1. Existence, uniqueness and regularity of weak solutions to elliptic BVPs

In this section, we study linear elliptic operators of the form

(6)
$$
\mathscr{A} y(x) = - \sum_{i,j=1}^N D_i \left(a_{ij}(x) D_j y(x) \right), \quad x \in \Omega \subset \mathbb{R}^N.
$$

General assumptions:

(H1)
$$
a_{ij} ∈ L∞(Ω)
$$
, $a_{ij} = a_{ji}$, $∀i, j$.
\n(H2) $\exists \gamma_0 > 0$ such that $\sum_{i,j=1}^N a_{ij}(x) \xi_i \xi_j \ge \gamma_0 |\xi|^2$ a.e. in $Ω$, $∀ξ ∈ ℝN$

We denote

(7) $\partial_{v_{\mathscr{A}}} y =$ directional derivative of *y* in the direction of the **conormal** $v_{\mathscr{A}}$, where

(8)
$$
(v_{\mathscr{A}})_i(x) = \sum_{j=1}^N a_{ij}(x) v_j(x), \quad 1 \le i \le N
$$

Mini-Course "Introduction to Optimal Control Problems for PDEs" · **Cortona, July 2010** · **[Page 1 \(36\)](#page-35-0)**

Linear elliptic control problems

Consider the OCP

9)
\n
$$
\min J(y, u, v) := \frac{\lambda_{\Omega}}{2} \|y - y_{\Omega}\|_{L^{2}(\Omega)}^{2} + \frac{\lambda_{\Gamma}}{2} \|y - y_{\Gamma}\|_{L^{2}(\Gamma)}^{2} + \frac{\lambda_{\nu}}{2} \|v\|_{L^{2}(\Omega)}^{2} + \frac{\lambda_{u}}{2} \|u\|_{L^{2}(\Gamma_{1})}^{2}
$$

subject to the constraints

(10)
\n
$$
\begin{array}{rcl}\n\mathscr{A}y + c_0 y & = & \beta_{\Omega} v & \text{in } \Omega \\
\partial_{v_{\mathscr{A}}} y + \alpha y & = & \beta_{\Gamma} u & \text{on } \Gamma_1 \\
y & = & 0 & \text{on } \Gamma_0\n\end{array}
$$

and

 $($

(11)
$$
v_a(x) \le v(x) \le v_b(x) \quad \text{for a.e. } x \in \Omega
$$

$$
u_a(x) \le u(x) \le u_b(x) \quad \text{for a.e. } x \in \Gamma_1
$$

Mini-Course "Introduction to Optimal Control Problems for PDEs" · **Cortona, July 2010** · **[Page 2 \(36\)](#page-0-0)**

General assumptions:

(H3) $\Gamma = \Gamma_0 \cup \Gamma_1$, Γ_0 and Γ_1 measurable.

(H4) $c_0 \in L^{\infty}(\Omega)$, $c_0 \ge 0$ a.e., $\alpha \in L^{\infty}(\Gamma_1)$, $\alpha \ge 0$ a.e.

(H5) Either
$$
|\Gamma_0| > 0
$$
 or $\Gamma = \Gamma_1$ and $||c_0||_{L^2(\Omega)} + ||\alpha||_{L^2(\Gamma)} > 0$.

(**H6**)
$$
\beta_{\Omega} \in L^{\infty}(\Omega), \ \beta_{\Gamma} \in L^{\infty}(\Gamma_1).
$$

(H7)
$$
\lambda_{\Omega}, \lambda_{\Gamma}, \lambda_{\nu}, \lambda_{\mu}
$$
 are given nonnegative constants.

Moreover, we put

$$
V_{ad} = \{ v \in L^2(\Omega) : v_a(x) \le v(x) \le v_b(x) \quad \text{for a.e. } x \in \Omega \},
$$

\n
$$
U_{ad} = \{ u \in L^2(\Gamma_1) : u_a(x) \le u(x) \le u_b(x) \quad \text{for a.e. } x \in \Gamma_1 \}
$$

\nwith $v_a, v_b \in L^{\infty}(\Omega)$, $u_a, u_b \in L^{\infty}(\Gamma_1)$.

 (12)

We consider first the BVP

$$
\begin{array}{|rcll}\n\hline\n\mathscr{A}y + c_0 y & = & f & \text{in } \Omega \\
\partial_{v_{\mathscr{A}}} y + \alpha y & = & g & \text{on } \Gamma_1 \\
y & = & 0 & \text{on } \Gamma_0\n\end{array}
$$

We associate with (12) the following **weak formulation**:

Let
$$
V := \{y \in H^1(\Omega) : y|_{\Gamma_0} = 0\}.
$$

Define on *V* the bilinear form:

(13)
$$
a[y, v] := \int_{\Omega} \sum_{i,j=1}^{N} a_{ij} D_{i}y D_{j}v dx + \int_{\Omega} c_{0}y v dx + \int_{\Gamma_{1}} \alpha y v ds
$$

