1. Existence, uniqueness and regularity of weak solutions to elliptic BVPs

In this section, we study linear elliptic operators of the form

(6)
$$\mathscr{A} y(x) = -\sum_{i,j=1}^{N} D_i \left(a_{ij}(x) D_j y(x) \right), \quad x \in \Omega \subset \mathbb{R}^N.$$

General assumptions:

(H1)
$$a_{ij} \in L^{\infty}(\Omega)$$
, $a_{ij} = a_{ji}$, $\forall i, j$.
(H2) $\exists \gamma_0 > 0$ such that $\sum_{i,j=1}^N a_{ij}(x) \xi_i \xi_j \ge \gamma_0 |\xi|^2$ a.e. in Ω , $\forall \xi \in \mathbb{R}^N$

We denote

(7) $\partial_{v_{\mathscr{A}}} y =$ directional derivative of y in the direction of the **conormal** $v_{\mathscr{A}}$, where

(8)
$$(\mathbf{v}_{\mathscr{A}})_i(x) = \sum_{j=1}^N a_{ij}(x) \, \mathbf{v}_j(x), \quad 1 \le i \le N$$

Mini-Course "Introduction to Optimal Control Problems for PDEs" · Cortona, July 2010 · Page 1 (36)

Linear elliptic control problems

Consider the OCP

(9)
$$\min J(y, u, v) := \frac{\lambda_{\Omega}}{2} \|y - y_{\Omega}\|_{L^{2}(\Omega)}^{2} + \frac{\lambda_{\Gamma}}{2} \|y - y_{\Gamma}\|_{L^{2}(\Gamma)}^{2} + \frac{\lambda_{V}}{2} \|v\|_{L^{2}(\Omega)}^{2} + \frac{\lambda_{u}}{2} \|u\|_{L^{2}(\Gamma_{1})}^{2}$$

subject to the constraints

(10)
$$\begin{aligned} \mathscr{A} y + c_0 y &= \beta_\Omega v & \text{in } \Omega \\ \partial_{v_{\mathscr{A}}} y + \alpha y &= \beta_\Gamma u & \text{on } \Gamma_1 \\ y &= 0 & \text{on } \Gamma_0 \end{aligned}$$

and

(11)
$$\begin{aligned} & \mathbf{v}_a(x) \leq \mathbf{v}(x) & \leq \mathbf{v}_b(x) & \text{ for a.e. } x \in \Omega \\ & u_a(x) \leq u(x) & \leq u_b(x) & \text{ for a.e. } x \in \Gamma_1 \end{aligned}$$

General assumptions:

(H3) $\Gamma = \Gamma_0 \cup \Gamma_1$, Γ_0 and Γ_1 measurable.

(H4) $c_0 \in L^{\infty}(\Omega), \ c_0 \ge 0$ a.e., $\alpha \in L^{\infty}(\Gamma_1), \ \alpha \ge 0$ a.e.

(H5) Either
$$|\Gamma_0| > 0$$
 or $\Gamma = \Gamma_1$ and $||c_0||_{L^2(\Omega)} + ||\alpha||_{L^2(\Gamma)} > 0$.

(H6)
$$\beta_{\Omega} \in L^{\infty}(\Omega), \ \beta_{\Gamma} \in L^{\infty}(\Gamma_1).$$

(H7)
$$\lambda_{\Omega}, \lambda_{\Gamma}, \lambda_{\nu}, \lambda_{u}$$
 are given nonnegative constants.

Moreover, we put

$$V_{ad} = \{ \mathbf{v} \in L^2(\Omega) : \mathbf{v}_a(x) \leq \mathbf{v}(x) \leq \mathbf{v}_b(x) \quad \text{for a.e. } x \in \Omega \}, \\ U_{ad} = \{ u \in L^2(\Gamma_1) : u_a(x) \leq u(x) \leq u_b(x) \quad \text{for a.e. } x \in \Gamma_1 \} \\ \text{with } \mathbf{v}_a, \mathbf{v}_b \in L^{\infty}(\Omega), \ u_a, u_b \in L^{\infty}(\Gamma_1). \end{cases}$$

