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Lecture 1: Basic Concepts

1. What is an optimal control problem (OCP)?

A typical OCP consists of 4 ingredients:

� a control function u ;

� a state equation, which associates with every control u a state function y ;

� a cost functional, which depends on u and y , to be minimized;

� various constraints to be obeyed by the control u and the state y .

Constraints on u are called control constraints, constraints on y state
constraints. Very often, the control and state constraints are pointwise
constraints. In this summer school, the state equation will be given by an
initial-boundary value problem for a PDE or by a variational inequality.

Mini-Course “Introduction to Optimal Control Problems for PDEs” · Cortona, July 2010 ·
Page 2 (31)



Basic Concepts

Steps to be taken in the analysis on an OCP:

� Existence of a solution. Is it unique?

� Derivation of first-order necessary and second-order sufficient optimality
conditions

� Numerical approximation and analysis of the discretized problem. Do we have
convergence?

� Implementation of the discretized problem and calculation of an approximating
solution
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2. Examples: Linear state equations

Example 1: Optimal stationary heating

Let Ω⊂ R3 be the spatial location of a body to be heated/cooled at its boundary Γ .
We apply a heat source u (the control) to Γ that is constant in time: u = u(x) . We
aim to choose u in such a way that the corresponding temperature y = y(x) (the
state) is the “best approximation” to some desired yΩ = yΩ(x) in Ω . Model:

min J(y,u) :=
1
2

∫
Ω

∣∣y(x)− yΩ(x)
∣∣2 dx+

λ

2

∫
Γ

|u(x)|2 ds(x),

subject to the state equation

−∆y = 0 in Ω

∂y
∂ν

= α (u− y) on Γ

and the pointwise control constraints

ua(x)≤ u(x)≤ ub(x) on Γ.

Here, λ > 0 is a parameter, and ua,ub are given.
This is a linear-quadratic elliptic boundary control problem.
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Examples: Linear state equations

Example 2: Optimal heat source

Assume here that Ω is heated by a distributed heat source u acting in Ω (e.g., by
electromagnetic induction). We then get:

min J(y,u) :=
1
2

∫
Ω

∣∣y(x)− yΩ(x)
∣∣2 dx+

λ

2

∫
Ω

|u(x)|2 dx,

subject to

−∆y = βu in Ω

∂y
∂ν

= α (ya− y) on Γ

and
ua(x)≤ u(x)≤ ub(x) in Ω.

Here, ya = ext. temperature, β = β (x) given, e.g., β = χD for D⊂Ω .

This is a linear-quadratic elliptic control problem with distributed control.
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Examples: Linear state equations

Example 3: Optimal nonstationary boundary control

This time we assume that Ω⊂ R3 is heated over some time [0,T ], T > 0 . We want
to apply a control u = u(x, t) in such a way that a desired temperature distribution yΩ

is reached at t = T . We put Q := Ω× (0,T ), ∑ := Γ× (0,T ) . Problem:

min J(y,u) :=
1
2

∫
Ω

∣∣y(x,T )− yΩ(x)
∣∣2 dx+

λ

2

∫ T

0

∫
Γ

|u(x, t)|2 ds(x)dt,

subject to

yt −∆y = 0 in Q
∂y
∂ν

= α (u− y) on Σ

y(x,0) = y0(x) in Ω

and
ua(x, t)≤ u(x, t)≤ ub(x, t) on Σ.

This is a linear-quadratic parabolic boundary control problem.
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Examples: Nonlinear state equations

Example 4: Control of nonstationary flows

Nonstationary flows of incompressible media in Ω⊂ R2 (or R3 ) are described by the
Navier–Stokes equations

ut −
1

Re
∆u+(u ·∇)u+∇p = f in Q

divu = 0 in Q

u = 0 on Σ

u(·,0) = u0 in Ω.

Here, typically, the velocity field u (which is in this case the state variable) is to be
controlled by the application of electromagnetic fields. In this case, f = gravity g +
Lorentz force j×B .

