\bar{u})h = D_{y}J(S\bar{u},\bar{u})Sh + D_{u}J(S\bar{u},\bar{u})h$$

$$= (\nabla_{y}J(\bar{y},\bar{u}), A^{-1}Bh)_{\mathbb{R}^{n}} + (\nabla_{u}J(\bar{y},\bar{u}), h)_{\mathbb{R}^{m}}$$

$$= (B^{\top}(A^{\top})^{-1}\nabla_{y}J(\bar{y},\bar{u}) + \nabla_{u}J(\bar{y},\bar{u}), h)_{\mathbb{R}^{m}}.$$

 \implies Variational inequality becomes

$$(B^{\top}(A^{\top})^{-1}\nabla_{y}J(\bar{y},\bar{u})+\nabla_{u}J(\bar{y},\bar{u}),u-\bar{u})_{\mathbb{R}^{m}}\geq 0 \qquad \forall u\in U_{ad}.$$

This requires to evaluate the inverse of A^{\top} , which is usually a bad idea. We therefore introduce the adjoint state p, given by $p = (A^{\top})^{-1} \nabla_y J(\bar{y}, \bar{u})$, which solves the adjoint state equation

$$A^{\top} p = \nabla_{y} J(\bar{y}, \bar{u}) \,.$$

Example:
$$J(y,u) = \frac{1}{2}|y - y_d|^2 + \frac{\lambda}{2}|u|^2 \implies A^{\top} p = y - y_d$$
.

Advantages: First-order condition simplifies, use of A^{-1} is avoided. Also the form of $\nabla f(\bar{u})$ simplifies: $\nabla f(\bar{u}) = B^{\top} p + \nabla_u J(\bar{y}, \bar{u})$.

$$\implies f'(\bar{u})h = (B^{\top}p + \nabla_u J(\bar{y},\bar{u}),h)_{\mathbb{R}^m}.$$

Theorem 1: Suppose $\exists A^{-1}$. Let (\bar{y}, \bar{u}) be an optimal pair. Then there exists an associated adjoint state \bar{p} such that $(y, u, p) = (\bar{y}, \bar{u}, \bar{p})$ solves

$Ay = Bu, u \in U_{ad}$
$A^{\top} p = \nabla_{y} J(y, u)$
$(B^{\top}p + \nabla_u J(y, u), v - u)_{\mathbb{R}^m} \ge 0 \forall v \in U_{ad}.$

In the case $U_{ad} = \mathbb{R}^m$ follows: $B^{\top} \bar{p} + \nabla_u J(\bar{y}, \bar{u}) = 0$.

Example:
$$J(y,u) = \frac{1}{2} |Cy - y_d|^2 + \frac{\lambda}{2} |u|^2$$
, $C \in \mathbb{R}^{n \times n}$
 $\implies \nabla_y J(y,u) = C^\top (Cy - y_d)$, $\nabla_u J(y,u) = \lambda u$
 \implies Optimality system:

$$A y = B u, \quad u \in U_{ad}$$

$$A^{\top} p = C^{\top} (Cy - y_d)$$

$$(B^{\top} p + \lambda u, v - u)_{\mathbb{R}^m} \ge 0 \quad \forall v \in U_{ad}.$$

If $U_{ad} = \mathbb{R}^m$, then $B^\top \bar{p} + \lambda \bar{u} = 0$, and if $\lambda > 0$, then $\bar{u} = -\frac{1}{\lambda} B^\top \bar{p}$. We obtain the optimality system

$$A y = -\frac{1}{\lambda} B B^{\top} p$$
$$A^{\top} p = C^{\top} (Cy - y_d)$$

4. Lagrangians

Def.: The function $L : \mathbb{R}^{2n+m} \to \mathbb{R}$, $L(y, u, p) := J(y, u) - (Ay - Bu, p)_{\mathbb{R}^n}$, is called the **Lagrangian function** of the OCP.