We consider first the BVP

$$\begin{array}{rcl} \mathscr{A} y + c_0 y &=& f & \text{ in } \Omega \\ \partial_{V_{\mathscr{A}}} y + \alpha y &=& g & \text{ on } \Gamma_1 \\ y &=& 0 & \text{ on } \Gamma_0 \end{array}$$

(12)

We associate with (12) the following weak formulation:

Let
$$V := \{ y \in H^1(\Omega) : y|_{\Gamma_0} = 0 \}.$$

Define on *V* the bilinear form:

(13)
$$a[y, \mathbf{v}] := \int_{\Omega} \sum_{i,j=1}^{N} a_{ij} D_i y D_j \mathbf{v} \, dx + \int_{\Omega} c_0 y \, \mathbf{v} \, dx + \int_{\Gamma_1} \alpha y \, \mathbf{v} \, ds$$

Then the weak form of (12) is to find some $y \in V$ such that

$$a[\mathbf{y}, \mathbf{v}] = \left(f, \mathbf{v}\right)_{L^2(\Omega)} + \left(g, \mathbf{v}\right)_{L^2(\Gamma_1)} \quad \forall \, \mathbf{v} \in V$$

Existence of weak solutions

Theorem 5: $\Omega \subset \mathbb{R}^N$ open, bounded; $\partial \Omega \in C^{0,1}$; **(H1)–(H5)** fulfilled. Then:

$$\forall (f,g) \in L^2(\Omega) \times L^2(\Gamma_1) \exists_1 \text{ weak solution } y \in V.$$

$$\exists c_{\mathscr{A}} > 0 : \|y\|_{H^{1}(\Omega)} \le c_{\mathscr{A}} \left(\|f\|_{L^{2}(\Omega)} + \|g\|_{L^{2}(\Gamma_{1})} \right)$$

Lax–Milgram lemma: Let $V, (\cdot, \cdot)_V$ be a real Hilbert space, and let $a : V \times V \to \mathbb{R}$ denote a bilinear form. Moreover, suppose that there exist positive constants α_0 and β_0 such that the following conditions are satisfied for all $v, y \in V$:

(14)
$$|a[y, v]| \le \alpha_0 ||y||_V ||v||_V$$
 (boundedness)

(15)
$$a[y,y] \ge \beta_0 \|y\|_V^2$$
 (V-ellipticity).

Then for every $F \in V^*$ the variational equation $a[y, v] = F(v) \forall v \in V$ admits a unique solution $y \in V$. Moreover, there is some constant $c_a > 0$, which does not depend on F, such that

(16)
$$\|y\|_V \le c_a \, \|F\|_{V^*}.$$

We apply the Lax–Milgram lemma with $V = \{y \in H^1(\Omega) : v_{|_{\Gamma_0}} = 0\}$

$$(y, \mathbf{v})_V := \int_{\Omega} (\nabla y \cdot \nabla \mathbf{v} + y \mathbf{v}) dx$$
, and

 $F(\mathbf{v}) := (f, \mathbf{v})_{L^2(\Omega)} + (g, \mathbf{v})_{L^2(\Gamma_1)}.$

Obviously $F \in V^*$, since $\forall v \in V$, by the trace theorem,

$$|F(\mathbf{v})| \leq ||f||_{L^{2}(\Omega)} ||\mathbf{v}||_{L^{2}(\Omega)} + ||g||_{L^{2}(\Gamma_{1})} ||\mathbf{v}||_{L^{2}(\Gamma_{1})}$$

$$\leq \left(||f||_{L^{2}(\Omega)} + ||g||_{L^{2}(\Gamma_{1})} \right) ||\mathbf{v}||_{H^{1}(\Omega)}$$

By a similar calculation, we have

$$|a(y,\mathbf{v})| \le \alpha_0 \|y\|_{H^1(\Omega)} \|\mathbf{v}\|_{H^1(\Omega)} \quad \forall \, y, \mathbf{v} \in V \,, \quad \text{ for some } \alpha_0 > 0 \,.$$

Moreover,

$$a[y,y] \geq \gamma_0 \int_{\Omega} |\nabla y(x)|^2 dx + \int_{\Omega} c_0(x) |y(x)|^2 dx + \int_{\Gamma_1} \alpha(x) |y(x)|^2 ds.$$