Then the weak form of (12) is to find some $y \in V$ such that

$$
a[y, v] = (f, v)_{L^2(\Omega)} + (g, v)_{L^2(\Gamma_1)} \quad \forall v \in V
$$

Existence of weak solutions

Theorem 5: $\Omega \subset \mathbb{R}^N$ open, bounded; $\partial \Omega \in C^{0,1}$; (H1)–(H5) fulfilled. Then:

$$
\blacksquare \qquad \forall (f,g) \in L^2(\Omega) \times L^2(\Gamma_1) \exists_1 \text{ weak solution } y \in V.
$$

$$
\blacksquare \quad \exists \, c_{\mathscr{A}} > 0 : \|y\|_{H^1(\Omega)} \leq c_{\mathscr{A}} \left(\|f\|_{L^2(\Omega)} + \|g\|_{L^2(\Gamma_1)} \right)
$$

Lax–Milgram lemma: Let $V, (\cdot, \cdot)_V$ be a real Hilbert space, and let $a: V \times V \to \mathbb{R}$ denote a bilinear form. Moreover, suppose that there exist positive constants $\,\alpha_0^{}\,$ and β_0 such that the following conditions are satisfied for all $\mathsf{v},\, \mathsf{y} \in V$:

(14)
$$
|a[y, v]| \le \alpha_0 \|y\|_V \|v\|_V \quad \text{(boundedness)}
$$

(15)
$$
a[y, y] \geq \beta_0 \|y\|_V^2 \qquad (V \text{-ellipticity}).
$$

Then for every $F \in V^*$ the variational equation $a[y, v] = F(v) \,\,\forall \,\, v \in V$ admits a unique solution $y \in V$. Moreover, there is some constant $c_a > 0$, which does not depend on *F* , such that

(16)
$$
||y||_V \leq c_a ||F||_{V^*}.
$$

We apply the Lax–Milgram lemma with $V = \{y \in H^1(\Omega) : v_{|_{\Gamma_0}}\}$ $= 0\}$

$$
(y, v)_V := \int_{\Omega} (\nabla y \cdot \nabla v + y v) dx, \text{ and}
$$

 $F({\sf v}) := (f,{\sf v})_{L^2(\Omega)} + (g,{\sf v})_{L^2(\Gamma_1)}$.

Obviously $F \in V^*$, since $\forall v \in V$, by the trace theorem,

$$
|F(v)| \leq ||f||_{L^{2}(\Omega)} ||v||_{L^{2}(\Omega)} + ||g||_{L^{2}(\Gamma_{1})} ||v||_{L^{2}(\Gamma_{1})}
$$

\n
$$
\leq (||f||_{L^{2}(\Omega)} + ||g||_{L^{2}(\Gamma_{1})}) ||v||_{H^{1}(\Omega)}
$$

By a similar calculation, we have

$$
|a(y,v)| \leq \alpha_0 \|y\|_{H^1(\Omega)} \|v\|_{H^1(\Omega)} \quad \forall y, v \in V, \quad \text{ for some } \alpha_0 > 0.
$$

Moreover,

$$
a[y,y] \geq \gamma_0 \int\limits_{\Omega} |\nabla y(x)|^2 dx + \int\limits_{\Omega} c_0(x)|y(x)|^2 dx + \int\limits_{\Gamma_1} \alpha(x)|y(x)|^2 ds.
$$

If $|\Gamma_0| > 0$, then (15) follows from Poincaré's inequality. If $\Gamma = \Gamma_1$, we have:

Lemma (Friedrichs) Let $B: H^1(\Omega) \times H^1(\Omega) \to \mathbb{R}$ be a continuous BF such that $B[y,y]\geq 0 \quad \forall \ y\in H^1(\Omega)$. If $B[h,h]>0$ for $h\equiv 1$, then the norm

$$
||y|| := \left(\int_{\Omega} |\nabla y|^2 dx\right)^{\frac{1}{2}} + B[y, y]^{\frac{1}{2}}
$$

is equivalent to $\|\cdot\|_{H^1(\Omega)}$ on $H^1(\Omega)$.

The existence result now follows from the lemma and **(H5)** if we put

$$
B[y,v] := \int_{\Omega} c_0(x) y \, v \, dx + \int_{\Gamma_1} \alpha(x) y \, v \, ds.
$$

Apply first Theorem 3 of Lecture 1 to show existence for OCP. We take:

$$
V:=\text{ as above};\; \mathscr{U}:=L^2(\Omega)\times L^2(\Gamma_1)\,;\; \mathscr{U}_{ad}:=V_{ad}\times U_{ad}\,;\, H=C=L^2(\Omega)\,;
$$

 $A: V \to V^*$ the operator $A \in \mathscr{L}(V, V^*)$ defined by the BF (13);

 $B\in \mathscr L(\mathscr U,V^*)$ the mapping assigning to $(\mathsf{v},\mathsf{u})\in \mathscr U_{ad}$ the linear functional $F = B(v, u) \in V^*$:

$$
F(y) := \int\limits_{\Omega} \beta_{\Omega} \, vy \, dx + \int\limits_{\Gamma_1} \beta_{\Gamma} \, uy \, ds \, .
$$

Since \mathcal{U}_{ad} is bounded and $J: V \times \mathcal{U} \to \mathbb{R}$ convex and l.s.c., OCP has at least one minimum.