Using *L*, we can eliminate the equality constraint Ay = Bu from the problem. The second and third optimality conditions read:

$$\nabla_{y} L(\bar{y}, \bar{u}, \bar{p}) = 0$$
$$\left(\nabla_{u} L(\bar{y}, \bar{u}, \bar{p}), u - \bar{u}\right)_{\mathbb{R}^{m}} \ge 0 \quad \forall u \in U_{ad}.$$

 \implies (\bar{y}, \bar{u}) solves the necessary optimality conditions of a minimization problem without equality constraints:

$$\min_{(y,u)} L(y,u,p), \qquad u \in U_{ad}, \ y \in \mathbb{R}^n.$$

Remark: *p* plays the role of a Lagrange multiplier to Ay = Bu.

Mini-Course "Introduction to Optimal Control Problems for PDEs" · Cortona, July 2010 · Page 17 (31)

5. Discussion of the variational inequality

We now assume **box constraints** for *u*:

$$U_{ad} = \left\{ u \in \mathbb{R}^m : u_a \le u \le u_b
ight\}, \quad u_a, u_b \in \mathbb{R}^m \quad \text{(componentwise)}$$

Variational inequality yields

$$\left(B^{\top}\bar{p}+\nabla_{u}J(\bar{y},\bar{u}),\bar{u}\right)_{\mathbb{R}^{m}}\leq\left(B^{\top}\bar{p}+\nabla_{u}J(\bar{y},\bar{u}),u\right)_{\mathbb{R}^{m}}\quad\forall u\in U_{ad}$$

 $\implies \bar{u}$ solves

$$\min_{u \in U_{ad}} \left(B^{\top} \bar{p} + \nabla_u J(\bar{y}, \bar{u}), u \right)_{\mathbb{R}^m} = \min_{u \in U_{ad}} \sum_{i=1}^m \left(B^{\top} \bar{p} + \nabla_u J(\bar{y}, \bar{u}) \right)_i u_i$$

Since u_i are independent of each other \Longrightarrow

$$(B^{\top}\bar{p}+\nabla_{u}J(\bar{y},\bar{u}))_{i}\bar{u}_{i}=\min_{u_{a,i}\leq u_{i}\leq u_{b,i}}(B^{\top}\bar{p}+\nabla_{u}J(\bar{y},\bar{u}))_{i}u_{i},\quad 1\leq i\leq m.$$

Review of finite-dimensional theory

Hence, we must have:

$$\bar{u}_i = \begin{cases} u_{b,i} & \text{if} \quad \left(B^\top \bar{p} + \nabla_u J(\bar{y}, \bar{u})\right)_i < 0\\ u_{a,i} & \text{if} \quad \left(B^\top \bar{p} + \nabla_u J(\bar{y}, \bar{u})\right)_i > 0. \end{cases}$$

We have no direct information if $(B^{\top}\bar{p} + \nabla_u J(\bar{y},\bar{u}))_i = 0$.

Notice that we only need information about $(B^{\top}\bar{p} + \nabla_u J(\bar{y}, \bar{u}))$, not about \bar{p}, \bar{u} directly!

Moreover, putting (with $z_{+} := \frac{1}{2}(|z|+z), z_{-} := \frac{1}{2}(|z|-z)$)

$$\mu_a := (B^\top \bar{p} + \nabla_u J(\bar{y}, \bar{u}))_+$$

$$\mu_b := (B^\top \bar{p} + \nabla_u J(\bar{y}, \bar{u}))_-,$$

We find that

$$egin{array}{rcl} \mu_{a} &\geq & 0, & u_{a} - ar{u} &\leq & 0, & ig(u_{a} - ar{u}, \mu_{a}ig)_{\mathbb{R}^{m}} &= & 0 \ \mu_{b} &\geq & 0, & ar{u} - u_{b} &\leq & 0, & ig(ar{u} - u_{b}, \mu_{b}ig)_{\mathbb{R}^{m}} &= & 0 \end{array}$$

These are the so-called **complementary slackness conditions**.