If $|\Gamma_0| > 0$, then (15) follows from Poincaré's inequality. If $\Gamma = \Gamma_1$, we have:

Lemma (Friedrichs) Let $B: H^1(\Omega) \times H^1(\Omega) \to \mathbb{R}$ be a continuous BF such that $B[y,y] \ge 0 \quad \forall \ y \in H^1(\Omega)$. If B[h,h] > 0 for $h \equiv 1$, then the norm

$$||y|| := \left(\int_{\Omega} |\nabla y|^2 \, dx \right)^{\frac{1}{2}} + B[y, y]^{\frac{1}{2}}$$

is equivalent to $\|\cdot\|_{H^1(\Omega)}$ on $H^1(\Omega)$.

The existence result now follows from the lemma and (H5) if we put

$$B[y, \mathbf{v}] := \int_{\Omega} c_0(x) y \, \mathbf{v} dx + \int_{\Gamma_1} \alpha(x) y \, \mathbf{v} ds.$$

Apply first Theorem 3 of Lecture 1 to show existence for OCP. We take:

$$V:=\text{ as above; } \mathscr{U}:=L^2(\Omega)\times L^2(\Gamma_1)\,; \ \mathscr{U}_{ad}:=V_{ad}\times U_{ad}\,; \ H=C=L^2(\Omega)\,;$$

 $A: V \to V^*$ the operator $A \in \mathscr{L}(V, V^*)$ defined by the BF (13);

 $B \in \mathscr{L}(\mathscr{U}, V^*)$ the mapping assigning to $(v, u) \in \mathscr{U}_{ad}$ the linear functional $F = B(v, u) \in V^*$:

$$F(y) := \int_{\Omega} \beta_{\Omega} \, vy \, dx + \int_{\Gamma_1} \beta_{\Gamma} \, uy \, ds \, .$$

Since \mathscr{U}_{ad} is bounded and $J: V \times \mathscr{U} \to \mathbb{R}$ convex and I.s.c., OCP has at least one minimum.

If $\lambda_{\Omega} > 0$ and $\lambda_{v} > 0$, then the minimum is unique.

2. Differentiation in Banach spaces

Let: $(U, \|\cdot\|_U), (V, \|\cdot\|_V)$ *B*-spaces, $\mathscr{U} \subset U$ nonempty, open, $F : \mathscr{U} \to V$. Def.: Let $u \in \mathscr{U}$.

- If $\exists \delta F(u,h) := \lim_{t \downarrow 0} \frac{1}{t} (F(u+th) F(u))$, then $\delta F(u,h)$ is called the directional derivative of f at u in the direction h.
- If $\exists \delta F(u,h) \forall h \in U$, then $h \mapsto \delta(u,h)$ is the first variation of F at u.
- Let \exists the first variation $\delta F(u, \cdot)$. *F* is said to be Gâteaux differentiable at $u :\iff \exists A \in \mathscr{L}(U, V)$ such that $\delta F(u, h) = Ah \quad \forall h \in U$. We write $A = F'_G(u)$.
- *F* is said to be **Fréchet differentiable at** $u :\iff \exists A \in \mathscr{L}(U,V)$ and a mapping $r(u, \cdot) : U \to V$ such that: for all $h \in U$ with $u + h \in \mathscr{U}$, we have

$$F(u+h) = F(u) + Ah + r(u,h)$$

with

$$rac{\|r(u,h)\|_V}{\|h\|_U} o 0 \quad ext{as} \ \|h\|_U o 0.$$

We write F'(u) := A.

- If *F* is Fréchet differentiable at every $u \in \mathcal{U}$, then *F* is said to be Fréchet differentiable on \mathcal{U} .
- If $\exists F'(u) \quad \forall u \in \mathscr{U}$ and the mapping $u \mapsto F'(u)$ is continuous, we speak of **continuous Fréchet differentiability** on \mathscr{U} .

Remarks:

If
$$\exists F'(u)$$
, then $\exists F'_G(u)$, and $F'(u) = F'_G(u)$ (but not vice versa!)