If $\lambda_{\Omega} > 0$ and $\lambda_{\nu} > 0$, then the minimum is unique.

2. Differentiation in Banach spaces

Let: $(U, \|\cdot\|_U), (V, \|\cdot\|_V)$ *B*-spaces, $\mathscr{U} \subset U$ nonempty, open, $F: \mathscr{U} \to V$. **Def.:** Let $u \in \mathcal{U}$.

 If ∃ δ *F*(*u*,*h*) := lim *t*↓0 1 *t* $(F(u + t h) - F(u))$, then $\delta F(u, h)$ is called the **directional derivative of** *f* **at** *u* **in the direction** *h* .

If ∃ δ *F*(*u*,*h*) ∀ *h* ∈ *U* , then *h* 7→ δ(*u*,*h*) is the **first variation of** *F* **at** *u* .

- **■** Let \exists the first variation $\delta F(u, \cdot)$. *F* is said to be **Gâteaux differentiable at** $u:\Longleftrightarrow \exists A\in \mathscr{L}(U,V)$ such that $\delta F(u,h)=Ah \quad \forall\, h\in U$. We write $A=F_G^{\prime}$ $G'(u)$.
- *F* is said to be Fréchet differentiable at $u := \Rightarrow \exists A \in \mathcal{L}(U,V)$ and a mapping $r(u, \cdot): U \to V$ such that: for all $h \in U$ with $u + h \in \mathcal{U}$, we have

$$
F(u+h) = F(u) + Ah + r(u,h)
$$

with

$$
\frac{\|r(u,h)\|_V}{\|h\|_U} \to 0 \quad \text{as } \|h\|_U \to 0.
$$

We write $F'(u) := A$.

- If *F* is Fréchet differentiable at every $u \in \mathcal{U}$, then *F* is said to be Fréchet differentiable on \mathscr{U} .
- If $\exists F'(u) \quad \forall u \in \mathscr{U}$ and the mapping $u \mapsto F'(u)$ is continuous, we speak of **continuous Fréchet differentiability** on $\mathscr U$.

Remarks:

- **If** \exists *F'*(*u*), then \exists *F'*_{*C*} $F'_{G}(u)$, and $F'(u) = F'_{G}$ G' (u) (but not vice versa!)
- If $\exists F'(u)$, then $F'(u)h = \delta F(u,h) \quad \forall h \in U$.

$$
\blacksquare \quad F \in \mathscr{L}(U,V) \implies F'(u) = F \quad \forall \ u \in U \, .
$$

If
$$
V = \mathbb{R}
$$
, then $F'(u) \in \mathscr{L}(U, \mathbb{R}) = U^*$.

Example: $(H, (\cdot,\cdot)_H)$ Hilbert space, $F(u) := ||u||_E^2$ $H^2 = (u,u)_H$.

$$
\forall u, h: F(u+h) - F(u) = 2(u,h)_H + ||h||_H^2
$$

\n
$$
\implies F'(u) \in H^* \text{ given by } F'(u)h = 2(u,h)_H \quad \forall h \in H.
$$

Riesz \implies $F'(u) \in H^* \cong 2u \in H$. We call $2u$ the **gradient of** F at u .

Theorem 6 (Chain rule)

Let: *U*, *V*, *Z B*-spaces, $\mathcal{U} \subset U$, $\mathcal{V} \subset V$ open, $F : \mathcal{U} \to \mathcal{V}$ and *G* : $\mathcal{V} \rightarrow Z$ *F* -differentiable at $u \in \mathcal{U}$ and $F(u) \in \mathcal{V}$, respectively. Then $E := G \circ F$ is F-differentiable at u , and we have

$$
E'(u) = G'(F(u))F'(u).
$$

Example: $(U, (\cdot,\cdot)_U), (H, (\cdot,\cdot)_H)$ Hilbert spaces, $z \in H$ fixed. Let $S \in \mathcal{L}(U,H)$. Consider the functional $E: U \to \mathbb{R}$,

$$
E(u) = ||Su - z||_H^2
$$

Then
$$
E(u) = G(F(u))
$$
, where $G(v) = ||v||_H^2$ and $F(u) = Su - z$.

We know:

$$
G'(v)h = (2v, h)_{H}, \quad F'(u)h = Sh.
$$

$$
\implies E'(u)h = G'(F(u))F'(u)h = (2v, F'(u)h)_H
$$

= 2(Su-z, Sh)_H
= 2(S^{*}(Su-z), h)_U.

Here, $S^* \in \mathscr{L}(H^*, U^*)$ is the **adjoint of** *S*.