One then obtains a control problem with a nonlinear state equation.

Mini-Course “Introduction to Optimal Control Problems for PDEs” · Cortona, July 2010 ·
Page 7 (31)



Examples: Nonlinear state equations

Example 5: Control of phase-field equations (C. Lefter + J. S., AMSA 17 (2007))

Consider a liquid-solid phase transition, and let χ ∈ [0,1] denote the order
parameter: {χ = 0}⇔ solid phase, {χ = 1}⇔ liquid phase, {0 < χ < 1}⇔
“mush”. A typical model is (θ = absolute temperature)

µ(θ)χt =−F ′1(χ)−
(

β1

θ
+β2

)
F ′2(χ)−

F ′3(χ)
θ

in Q,

CV θt +(β1F ′2(χ)+F ′3(χ))χt −∆θ = 0 in Q,

∂θ

∂ν
= u−θ on Σ,

χ(·,0) = χ0, θ(·,0) = θ0, in Ω.

F1,F3 : smooth
F2(χ) = κ(χ ln(χ)
+(1−χ) ln(1−χ)),
κ > 0 .

Control problem:
minJ(χ,θ ,u) :=

1
2

∫
Ω

(
|θ(x,T )−θΩ(x)|2 + |χ(x,T )−χΩ(x)|2

)
dx+

λ

2

∫
Σ

|u(x, t)|2 ds(x)dt

subject to the IBVP and the control constraints
0 < ua ≤ u(x, t)≤ ub on Σ .
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Nonlinear depencence on u

Example 6: A control-into-coefficients problem

Consider a clamped plate Ω⊂ R2 , which is described by the BVP

∆(bu3(x)∆y) = f in Ω

y =
∂y
∂ν

= 0 on Γ .

Here, b > 0 and the load f are given; u ∈ L∞(Ω) stands for the thickness (> 0 !) of
the plate. A typical problem is:

minJ(y,u) :=
∫

Ω

u(x)dx (= the weight of the plate)

subject to the BVP and the control and state constraints (= safety requirements)

0 < m ≤ u(x) ≤ M in Ω

y(x) ≥ −τ in Ω ,

where m,M,τ > 0 are given.
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Examples: Optimal shape design problems

Example 7: Optimal layout of materials

Let Ω⊂ R3 be a body composed of m different materials Mi having thermal
conductivities ki, i = 1, . . . ,m . Then the total thermal conductivity k of Ω is

k(x) =
m

∑
i=1

χi(x)ki , where χi is the characteristic function of the region occupied by

Mi .
Problem: Given a heat source f , what is the optimal distribution of the materials in
Ω that maximizes the temperature y in a given subdomain ω ⊂Ω? Model:

min
k

{
−

∫
ω

y(x)dx
}

subject to

−∇ · (k(x)∇y) = f in Ω

∂y
∂ν

= 0 on Γ .

The optimization parameters are the subsets of Ω occupied by the various materials.
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Examples: Optimal shape design problems

Example 8: Electrochemical machining

This is an OCP with a variational inequality as state
equation:

min
E⊂D⊂Ω

J(D) =
1
2

∫
E\C

|y(x)|2 dx ,

subject to∫
D\C

∇y(x) ·∇(y− z)(x)dx≤
∫

D\C

f (x)(y(x)− z(x))dx,

∀z ∈ S =
{

w ∈ H1(D\C) : w|∂C = 0,

w|∂D = 1, w≥ 0 a.e. in D\C} ,

����
����
����
����

����
����
����
����

..

ΩE
C

D

C : core
D : machine
∂C,∂D : electrodes
E \C : desired shape
(choice of E )

Ey = {x∈D\C : y(x) = 0} :
final shape obtained

To guarantee: Ey ⊃ E \C !
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3. Review of finite-dimensional theory

1. Let: J = J(y,u) : Rn×Rm → R cost functional to be minimized
A ∈ Rn×n, B ∈ Rn×m, Uad ⊂ Rm nonempty. We consider:

minJ(y,u)
Ay = Bu, u ∈Uad

Convention: All vectors are column vectors!