If
$$\exists F'(u)$$
, then $F'(u)h = \delta F(u,h) \quad \forall h \in U$.

$$F \in \mathscr{L}(U,V) \implies F'(u) = F \quad \forall u \in U.$$

If
$$V = \mathbb{R}$$
, then $F'(u) \in \mathscr{L}(U, \mathbb{R}) = U^*$.

Example: $(H, (\cdot, \cdot)_H)$ Hilbert space, $F(u) := ||u||_H^2 = (u, u)_H$.

$$\forall u,h : F(u+h) - F(u) = 2(u,h)_H + ||h||_H^2$$

$$\implies F'(u) \in H^* \text{ given by } F'(u)h = 2(u,h)_H \quad \forall h \in H.$$

Riesz \implies $F'(u) \in H^* \cong 2u \in H$. We call 2u the gradient of F at u.

Theorem 6 (Chain rule)

Let: U, V, Z *B*-spaces, $\mathscr{U} \subset U, \mathscr{V} \subset V$ open, $F : \mathscr{U} \to \mathscr{V}$ and $G : \mathscr{V} \to Z$ *F*-differentiable at $u \in \mathscr{U}$ and $F(u) \in \mathscr{V}$, respectively. Then $E := G \circ F$ is *F*-differentiable at *u*, and we have

$$E'(u) = G'(F(u))F'(u).$$

Example: $(U, (\cdot, \cdot)_U), (H, (\cdot, \cdot)_H)$ Hilbert spaces, $z \in H$ fixed. Let $S \in \mathscr{L}(U, H)$. Consider the functional $E : U \to \mathbb{R}$,

$$E(u) = \|Su - z\|_H^2$$

Then E(u) = G(F(u)), where $G(v) = ||v||_H^2$ and F(u) = Su - z.

We know:

$$G'(\mathbf{v})h = (2\mathbf{v}, h)_H, \quad F'(u)h = Sh.$$

$$\implies E'(u)h = G'(F(u))F'(u)h = (2v, F'(u)h)_H$$
$$= 2(Su-z, Sh)_H$$
$$= 2(S^*(Su-z), h)_U.$$

Here, $S^* \in \mathscr{L}(H^*, U^*)$ is the adjoint of *S*.

Def.: Let $(U, \|\cdot\|_U), (V, \|\cdot\|_V)$ be Banach spaces, $A \in \mathscr{L}(U, V)$. Then the mapping

$$A^* \in \mathscr{L}(V^*, U^*), \ (A^*g)(f) := (g \circ A)(f), \ g \in V^*, f \in U^*,$$

is called the **dual operator** of A.

Def.: Let $(U, (\cdot, \cdot)_U), (V, (\cdot, \cdot)_V)$ be Hilbert spaces, $A \in \mathscr{L}(U, V)$. Then an operator A^* is called the **Hilbert space adjoint of** A if

(17)
$$(\mathbf{v}, A u)_V = (A^* \mathbf{v}, u)_U \quad \forall u \in U, \quad \forall \mathbf{v} \in V$$

Using the Riesz representation theorem, Hilbert space adjoint and dual of an operator $A \in \mathscr{L}(U,V)$ can be identified in the case of Hilbert spaces. We do that and always speak of **adjoints**.

The whole theory is based on the following simple results:

Theorem 7: Let $(U, \|\cdot\|_U)$ be a normed space, $J: U \to (-\infty, +\infty]$ a mapping with $J \not\equiv +\infty$. Then: $\bar{u} \in U$ minimizer of $J \iff 0 \in \partial J(\bar{u})$.

Proof: $0 \in \partial J(\bar{u})$ means by definition of $\partial J(\bar{u})$: $J(\bar{u}) - J(u) \le 0 \quad \forall u \in U$.