Def.: Let $(U, \|\cdot\|_U), (V, \|\cdot\|_V)$ be Banach spaces, $A \in \mathscr{L}(U, V)$. Then the mapping

$$
A^* \in \mathscr{L}(V^*, U^*), \ (A^*g)(f) := (g \circ A)(f), \ g \in V^*, f \in U^*,
$$

is called the **dual operator** of *A*.

Def.: Let $(U, (\cdot,\cdot)_U), (V, (\cdot,\cdot)_V)$ be Hilbert spaces, $A \in \mathscr{L}(U,V)$. Then an operator *A* ? is called the **Hilbert space adjoint of** *A* if

(17)
$$
(v, Au)_V = (A^*v, u)_U \quad \forall u \in U, \quad \forall v \in V
$$

Using the Riesz representation theorem, Hilbert space adjoint and dual of an operator $A \in \mathscr{L}(U,V)$ can be identified in the case of Hilbert spaces. We do that and always speak of **adjoints**.

The whole theory is based on the following simple results:

Theorem 7: Let $(U, \|\cdot\|_U)$ be a normed space, $J: U \to (-\infty, +\infty]$ a mapping with $J \not\equiv +\infty$. Then: $\bar{u} \in U$ minimizer of $J \iff 0 \in \partial J(\bar{u})$.

Proof: $0 \in \partial J(\bar{u})$ means by definition of $\partial J(\bar{u}):$ $J(\bar{u}) - J(u) \leq 0 \quad \forall u \in U$.

Theorem 8: Let $(U, \|\cdot\|_U)$ be a normed space; $C \subset U$ nonempty, convex, closed; *f* : $\mathcal{U} \rightarrow \mathbb{R}$ Gâteaux differentiable, where $C \subset \mathcal{U} \subset U$, \mathcal{U} open. If $\bar{u} \in C$ is a solution to

 (18) min *u*∈*C f*(*u*),

then \bar{u} solves

(19)
$$
f'(\bar{u})(u-\bar{u}) \geq 0 \quad \forall u \in C.
$$

Proof: Since C is convex,
$$
\bar{u} + t(u - \bar{u}) \in C
$$
 $\forall t \in [0, 1], \forall u \in C$. Hence, $\frac{1}{t}(f(\bar{u} + t(u - \bar{u})) - f(\bar{u})) \ge 0$ for $0 < t \le 1 \implies f'(\bar{u})(u - \bar{u}) \ge 0$.

We return to the OCP (9)–(11). Obviously, the **control-to-state mapping** G : $(u, v) \mapsto y$ is linear, continuous from $L^2(\Gamma_1) \times L^2(\Omega)$ in V .

Since
$$
H^1(\Omega) \hookrightarrow L^2(\Omega)
$$
, also $(E_Y := \text{identity from } H^1(\Omega) \text{ into } L^2(\Omega))$

$$
S := E_Y \circ G : L^2(\Gamma_1) \times L^2(\Omega) \to L^2(\Omega)
$$

is linear, continuous.

Also, by the trace theorem,

$$
S_{\Gamma} := \tau \circ G, \quad (u, v) \mapsto (\tau \circ G)(u, v) := y_{|\Gamma}
$$

is linear, continuous.

We thus may introduce the **reduced cost functional**

(20)
$$
J(y, u, v) = f(u, v) = \frac{\lambda_{\Omega}}{2} ||S(u, v) - y_{\Omega}||_{L^{2}(\Omega)}^{2} + \frac{\lambda_{\Gamma}}{2} ||S_{\Gamma}(u, v) - y_{\Gamma}||_{L^{2}(\Gamma)}^{2} + \frac{\lambda_{\nu}}{2} ||v||_{L^{2}(\Omega)}^{2} + \frac{\lambda_{u}}{2} ||u||_{L^{2}(\Gamma_{1})}^{2}.
$$

To simplify the exposition, we now consider the special case

$$
\mathscr{A}=-\Delta,\quad c_0\equiv 0,\quad \Gamma_0=\Gamma,\quad \lambda_v=\lambda,\quad \lambda_\Gamma=\lambda_u=0,\quad \beta_\Gamma\equiv 0,\quad \beta_\Omega\equiv\beta.
$$

We thus consider the optimal control problem (where we replace v, v_a, v_b by u, u_a, u_b):

 $(OCP)*$

$$
\min J(y, u) := \frac{1}{2} ||y - y_{\Omega}||_{L^2(\Omega)}^2 + \frac{\lambda}{2} ||u||_{L^2(\Omega)}^2,
$$

subject to

and

$$
u_a(x) \le u(x) \le u_b(x)
$$
 for a.e. $x \in \Omega$.