Remark: We obviously have $\mu_a - \mu_b = \nabla_u J(\bar{y}, \bar{u}) + B^\top \bar{p}$

(1)
$$\implies \nabla_u J(\bar{y}, \bar{u}) + B^\top \bar{p} - \mu_a + \mu_b = 0$$

6. The Karush–Kuhn–Tucker conditions

Introduce the extended Lagrangian \mathscr{L} by adding the inequality constraints in the form

$$\mathscr{L}(y,u,p,\mu_a,\mu_b) := J(y,u) - (Ay - Bu, p)_{\mathbb{R}^n} + (u_a - u, \mu_a)_{\mathbb{R}^m} + (u - u_b, \mu_b)_{\mathbb{R}^m}.$$

Then, using (1),

$$\nabla_{u} \mathscr{L}(\bar{y}, \bar{u}, \bar{p}, \mu_{a}, \mu_{b}) = 0.$$

Moreover, since $\nabla_y \mathscr{L} = \nabla_y L$, the adjoint equation can be written as

$$\nabla_{\mathbf{y}} \mathscr{L}(\bar{\mathbf{y}}, \bar{\mathbf{u}}, \bar{p}, \boldsymbol{\mu}_a, \boldsymbol{\mu}_b) = 0.$$

Hence, μ_a, μ_b are the Lagrange multipliers corresponding to the inequality constraints, and we have:

Theorem 2 (Karush–Kuhn–Tucker conditions)

Suppose $\exists A^{-1}$. Let $U_{ad} = \{u \in \mathbb{R}^m : u_a \le u \le u_b\}$. If (\bar{y}, \bar{u}) is an optimal pair, then \exists multipliers $p \in \mathbb{R}^n$ and $\mu_a, \mu_b \in \mathbb{R}^m$ such that:

$$\nabla_{y} \mathscr{L}(\bar{y}, \bar{u}, \bar{p}, \mu_{a}, \mu_{b}) = 0$$
$$\nabla_{u} \mathscr{L}(\bar{y}, \bar{u}, \bar{p}, \mu_{a}, \mu_{b}) = 0$$
$$\mu_{a} \ge 0, \quad \mu_{b} \ge 0$$
$$(u_{a} - \bar{u}, \mu_{a}) = (\bar{u} - u_{b}, \mu_{b}) = 0$$

We assume:

- (A1) V,U are reflexive Banach spaces with duals V^*, U^* ; H is a Hilbert space with $V \subset H$ with continuous embedding
- (A2) U_{ad} is nonempty, closed and convex in U; C is nonempty, closed and convex in H

(A3)
$$A \in \mathscr{L}(V, V^*), \quad B \in \mathscr{L}(U, V^*), \quad f \in V^*$$

(A4) $J: V \times U \rightarrow (-\infty, +\infty]$ is proper, convex, l.s.c.

We consider the control and state constrained OCP:

min J(y, u) subject to Ay = Bu + f, $u \in U_{ad}$, $y \in C$.

We assume **admissibility**:

(A5)
$$\exists (y_0, u_0) \in C \times U_{ad}$$
 such that $Ay_0 = Bu_0 + f$ and $J(y_0, u_0) < +\infty$.

Theorem 3: Suppose $\exists A^{-1} \in \mathscr{L}(V^*, V)$. If U_{ad} is bounded or J is uniformly coercive in u, i.e.,

(2)
$$\lim_{\|u\|_U \to \infty} J(y, u) = +\infty \quad \text{uniformly in } y,$$

then OCP has at least one optimal pair $(\bar{y}, \bar{u}) \in C \times U_{ad}$.