Theorem 8: Let $(U, \|\cdot\|_U)$ be a normed space; $C \subset U$ nonempty, convex, closed; $f : \mathscr{U} \to \mathbb{R}$ Gâteaux differentiable, where $C \subset \mathscr{U} \subset U$, \mathscr{U} open. If $\bar{u} \in C$ is a solution to

(18)
$$\min_{u \in C} f(u)$$

then \bar{u} solves

(19)
$$f'(\bar{u})(u-\bar{u}) \ge 0 \quad \forall \, u \in C$$

Proof: Since *C* is convex,
$$\bar{u} + t(u - \bar{u}) \in C \quad \forall t \in [0, 1], \quad \forall u \in C$$
. Hence,
$$\frac{1}{t}(f(\bar{u} + t(u - \bar{u})) - f(\bar{u})) \ge 0 \text{ for } 0 < t \le 1 \implies f'(\bar{u})(u - \bar{u}) \ge 0.$$

We return to the OCP (9)–(11). Obviously, the **control-to-state mapping** $G: (u, v) \mapsto y$ is linear, continuous from $L^2(\Gamma_1) \times L^2(\Omega)$ in *V*.

Since
$$H^1(\Omega) \hookrightarrow L^2(\Omega)$$
, also $(E_Y := \text{ identity from } H^1(\Omega) \text{ into } L^2(\Omega))$
 $S := E_Y \circ G : L^2(\Gamma_1) \times L^2(\Omega) \to L^2(\Omega)$

is linear, continuous.

Also, by the trace theorem,

$$S_{\Gamma} := \tau \circ G, \quad (u, v) \mapsto (\tau \circ G)(u, v) := y_{|_{\Gamma}}$$

is linear, continuous.

We thus may introduce the **reduced cost functional**

(20)
$$J(y, u, v) = f(u, v) = \frac{\lambda_{\Omega}}{2} \|S(u, v) - y_{\Omega}\|_{L^{2}(\Omega)}^{2} + \frac{\lambda_{\Gamma}}{2} \|S_{\Gamma}(u, v) - y_{\Gamma}\|_{L^{2}(\Gamma)}^{2} + \frac{\lambda_{V}}{2} \|v\|_{L^{2}(\Omega)}^{2} + \frac{\lambda_{u}}{2} \|u\|_{L^{2}(\Gamma_{1})}^{2}.$$

To simplify the exposition, we now consider the special case

$$\mathscr{A} = -\Delta, \quad c_0 \equiv 0, \quad \Gamma_0 = \Gamma, \quad \lambda_{\mathsf{V}} = \lambda, \quad \lambda_{\Gamma} = \lambda_{\mathfrak{u}} = 0, \quad \beta_{\Gamma} \equiv 0, \quad \beta_{\Omega} \equiv \beta.$$

We thus consider the optimal control problem (where we replace v, v_a, v_b by u, u_a, u_b):

(OCP)*

$$\min J(y,u) := \frac{1}{2} \|y - y_{\Omega}\|_{L^{2}(\Omega)}^{2} + \frac{\lambda}{2} \|u\|_{L^{2}(\Omega)}^{2},$$

subject to

$-\Delta y$	=	βи	in Ω
У	—	0	on Γ

and

$$u_a(x) \le u(x) \le u_b(x)$$
 for a.e. $x \in \Omega$.

We postulate: $\lambda \geq 0$. We have $V = H_0^1(\Omega)$ and

$$U_{ad} = \{ u \in L^2(\Omega) : u_a \le u \le u_b \text{ a.e. } \}.$$

Reduced functional:

$$f(u) = J(y, u) = \frac{1}{2} \|Su - y_{\Omega}\|_{L^{2}(\Omega)}^{2} + \frac{\lambda}{2} \|u\|_{L^{2}(\Omega)}^{2},$$

where $S = E_Y \circ G$ with $G: L^2(\Omega) \to H^1(\Omega)$, $u \mapsto y$. Clearly $f'(u) h = (S^*(Su - y_{\Omega}) + \lambda u, h)_{L^2(\Omega)} \quad \forall h \in L^2(\Omega)$,

and the variational inequality (19) becomes

$$(S^*(S\bar{u}-y_{\Omega})+\lambda \bar{u},u-\bar{u})_{L^2(\Omega)}\geq 0 \quad \forall u\in U_{ad}.$$

We need to determine S^* , i.e.,

$$(z, Su)_{L^2(\Omega)} = (S^* z, u)_{L^2(\Omega)} \quad \forall z \in L^2(\Omega), \quad \forall u \in L^2(\Omega).$$