We postulate: $\ \lambda \geq 0$. We have $\ V = H^1_0$ $\frac{1}{0}(\Omega)$ and

$$
U_{ad} = \{u \in L^2(\Omega) : u_a \le u \le u_b \text{ a.e. }\}.
$$

Reduced functional:

$$
f(u) = J(y, u) = \frac{1}{2} ||Su - y_{\Omega}||_{L^2(\Omega)}^2 + \frac{\lambda}{2} ||u||_{L^2(\Omega)}^2,
$$

 $\mathsf{where}\ \ S=E_Y\circ G\ \ \mathsf{with}\ \ G:L^2(\mathbf{\Omega})\to H^1(\mathbf{\Omega})\,,\quad u\mapsto y\,.$ Clearly $f'(u)h = (S^*(Su - y_{\Omega}) + \lambda u, h)_{L^2(\Omega)} \quad \forall h \in L^2(\Omega),$

and the variational inequality (19) becomes

$$
(S^*(S\bar{u}-y_{\Omega})+\lambda\bar{u},u-\bar{u})_{L^2(\Omega)}\geq 0 \quad \forall u\in U_{ad}.
$$

We need to determine S^* , i.e.,

$$
(z, S u)_{L^2(\Omega)} = (S^* z, u)_{L^2(\Omega)} \quad \forall z \in L^2(\Omega), \quad \forall u \in L^2(\Omega).
$$

We use the lemma:

A simplified case

Lemma: Let functions $z, u \in L^2(\Omega)$ and $c_0, \beta \in L^{\infty}(\Omega)$ with $c_0 \ge 0$ a.e. in Ω be given, and let *y* and *p* denote, respectively, the weak solutions to the elliptic boundary value problems

$$
-\Delta y + c_0 y = \beta u \qquad -\Delta p + c_0 p = z \qquad \text{in } \Omega
$$

$$
y = 0 \qquad \qquad p = 0 \qquad \text{on } \Gamma.
$$

Then

(21)
$$
\int_{\Omega} z y dx = \int_{\Omega} \beta \, p u dx.
$$

Proof: We invoke the variational formulations of the above boundary value problems. For y , insertion of the test function $p \in H^1_0$ $\frac{1}{0}(\Omega)$ yields

$$
\int_{\Omega} (\nabla y \cdot \nabla p + c_0 y p) dx = \int_{\Omega} \beta p u dx,
$$

while for p we obtain with the test function $y \in H^1_0$ $\frac{1}{0}(\Omega)$ that

$$
\int_{\Omega} (\nabla p \cdot \nabla y + c_0 p y) dx = \int_{\Omega} z y dx.
$$

Since the left-hand sides are equal, the assertion immediately follows.

The adjoint state

Theorem 9: The adjoint operator $S^*: L^2(\Omega) \to L^2(\Omega)$ is given by $S^* z := \beta p$, where $p \in H_0^1$ $\frac{1}{0}(\Omega)$ is the weak solution to

$$
-\Delta p = z \quad \text{in } \Omega, \quad p = 0 \quad \text{on } \Gamma.
$$

Proof: By the above lemma, $\forall z, u \in L^2(\Omega)$,

$$
(z, S u)_{L^2(\Omega)} = (z, y)_{L^2(\Omega)} = (\beta p, u)_{L^2(\Omega)}.
$$

Moreover, the mapping $z \mapsto \beta p$ belongs to $\mathscr{L}(L^2(\Omega), L^2(\Omega))$.

Def.: The weak solution $p \in H_0^1$ $\chi_0^1(\Omega)$ to the adjoint state equation

(22)
$$
-\Delta p = \bar{y} - y_{\Omega} \text{ in } \Omega
$$

$$
p = 0 \text{ on } \Gamma
$$

is called the **adjoint state associated** with \bar{y} .

We now find:

$$
S^*(S\bar{u}-y_{\Omega})=S^*(\bar{y}-y_{\Omega})=\beta p
$$

 $\implies (\beta p + \lambda \bar{u}, u - \bar{u}) \geq 0 \quad \forall u \in U_{ad}$

=⇒ **Optimality system:** a control *u* , together with the optimal state *y* and the adjoint state p , is a solution of $(OCP)^*$ if and only if

$$
-\Delta y = \beta u \qquad -\Delta p = y - y_{\Omega}
$$

\n
$$
y|_{\Gamma} = 0 \qquad p|_{\Gamma} = 0
$$

\n
$$
u \in U_{ad}
$$

\n
$$
(\beta p + \lambda u, v - u)_{L^{2}(\Omega)} \ge 0 \quad \forall v \in U_{ad}.
$$

The inequality

$$
\int_{\Omega} (\beta p + \lambda \bar{u}) \bar{u} \, dx \le \int_{\Omega} (\beta p + \lambda \bar{u}) u \, dx \quad \forall u \in U_{ad}
$$

means:

$$
\int_{\Omega} (\beta p + \lambda \bar{u}) \bar{u} \, dx = \min_{u \in U_{ad}} \int_{\Omega} (\beta p + \lambda \bar{u}) u \, dx.
$$

We easily obtain:

Lemma: The variational inequality is satisfied if and only if, for a.e. $x \in \Omega$,

(24)
$$
\bar{u}(x) = \begin{cases} u_a(x) & \text{if } \beta(x) p(x) + \lambda \bar{u}(x) > 0 \\ \in [u_a(x), u_b(x)] & \text{if } \beta(x) p(x) + \lambda \bar{u}(x) = 0 \\ u_b(x) & \text{if } \beta(x) p(x) + \lambda \bar{u}(x) < 0. \end{cases}
$$

We obtain as consequences:

Case $\lambda = 0$: Then, a.e. in Ω ,

$$
\bar{u}(x) = \begin{cases} u_a(x) & \text{if } \beta(x) \, p(x) > 0 \\ u_b(x) & \text{if } \beta(x) \, p(x) < 0. \end{cases}
$$

Hence: If $\beta(x) p(x) \neq 0$ a.e. in $\Omega \implies \bar{u}$ is a **bang-bang control**.