Example: J(y,u) =
1
2
|y− yd |2 +

λ

2
|u|2, yd ∈ Rn given; | · |= Euclidean norm

Assume: ∃A−1 =⇒ y = Su , with the solution matrix S := A−1 B .

=⇒ reduced cost functional f (u) := J(y,u) = J(Su,u) .

In the example: f (u) =
1
2
|Su− yd |2 +

λ

2
|u|2 .

=⇒ reduced problem min f (u) , u ∈Uad
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Review of finite-dimensional theory

2. Existence:

Def.: If ū ∈Uad satisfies f (ū)≤ f (u) ∀ u ∈Uad , then ū is called optimal control,
and ȳ := S ū is called associated optimal state.

Theorem: Let J : Rn×Uad → R be continuous, Uad 6= /0 , closed, bounded. If
∃A−1 , then ∃ an optimal pair (ū, ȳ) .

Proof: f is continuous on the compact set Uad .

3. First-order necessary optimality conditions:

We use the notation: for differentiable f : Rm → R we write
f ′(u)h = ∇ f (u) ·h , h ∈ Rm . Let J be continuously differentiable w.r.t. y,u .
=⇒ f (u) = J(Su,u) is C1

Theorem: Let Uad be convex. Then any optimal control ū satisfies the variational
inequality: f ′(u)(u− ū)≥ 0 ∀ u ∈Uad .
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Review of finite-dimensional theory

Chain rule: f ′ = Dy J S +Du J , and thus

f ′(ū)h = Dy J(S ū, ū)Sh+Du J(Sū, ū)h

=
(
∇y J(ȳ, ū) , A−1Bh

)
Rn +

(
∇u J(ȳ, ū) , h

)
Rm

=
(
B>(A>)−1

∇y J(ȳ, ū)+∇u J(ȳ, ū) , h
)
Rm .

=⇒ Variational inequality becomes

(
B>(A>)−1

∇y J(ȳ, ū)+∇u J(ȳ, ū) , u− ū
)
Rm ≥ 0 ∀u ∈Uad .

This requires to evaluate the inverse of A> , which is usually a bad idea. We therefore
introduce the adjoint state p , given by p = (A>)−1∇y J(ȳ, ū) , which solves the
adjoint state equation

A>p = ∇y J(ȳ, ū) .
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Review of finite-dimensional theory

Example: J(y,u) =
1
2
|y− yd |2 +

λ

2
|u|2 =⇒ A> p = y− yd .

Advantages: First-order condition simplifies, use of A−1 is avoided. Also the form
of ∇ f (ū) simplifies: ∇ f (ū) = B>p+∇u J(ȳ, ū) .

=⇒ f ′(ū)h = (B>p+∇u J(ȳ, ū),h)Rm .

Theorem 1: Suppose ∃A−1 . Let (ȳ, ū) be an optimal pair. Then there exists an
associated adjoint state p̄ such that (y,u, p) = (ȳ, ū, p̄) solves

Ay = Bu, u ∈Uad

A>p = ∇y J(y,u)(
B>p+∇u J(y,u) , v−u

)
Rm ≥ 0 ∀v ∈Uad .

In the case Uad = Rm follows: B> p̄+∇u J(ȳ, ū) = 0.
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Review of finite-dimensional theory

Example: J(y,u) =
1
2
|C y− yd |2 +

λ

2
|u|2, C ∈ Rn×n .

=⇒ ∇y J(y,u) = C>(C y− yd), ∇u J(y,u) = λu

=⇒ Optimality system:

Ay = Bu, u ∈Uad

A>p = C>(Cy− yd)(
B>p+λ u , v−u

)
Rm ≥ 0 ∀v ∈Uad .