We use the lemma:

A simplified case

Lemma: Let functions $z, u \in L^2(\Omega)$ and $c_0, \beta \in L^{\infty}(\Omega)$ with $c_0 \ge 0$ a.e. in Ω be given, and let y and p denote, respectively, the weak solutions to the elliptic boundary value problems

$$\begin{aligned} -\Delta y + c_0 y &= \beta u & -\Delta p + c_0 p &= z & \text{in } \Omega \\ y &= 0 & p &= 0 & \text{on } \Gamma. \end{aligned}$$

Then

(21)
$$\int_{\Omega} zy \, dx = \int_{\Omega} \beta \, p \, u \, dx.$$

Proof: We invoke the variational formulations of the above boundary value problems. For *y*, insertion of the test function $p \in H_0^1(\Omega)$ yields

$$\int_{\Omega} \left(\nabla y \cdot \nabla p + c_0 y p \right) dx = \int_{\Omega} \beta p u dx,$$

while for *p* we obtain with the test function $y \in H_0^1(\Omega)$ that

$$\int_{\Omega} \left(\nabla p \cdot \nabla y + c_0 \, p \, y \right) dx = \int_{\Omega} z \, y \, dx.$$

Since the left-hand sides are equal, the assertion immediately follows.

The adjoint state

Theorem 9: The adjoint operator $S^* : L^2(\Omega) \to L^2(\Omega)$ is given by $S^* z := \beta p$, where $p \in H^1_0(\Omega)$ is the weak solution to

$$-\Delta p = z \quad \text{in } \Omega, \quad p = 0 \quad \text{on } \Gamma.$$

Proof: By the above lemma, $\forall z, u \in L^2(\Omega)$,

$$(z, Su)_{L^2(\Omega)} = (z, y)_{L^2(\Omega)} = (\beta p, u)_{L^2(\Omega)}.$$

Moreover, the mapping $z \mapsto \beta p$ belongs to $\mathscr{L}(L^2(\Omega), L^2(\Omega))$.

Def.: The weak solution $p \in H_0^1(\Omega)$ to the **adjoint state equation**

(22)
$$-\Delta p = \bar{y} - y_{\Omega} \text{ in } \Omega$$
$$p = 0 \text{ on } \Gamma$$

is called the **adjoint state associated** with \bar{y} .

We now find:

(23)

$$S^*(S\bar{u}-y_{\Omega})=S^*(\bar{y}-y_{\Omega})=\beta p$$

 $\implies (\beta p + \lambda \bar{u}, u - \bar{u}) \ge 0 \quad \forall u \in U_{ad}$

 \implies **Optimality system:** a control *u*, together with the optimal state *y* and the adjoint state *p*, is a solution of (OCP)^{*} if and only if

$$\begin{aligned} -\Delta y &= \beta u & -\Delta p &= y - y_{\Omega} \\ y|_{\Gamma} &= 0 & p|_{\Gamma} &= 0 \\ & u \in U_{ad} \\ & \left(\beta \, p + \lambda \, u, \mathbf{v} - u\right)_{L^{2}(\Omega)} \geq 0 \quad \forall \mathbf{v} \in U_{ad}. \end{aligned}$$

The inequality

$$\int_{\Omega} (\beta \, p + \lambda \, \bar{u}) \, \bar{u} \, dx \leq \int_{\Omega} (\beta \, p + \lambda \, \bar{u}) \, u \, dx \quad \forall \, u \in U_{ad}$$

means:

$$\int_{\Omega} (\beta \, p + \lambda \, \bar{u}) \, \bar{u} \, dx = \min_{u \in U_{ad}} \int_{\Omega} (\beta \, p + \lambda \, \bar{u}) \, u \, dx.$$

We easily obtain:

Lemma: The variational inequality is satisfied if and only if, for a.e. $x \in \Omega$,

(24)
$$\bar{u}(x) = \begin{cases} u_a(x) & \text{if } \beta(x) p(x) + \lambda \bar{u}(x) > 0 \\ \in [u_a(x), u_b(x)] & \text{if } \beta(x) p(x) + \lambda \bar{u}(x) = 0 \\ u_b(x) & \text{if } \beta(x) p(x) + \lambda \bar{u}(x) < 0. \end{cases}$$