Case $\lambda > 0$: Then, a.e. in Ω ,

(25)
$$
\bar{u}(x) = \mathbb{P}_{[u_a(x), u_b(x)]} \left\{-\frac{1}{\lambda} \beta(x) p(x)\right\} \text{ for almost every } x \in \Omega.
$$

Notice: Let $\beta \in C^{0,1}(\overline{\Omega})$, $u_a, u_b \in H^1(\Omega)$. Since $\mathbb{P}_{[a,b]}(u) = \min\{b, \max\{a, u\}\}\$, and since the adjoint state $\,p\,$ belongs to $H^1(\Omega)$, we have $\,\bar u\in H^1(\Omega)\,$ for $\,\lambda>0\,!$ Hence: The regularizing term $||u||_I^2$ $L^2(\Omega)$ in the cost functional has a regularizing effect on the optimal control.

4. The formal Lagrange method

A convenient method to "guess" the necessary optimality conditions is the formal Lagrange method. We explain it for the OCP (9)–(11):

(9)
$$
\min J(y, u, v) := \frac{\lambda_{\Omega}}{2} \|y - y_{\Omega}\|_{L^{2}(\Omega)}^{2} + \frac{\lambda_{\Gamma}}{2} \|y - y_{\Gamma}\|_{L^{2}(\Gamma)}^{2} + \frac{\lambda_{\nu}}{2} \|v\|_{L^{2}(\Omega)}^{2} + \frac{\lambda_{u}}{2} \|u\|_{L^{2}(\Gamma_{1})}^{2}
$$

subject to the constraints

(10)
\n
$$
\begin{array}{rcl}\n\mathscr{A}y + c_0 y & = & \beta_{\Omega} v & \text{in } \Omega \\
\partial_{v_{\mathscr{A}}} y + \alpha y & = & \beta_{\Gamma} u & \text{on } \Gamma_1 \\
y & = & 0 & \text{on } \Gamma_0\n\end{array}
$$

and

(11)
$$
v_a(x) \le v(x) \le v_b(x) \quad \text{for a.e. } x \in \Omega
$$

$$
u_a(x) \le u(x) \le u_b(x) \quad \text{for a.e. } x \in \Gamma_1
$$

The formal Lagrange method

=⇒

The state space was $V = \{y \in H^1(\Omega) : y_{|_{\Gamma_0}}\}$ $= 0\}$. The general idea is to include the "difficult" equation constraints (10) into the Lagrangian and thus to minimize

(26)
$$
\mathscr{L}(y, u, v, p) := J(y, u, v) - \int_{\Omega} (\mathscr{A} y + c_0 y - \beta_{\Omega} v) p dx - \int_{\Gamma_1} (\partial_{v_{\mathscr{A}}} y + \alpha y - \beta_{\Gamma} u) p ds
$$

over $V_{ad} \times U_{ad}$. We do not care whether this expression makes sense and simply integrate by parts to find, with the BF (13):

$$
\mathscr{L}(y, u, v, p) = J(y, u, v) - a[y, p] + \int_{\Omega} \beta_{\Omega} v p \, dx + \int_{\Gamma_1} \beta_{\Gamma} u \, p \, ds.
$$

Lagrange's method tells us that we should have $D_y\mathscr{L}=0$, i.e.:

$$
D_{y}\mathscr{L}(y, u, v, p) h = \int_{\Omega} \lambda_{\Omega} (\bar{y} - y_{\Omega}) h \, dx + \int_{\Gamma} \lambda_{\Gamma} (\bar{y} - y_{\Gamma}) h \, ds - a[h, p] = 0, \quad \forall \ h \in V.
$$

The formal Lagrange method

(27)

 $p\in H^1(\mathbf{\Omega})$ is the unique weak solution to the adjoint state equation:

$$
\begin{aligned}\n\mathscr{A} p + c_0 p &= \lambda_{\Omega} (\bar{y} - y_{\Omega}) & \text{in } \Omega \\
\partial_{v_{\mathscr{A}}} p + \alpha p &= \lambda_{\Gamma} (\bar{y} - y_{\Gamma}) & \text{on } \Gamma_1 \\
p &= 0 & \text{on } \Gamma_0.\n\end{aligned}
$$

Also, again by Lagrange's method, we ought to have the variational inequalities:

(28)
$$
D_{V} \mathscr{L}(\bar{y}, \bar{u}, \bar{v}, p)(v - \bar{v}) = \int_{\Omega} (\lambda_{V} \bar{v} + \beta_{\Omega} p)(v - \bar{v}) dx \geq 0 \quad \forall v \in V_{ad},
$$

(29)
$$
D_u \mathscr{L}(\bar{y}, \bar{u}, \bar{v}, p)(u - \bar{u}) = \int_{\Gamma_1} (\lambda_u \bar{u} + \beta_{\Gamma} p)(u - \bar{u}) ds \geq 0 \quad \forall u \in U_{ad}.
$$

The techniques introduced above can be generalized to semilinear elliptic control problems. In the book of Tröltzsch, elliptic state equations are considered of the type:

(30)

$$
\mathscr{A} y + c_0(x)y + d(x, y) = f \text{ in } \Omega
$$

$$
\partial_{v_{\mathscr{A}}} y + \alpha(x)y + b(x, y) = g \text{ on } \Gamma.
$$

Problems:

- State space? Existence, uniqueness? Control-to-state operator?
- Differentiability of nonlinearities (Nemytskii operators)?
- Problem nonconvex \implies necessary conditions are not sufficient \implies need second-order sufficient conditions \implies new problems

The control problem

We consider, as example, the OCP with distributed control

(31)
$$
\min J(y, u) := \frac{1}{2} \int_{\Omega} |y(x) - y_{\Omega}(x)|^2 dx + \frac{\lambda}{2} \int_{\Omega} |u(x)|^2 dx,
$$

subject to

(32)
$$
-\Delta y + d(x, y) = u \text{ in } \Omega
$$

$$
y = 0 \text{ on } \Gamma
$$

and

(33)
$$
u_a(x) \le u(x) \le u_b(x)
$$
 for a.e. $x \in \Omega$, where $u_a, u_b \in L^{\infty}(\Omega)$.

The BVP (32) is **semilinear**.

What is the "right" state space?

Cannot simply take $V = H_0^1$ $y_0^1(\Omega)$: if $y \in H_0^1$ $\mathcal{O}_0^1(\Omega)$, do we have $d(\cdot,y(\cdot))\in L^2(\Omega)$?

Even if $d(\cdot,y(\cdot)) \in L^2(\Omega)$ for $y \in H_0^1$ $\mathcal{O}_0^1(\Omega)$, is $y \mapsto d(\cdot,y(\cdot))$ Fréchet differentiable?

We avoid this by considering nonlinearities for which we can work in *L* [∞](Ω). We assume

- **(H1)** $\Omega \subset \mathbb{R}^N$ open, bounded, $\Gamma \in C^{0,1}$.
- **(H2)** $d : \Omega \times \mathbb{R} \to \mathbb{R}$ is bounded and measurable with respect to $x \in \Omega$ for every $y \in \mathbb{R}$.
- **(H3)** *d* is continuous, and increasing and Lipschitz continuous in *y* for a.e. $x \in \Omega$.

(H4) $d(x,0) = 0$ for a.e. $x \in \Omega$. **(not really necessary!)**

Existence for the state equation

Theorem 10: Suppose **(H1)–(H4)** are fulfilled. Then the BVP (32) has a unique weak solution $y \in H^1_0$ $\chi_0^1(\Omega)\cap C(\bar{\Omega})$, i.e., we have

(34)
$$
\int_{\Omega} \nabla y \cdot \nabla v dx + \int_{\Omega} d(x, y(x)) v(x) dx = \int_{\Omega} u v dx \quad \forall v \in H_0^1(\Omega).
$$

Moreover, $\exists c_{\infty} > 0$ such that

(35)
$$
||y||_{H^1(\Omega)} + ||y||_{C(\bar{\Omega})} \leq c_{\infty} ||u||_{L^{\infty}(\Omega)}.
$$

Remarks:

- In the case $\Gamma \in C^{1,1}$ we also have $y \in W^{2,p}(\Omega)$ for $1 \leq p < +\infty$.
- The proof of the theorem uses the Browder–Minty theorem on monotone operators.

We denote
$$
y = y(u)
$$
.

Guessing the first-order necessary conditions

We first use the formal Lagrange method to "guess" what the necessary conditions should look like. Define

$$
L(y, u, p) = J(y, u) - \int_{\Omega} (-\Delta y + d(x, y(x)) - u) p dx
$$

=
$$
J(y, u) - \int_{\Omega} (\nabla y \cdot \nabla p + d(x, y(x)) p - u p) dx.
$$

Then:

$$
D_{\mathcal{Y}}L(\bar{\mathbf{y}},\bar{u},p)h = \int_{\Omega} (\bar{\mathbf{y}} - \bar{\mathbf{y}}_{\Omega})h dx - \int_{\Omega} (\nabla h \cdot \nabla p + d_{\mathcal{Y}}(x,\bar{\mathbf{y}}(x)) p h) dx = 0 \quad \forall h \in H_0^1(\Omega)
$$