If Uad = Rm , then B> p̄+λ ū = 0 , and if λ > 0 , then ū =− 1
λ

B> p̄ . We obtain the

optimality system

Ay =− 1
λ

BB>p

A>p = C>(Cy− yd)
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Review of finite-dimensional theory

4. Lagrangians

Def.: The function L : R2n+m → R, L(y,u, p) := J(y,u)− (Ay−Bu, p)Rn , is called the
Lagrangian function of the OCP.

Using L , we can eliminate the equality constraint Ay = Bu from the problem. The
second and third optimality conditions read:

∇y L(ȳ, ū, p̄) = 0(
∇u L(ȳ, ū, p̄) , u− ū

)
Rm ≥ 0 ∀u ∈Uad .

=⇒ (ȳ, ū) solves the necessary optimality conditions of a minimization problem
without equality constraints:

min
(y,u)

L(y,u, p), u ∈Uad , y ∈ Rn.

Remark: p plays the role of a Lagrange multiplier to Ay = Bu .
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Review of finite-dimensional theory

5. Discussion of the variational inequality

We now assume box constraints for u :

Uad =
{

u ∈ Rm : ua ≤ u≤ ub
}
, ua,ub ∈ Rm (componentwise)

Variational inequality yields(
B> p̄+∇u J(ȳ, ū) , ū

)
Rm ≤

(
B> p̄+∇u J(ȳ, ū) , u

)
Rm ∀u ∈Uad

=⇒ ū solves

min
u∈Uad

(
B> p̄+∇u J(ȳ, ū) , u

)
Rm = min

u∈Uad

m

∑
i=1

(
B> p̄+∇u J(ȳ, ū)

)
i ui

Since ui are independent of each other =⇒

(
B> p̄+∇u J(ȳ, ū)

)
i ūi = min

ua,i≤ui≤ub,i

(
B> p̄+∇u J(ȳ, ū)

)
i ui, 1≤ i≤ m.
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Review of finite-dimensional theory

Hence, we must have:

ūi =

{
ub,i if

(
B> p̄+∇u J(ȳ, ū)

)
i < 0

ua,i if
(
B> p̄+∇u J(ȳ, ū)

)
i > 0.

We have no direct information if (B> p̄+∇u J(ȳ, ū))i = 0 .

Notice that we only need information about (B> p̄+∇u J(ȳ, ū)) , not about p̄, ū
directly!

Moreover, putting (with z+ := 1
2 (|z|+ z) , z− := 1

2 (|z|− z) )

µa :=
(
B> p̄+∇u J(ȳ, ū)

)
+

µb :=
(
B> p̄+∇u J(ȳ, ū)

)
−,
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Review of finite-dimensional theory

We find that

µa ≥ 0, ua− ū ≤ 0,
(
ua− ū , µa

)
Rm = 0

µb ≥ 0, ū−ub ≤ 0,
(
ū−ub , µb

)
Rm = 0

These are the so-called complementary slackness conditions.

Remark: We obviously have µa−µb = ∇u J(ȳ, ū)+B> p̄

(1) =⇒ ∇uJ(ȳ, ū)+B> p̄−µa + µb = 0
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Review of finite-dimensional theory

6. The Karush–Kuhn–Tucker conditions

Introduce the extended Lagrangian L by adding the inequality constraints in the
form

L (y,u, p,µa,µb) := J(y,u)−
(
Ay−Bu , p

)
Rn +

(
ua−u , µa

)
Rm +

(
u−ub , µb

)
Rm .

Then, using (1),
∇u L (ȳ, ū, p̄,µa,µb) = 0.

Moreover, since ∇y L = ∇y L , the adjoint equation can be written as

∇y L (ȳ, ū, p̄,µa,µb) = 0.