Proof: If U_{ad} is bounded, redefine J outside $V \times U_{ad}$ by $+\infty$. We thus may assume that (2) holds. By (A5), \exists minimizing sequence $\{u_n\}$ such that, with $y_n = A^{-1} B u_n \in C$, we have

$$\lim_{n\to\infty} J(y_n,u_n) = \inf(\mathsf{OCP}) =: \delta.$$

By (2) $\{u_n\}$ is bounded in U, and therefore $\{y_n\}$ is bounded in V. We thus may assume that $(y_n, u_n) \rightarrow (\bar{y}, \bar{u})$ weakly in $V \times U$, and hence in $H \times U$. Consequently, by (A2), we have $(\bar{y}, \bar{u}) \in C \times U_{ad}$. Moreover, $\bar{y} = A^{-1} B \bar{u}$. Since J is weakly l.s.c. on $V \times U$, we find that

$$J(\bar{y},\bar{u}) \leq \liminf_{n\to\infty} J(y_n,u_n) = \delta$$
.

We now consider the more general state equation

(3)
$$A(u)y + \partial \varphi(y) \ni Bu + f.$$

Here, we assume $B \in \mathscr{L}(U, V^*)$, $f \in V^*$ (as above) and:

(A6) $\varphi: V \to (-\infty, +\infty]$ is proper, convex, l.s.c., with subdifferential

$$\partial \boldsymbol{\varphi}(x) = \{ w \in V^*; \, \boldsymbol{\varphi}(x) - \boldsymbol{\varphi}(v) \le (w, x - v)_{V^* \times V} \quad \forall v \in V \}$$

(A7) (i)
$$A(u) \in \mathscr{L}(V, V^*) \quad \forall u \in U_{ad}$$

(ii) $u_n \to u$ strongly in $U \Longrightarrow A(u_n) \to A(u)$ strongly in $\mathscr{L}(V, V^*)$

(iii) $(A(u)y,y)_{V^*\times V} \ge m \|y\|_V^2 \quad \forall y \in V$, for some m > 0.

 J, U_{ad}, C have the same properties as above.

Theorem 4: Let the above conditions be satisfied, and suppose $\exists (y_0, u_0) \in C \times U_{ad}$ such that $A(u_0)y_0 + \partial \varphi(y_0) \ni Bu_0 + f$ and $L(y_0, u_0) < +\infty$ (admissibility).

Then the OCP

$$\min J(y,u)$$
, subject to $(y,u) \in C \times U_{ad}$ and (3)

has a solution provided that one of the following conditions is satisfied:

(a) $U_{ad} \subset U$ is compact (but not necessarily convex!)

(b) $C \subset V$ is compact (but not necessarily convex!), $U_{ad} \subset U$ is bounded, and the mapping $u \mapsto A(u)$ is linear and bounded.

Proof (only of (a)): Pick a minimizing sequence $\{u_n\} \subset U_{ad}$, $J(y_n, u_n) \to \inf(OCP)$, where $\{y_n\} \subset C$ and $A(u_n)y_n + \partial \varphi(y_n) \ni Bu_n + f$.

Since U_{ad} is compact, we may assume that $||u_n - u||_U \rightarrow 0$ for some $u \in U_{ad}$.

Then $Bu_n \to Bu$ strongly in V^* , and $A(u_n) \to A(u)$ strongly in $\mathscr{L}(V, V^*)$.

Now,
$$\forall n \in \mathbb{N} \exists v_n \in \partial \varphi(y_n) : A(u_n) y_n + v_n = B u_n + f$$
.

The monotonicity of the graph $\partial \phi$ (ϕ is convex!) yields:

$$(Bu_n + f, y_n - y_1)_{V^* \times V}$$

= $(A(u_n)y_n, y_n - y_1)_{V^* \times V} + (V_n - V_1, y_n - y_1)_{V^* \times V} + (V_1, y_n - y_1)_{V^* \times V}$
 $\geq (A(u_n)(y_n - y_1), y_n - y_1)_{V^* \times V} + (A(u_n)y_1, y_n - y_1)_{V^* \times V} - \|V_1\|_{V^*} \|y_n - y_1\|_{V}.$

By (A7), we thus can find some $C_1 > 0$ such that

$$m \|y_n - y_1\|_V^2 \le C_1 \|y_n - y_1\|_V \quad \forall n \in \mathbb{N}.$$

 $\implies \{y_n\}$ is bounded in V, and we may assume there is some subsequence,

again indexed by n, such that

 $y_n \rightarrow y$ weakly in *V*, and clearly $y \in C$.