(36)
$$
-\Delta p + d_y(x, \bar{y}(x)) p = \bar{y} - y_{\Omega} \quad \text{in } \Omega \quad \text{(adjoint system)}
$$

(37)
$$
D_{u}L(\bar{y},\bar{u},p)(u-\bar{u})=\int_{\Omega}(\lambda \,\bar{u}+p)(u-\bar{u})dx\geq 0 \quad \forall u\in U_{ad}.
$$

The rigorous proof uses:

Theorem 11: Let **(H2)–(H4)** and the following condition be satisfied:

(H5) *d* is continuously differentiable with respect to *y* for a.e. $x \in \Omega$, and we have:

- **(i)** $|d_y(x,0)| \le K$ for a.e. $x \in \Omega$.
- **(ii)** d_v is locally Lipschitz with respect to $y \in \mathbb{R}$.

Then the Nemytskii operator $D: y \mapsto d(\cdot, y(\cdot))$ is continuously Fréchet differentiable from $L^{\infty}(\Omega)$ into itself, and we have

(38)
$$
(D'(y)h)(x) = d_y(x,y(x))h(x) \text{ a.e. in } \Omega, \quad \forall h \in L^{\infty}(\Omega).
$$

Remark: (H5) holds if $d(x,y) = d(y)$ and $d \in C^2(\mathbb{R})$.

By Theorem 10, the **control-to-state mapping** $G: L^{\infty}(\Omega) \rightarrow H_0^1$ $\frac{1}{0}(\Omega)\cap C(\bar{\Omega})$, $G(u) := y(u)$, is well defined, and it can easily be shown to be globally Lipschitz continuous. A forteriori, we have:

Theorem 12: Let **(H1)–(H4)** be satisfied. Then *G* is Fréchet differentiable from $L^\infty(\Omega)$ into H^1_0 $\bar{U}_0^1(\Omega)\cap C(\bar{\Omega})$. The directional derivative at $\bar{u}\in L^\infty(\Omega)$ in the direction $\,h$ is given by $G'(\bar{u})h = y$, where y denotes the weak solution to the linearized BVP

(39)
$$
-\Delta y + d_y(x, \bar{y})y = h \text{ in } \Omega
$$

$$
y = 0 \text{ on } \Gamma.
$$

From this result, using the differentiability of the reduced cost

functional

$$
f(u) := J(G(u), u) = \frac{1}{2} \int_{\Omega} |G(u) - y_{\Omega}|^2 dx + \frac{\lambda}{2} \int_{\Omega} |u|^2 dx,
$$

we easily derive the first-order optimality conditions:

Theorem 13: Let (H1)–(H5) be satisfied, and let $\bar{u} \in U_{ad}$ be locally optimal and \bar{y} = $y(\bar{u})$ be the associated state. Then the adjoint state $p \in H^1_0$ $\frac{1}{0}(\Omega)\cap C(\bar{\Omega})$, which is the unique solution to the adjoint equation

(40)
$$
\left\{\n\begin{array}{c}\n-\Delta p + d_y(x, \bar{y}(x)) p = \bar{y} - y_\Omega & \text{in } \Omega \\
p = 0 & \text{on } \Gamma\n\end{array}\n\right.
$$

satisfies the variational inequality

(41)
$$
\int_{\Omega} (\lambda \bar{u} + p)(x) (u(x) - \bar{u}(x)) dx \geq 0 \quad \forall u \in U_{ad}.
$$

Remarks:

1. As in the linear case, we find for $\lambda > 0$:

(42)
$$
\bar{u}(x) = \mathbb{P}_{[u_a(x), u_b(x)]} \left\{-\frac{1}{\lambda} p(x)\right\} \text{ for a.e. } x \in \Omega.
$$

Consequently:

$$
u_a, u_b \in C(\bar{\Omega}) \left(H^1(\Omega) \right) \implies \bar{u} \in C(\bar{\Omega}) \left(H^1(\Omega) \right).
$$

2. Consider the OCP with boundary control:

$$
\min J(y, u) := \frac{1}{2} \int_{\Omega} |y - y_{\Omega}|^2 dx + \frac{\lambda}{2} \int_{\Omega} |u|^2 dx,
$$

subject to

(43)
$$
-\Delta y + y = 0 \text{ in } \Omega
$$

$$
\partial_y y + d(x, y) = u \text{ on } \Gamma
$$

and

$$
u_a(x) \le u(x) \le u_b(x)
$$
 for a.e. $x \in \Gamma$.

One obtains in this case the adjoint equation (with $p \in H^1(\Omega) \cap C(\bar{\Omega})$)

$$
-\Delta p + p = y - y_{\Omega} \text{ in } \Omega
$$

$$
\partial_v p + d_y(x, \bar{y}) p = 0 \text{ on } \Gamma
$$

and the variational inequality

$$
\int_{\Gamma} (\lambda \bar{u} + p)(x) (u(x) - \bar{u}(x)) ds \ge 0 \quad \forall u \in U_{ad}.
$$