Hence, µa,µb are the Lagrange multipliers corresponding to the inequality
constraints, and we have:
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Review of finite-dimensional theory

Theorem 2 (Karush–Kuhn–Tucker conditions)

Suppose ∃A−1 . Let Uad = {u ∈ Rm : ua ≤ u≤ ub} . If (ȳ, ū) is an optimal pair, then ∃
multipliers p ∈ Rn and µa,µb ∈ Rm such that:

∇y L (ȳ, ū, p̄,µa,µb) = 0

∇u L (ȳ, ū, p̄,µa,µb) = 0

µa ≥ 0, µb ≥ 0(
ua− ū , µa

)
=

(
ū−ub , µb

)
= 0
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4. General existence results

We assume:

(A1) V,U are reflexive Banach spaces with duals V ∗,U∗ ; H is a Hilbert space with
V ⊂ H with continuous embedding

(A2) Uad is nonempty, closed and convex in U ;
C is nonempty, closed and convex in H

(A3) A ∈L (V,V ∗) , B ∈L (U,V ∗) , f ∈V ∗

(A4) J : V ×U → (−∞,+∞] is proper, convex, l.s.c.

We consider the control and state constrained OCP:

min J(y,u) subject to Ay = Bu+ f , u ∈Uad , y ∈C .

We assume admissibility:

(A5) ∃(y0,u0) ∈C×Uad such that Ay0 = Bu0 + f and J(y0,u0) < +∞ .
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General existence results

Theorem 3: Suppose ∃A−1 ∈L (V ∗,V ) . If Uad is bounded or J is uniformly
coercive in u , i.e.,

(2) lim
‖u‖U→∞

J(y,u) = +∞ uniformly in y,

then OCP has at least one optimal pair (ȳ, ū) ∈C×Uad .

Proof: If Uad is bounded, redefine J outside V ×Uad by +∞ . We thus may
assume that (2) holds. By (A5), ∃ minimizing sequence {un} such that, with
yn = A−1 Bun ∈C , we have

lim
n→∞

J(yn,un) = inf (OCP) =: δ .

By (2) {un} is bounded in U , and therefore {yn} is bounded in V . We thus may
assume that (yn,un)→ (ȳ, ū) weakly in V ×U , and hence in H×U . Consequently,
by (A2), we have (ȳ, ū) ∈C×Uad . Moreover, ȳ = A−1 Bū . Since J is weakly l.s.c. on
V ×U , we find that

J(ȳ, ū)≤ liminf
n→∞

J(yn,un) = δ .
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General existence results

We now consider the more general state equation

(3) A(u)y + ∂ϕ(y) 3 Bu + f .

Here, we assume B ∈L (U,V ∗) , f ∈V ∗ (as above) and:

(A6) ϕ : V → (−∞,+∞] is proper, convex, l.s.c., with subdifferential

∂ϕ(x) = {w ∈V ∗; ϕ(x)−ϕ(v)≤ (w,x−v)V ∗×V ∀ v ∈V}

(A7) (i) A(u) ∈L (V,V ∗) ∀ u ∈Uad

(ii) un → u strongly in U =⇒ A(un)→ A(u) strongly in L (V,V ∗)

(iii) (A(u)y,y)V ∗×V ≥ m‖y‖2
V ∀ y ∈V , for some m > 0 .

J,Uad ,C have the same properties as above.
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General existence results

Theorem 4: Let the above conditions be satisfied, and suppose ∃(y0,u0) ∈C×Uad
such that A(u0)y0 +∂ϕ(y0) 3 Bu0 + f and L(y0,u0) < +∞ (admissibility).

Then the OCP

minJ(y,u) , subject to (y,u) ∈C×Uad and (3)

has a solution provided that one of the following conditions is satisfied:

(a) Uad ⊂U is compact (but not necessarily convex!)

(b) C ⊂V is compact (but not necessarily convex!), Uad ⊂U is bounded, and the
mapping u 7→ A(u) is linear and bounded.
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General existence results

Proof (only of (a)): Pick a minimizing sequence {un} ⊂Uad , J(yn,un)→ inf (OCP) ,
where {yn} ⊂C and A(un)yn +∂ϕ(yn) 3 Bun + f .