Denoting by $A(u)^* : V \simeq V^{**} \to V^*$ the dual operator of A(u), we find $\forall v \in V$: $|(A(u_n)y_n, v)_{V^* \times V} - (A(u)y, v)_{V^* \times V}|$ $\leq |(A(u_n)y_n, v)_{V^* \times V} - (A(u)y_n, v)_{V^* \times V}|$ $+ |(A(u)y_n, v)_{V^* \times V} - (A(u)y, v)_{V^* \times V}|$ $\leq |v|_V |A(u_n)y_n - A(u)y_n|_{V^*} + |(y_n - y, A(u)^*v)_{V \times V^*}|$ $\leq |v|_V |A(u_n) - A(u)|_{L(V,V^*)} |y_n|_V + |(y_n - y, A(u)^*v)_{V \times V^*}| \to 0$ **as** $n \to \infty$.

Moreover, it follows from (A7) that

General existence results

(4)
$$\liminf_{n \to \infty} (A(u_n)y_n, y_n - y)_{V^* \times V}$$
$$= \liminf_{n \to \infty} \left[(A(u_n)(y_n - y), y_n - y)_{V^* \times V} + (A(u_n)y, y_n - y)_{V^* \times V} \right]$$
$$\geq \liminf_{n \to \infty} (A(u_n)y, y_n - y)_{V^* \times V}$$
$$= \lim_{n \to \infty} (A(u_n)y, y_n)_{V^* \times V} - \lim_{n \to \infty} (A(u_n)y, y)_{V^* \times V} = 0.$$

Now, the definition of $\partial \phi$ implies that

$$\forall \mathbf{v} \in V : \boldsymbol{\varphi}(\mathbf{v}) - \boldsymbol{\varphi}(y_n) \ge (Bu_n + f - A(u_n)y_n, \mathbf{v} - u_n)_{V^* \times V}$$

$$\stackrel{\mathbf{v} = \mathbf{y}}{\Longrightarrow} (A(u_n)y_n, y_n - y)_{V^* \times V} + \boldsymbol{\varphi}(y_n) \le (Bu_n + f, y_n - y)_{V^* \times V} + \boldsymbol{\varphi}(y_n)$$

But then, owing to the lower semicontinuity of φ ,

(5)
$$\limsup_{n \to \infty} (A(u_n)y_n, y - y_n)_{V^* \times V} \le \varphi(y) - \liminf_{n \to \infty} \varphi(y_n) \le 0$$

From (4), (5), we conclude that

$$\lim_{n\to\infty}(A(u_n)y_n, y_n-y)=0.$$

On the other hand,

$$(A(u_n)y_n - A(u_n)y, y_n - y)_{V^* \times V} \ge m ||y_n - y||_V^2,$$

that is, $y_n \rightarrow y$ strongly in V, for a subsequence indexed by n.

Moreover, since $A(u_n) \rightarrow A(u)$ strongly in $\mathscr{L}(V, V^*)$ and $y_n \rightarrow y$ strongly in V, we have

$$A(u_n)y_n \to A(u)y$$
 weakly in V^* .

Finally, observe that the maximal monotone operator $\partial \varphi$ is demiclosed, i.e., we have: whenever $v_n \in \partial \varphi(z_n)$, $||z_n - z||_V \to 0$ and $v_n \to v$ weakly in V^* , then $v \in \partial \varphi(z)$.

Now,

$$v_n = Bu_n + f - A(u_n)y_n \rightarrow v = Bu + f - A(u)y$$
 weakly in V^* .

Then,

$$\mathbf{v} = B \, u + f - A(u) \, \mathbf{y} \in \partial \, \boldsymbol{\varphi}(\mathbf{y}),$$

and the pair $(y, u) \in C \times U_{ad}$ is admissible. The minimality follows again from the lower semicontinuity of *J*.