Since Uad is compact, we may assume that ‖un−u‖U → 0 for some u ∈Uad .

Then Bun → Bu strongly in V ∗ , and A(un)→ A(u) strongly in L (V,V ∗) .

Now, ∀ n ∈ N ∃vn ∈ ∂ϕ(yn) : A(un)yn +vn = Bun + f .

The monotonicity of the graph ∂ϕ (ϕ is convex!) yields:

(Bun + f ,yn− y1)V ∗×V

= (A(un)yn,yn− y1)V ∗×V +(vn−v1,yn− y1)V ∗×V +(v1,yn− y1)V ∗×V

≥ (A(un)(yn− y1),yn− y1)V ∗×V +(A(un)y1,yn− y1)V ∗×V −‖v1‖V ∗‖yn− y1‖V .

By (A7), we thus can find some C1 > 0 such that

m‖yn− y1‖2
V ≤ C1 ‖yn− y1‖V ∀n ∈ N.

=⇒ {yn} is bounded in V , and we may assume there is some subsequence,
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General existence results

again indexed by n , such that

yn → y weakly in V , and clearly y ∈C .

Denoting by A(u)∗ : V 'V ∗∗→V ∗ the dual operator of A(u) , we find ∀ v ∈V :

|(A(un)yn,v)V ∗×V − (A(u)y,v)V ∗×V |

≤ |(A(un)yn,v)V ∗×V − (A(u)yn,v)V ∗×V |

+ |(A(u)yn,v)V ∗×V − (A(u)y,v)V ∗×V |

≤ |v|V |A(un)yn−A(u)yn|V ∗ + |(yn− y,A(u)∗v)V×V ∗ |

≤ |v|V |A(un)−A(u)|L(V,V ∗) |yn|V + |(yn− y,A(u)∗v)V×V ∗ | → 0

as n→ ∞ .

Moreover, it follows from (A7) that
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General existence results

(4) liminf
n→∞

(A(un)yn,yn− y)V ∗×V

= liminf
n→∞

[(A(un)(yn− y),yn− y)V ∗×V + (A(un)y,yn− y)V ∗×V ]

≥ liminf
n→∞

(A(un)y,yn− y)V ∗×V

= lim
n→∞

(A(un)y,yn)V ∗×V − lim
n→∞

(A(un)y,y)V ∗×V = 0.

Now, the definition of ∂ϕ implies that

∀ v ∈V : ϕ(v) − ϕ(yn) ≥ (Bun + f − A(un)yn,v − un)V ∗×V

v=y
=⇒ (A(un)yn,yn− y)V ∗×V +ϕ(yn)≤ (Bun + f ,yn− y)V ∗×V +ϕ(y)

But then, owing to the lower semicontinuity of ϕ ,

(5) limsup
n→∞

(A(un)yn,y− yn)V ∗×V ≤ ϕ(y)− liminf
n→∞

ϕ(yn)≤ 0
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General existence results

From (4), (5), we conclude that

lim
n→∞

(A(un)yn,yn− y) = 0.

On the other hand,

(A(un)yn−A(un)y,yn− y)V ∗×V ≥ m‖yn− y‖2
V ,

that is, yn → y strongly in V , for a subsequence indexed by n .

Moreover, since A(un)→ A(u) strongly in L (V,V ∗) and yn → y strongly in V , we
have

A(un)yn → A(u)y weakly in V ∗ .

Finally, observe that the maximal monotone operator ∂ϕ is demiclosed, i.e., we
have: whenever vn ∈ ∂ϕ(zn) , ‖zn− z‖V → 0 and vn → v weakly in V ∗ , then
v ∈ ∂ϕ(z) .
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General existence results

Now,
vn = Bun + f −A(un)yn → v = Bu+ f −A(u)y weakly in V ∗.

Then,
v = Bu+ f −A(u)y ∈ ∂ϕ(y),

and the pair (y,u) ∈C×Uad is admissible. The minimality follows again from the
lower semicontinuity of J .
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