We obtain as consequences:

Case $\lambda = 0$: Then, a.e. in Ω ,

$$\bar{u}(x) = \begin{cases} u_a(x) & \text{if } \beta(x) p(x) > 0\\ u_b(x) & \text{if } \beta(x) p(x) < 0. \end{cases}$$

Hence: If $\beta(x) p(x) \neq 0$ a.e. in $\Omega \implies \overline{u}$ is a bang-bang control.

Case $\lambda > 0$: Then, a.e. in Ω ,

(25)
$$\bar{u}(x) = \mathbb{P}_{[u_a(x), u_b(x)]} \left\{ -\frac{1}{\lambda} \beta(x) p(x) \right\}$$
 for almost every $x \in \Omega$.

Notice: Let $\beta \in C^{0,1}(\overline{\Omega})$, $u_a, u_b \in H^1(\Omega)$. Since $\mathbb{P}_{[a,b]}(u) = \min\{b, \max\{a,u\}\}$, and since the adjoint state p belongs to $H^1(\Omega)$, we have $\overline{u} \in H^1(\Omega)$ for $\lambda > 0$! Hence: The regularizing term $||u||^2_{L^2(\Omega)}$ in the cost functional has a regularizing effect on the optimal control.

4. The formal Lagrange method

A convenient method to "guess" the necessary optimality conditions is the formal Lagrange method. We explain it for the OCP (9)-(11):

(9)
$$\min J(y, u, v) := \frac{\lambda_{\Omega}}{2} \|y - y_{\Omega}\|_{L^{2}(\Omega)}^{2} + \frac{\lambda_{\Gamma}}{2} \|y - y_{\Gamma}\|_{L^{2}(\Gamma)}^{2} + \frac{\lambda_{V}}{2} \|v\|_{L^{2}(\Omega)}^{2} + \frac{\lambda_{u}}{2} \|u\|_{L^{2}(\Gamma_{1})}^{2}$$

subject to the constraints

(10)
$$\begin{aligned} \mathscr{A} y + c_0 y &= \beta_\Omega v & \text{in } \Omega \\ \partial_{V_{\mathscr{A}}} y + \alpha y &= \beta_\Gamma u & \text{on } \Gamma_1 \\ y &= 0 & \text{on } \Gamma_0 \end{aligned}$$

and

(11)
$$\begin{aligned} & \mathbf{v}_a(x) \leq \mathbf{v}(x) & \leq \mathbf{v}_b(x) & \text{ for a.e. } x \in \Omega \\ & u_a(x) \leq u(x) & \leq u_b(x) & \text{ for a.e. } x \in \Gamma_1 \end{aligned}$$

The formal Lagrange method

The state space was $V = \{y \in H^1(\Omega) : y_{|_{\Gamma_0}} = 0\}$. The general idea is to include the "difficult" equation constraints (10) into the Lagrangian and thus to minimize

(26)
$$\mathscr{L}(y, u, v, p) := J(y, u, v) - \int_{\Omega} \left(\mathscr{A} y + c_0 y - \beta_{\Omega} v \right) p \, dx$$
$$- \int_{\Gamma_1} \left(\partial_{V_{\mathscr{A}}} y + \alpha y - \beta_{\Gamma} u \right) p \, ds$$

over $V_{ad} \times U_{ad}$. We do not care whether this expression makes sense and simply integrate by parts to find, with the BF (13):

$$\mathscr{L}(y, u, \mathbf{v}, p) = J(y, u, \mathbf{v}) - a[y, p] + \int_{\Omega} \beta_{\Omega} \mathbf{v} p \, dx + \int_{\Gamma_1} \beta_{\Gamma} u p \, ds.$$

Lagrange's method tells us that we should have $D_y \mathscr{L} = 0$, i.e.:

$$D_{y}\mathscr{L}(y, u, v, p) h = \int_{\Omega} \lambda_{\Omega} \left(\bar{y} - y_{\Omega} \right) h \, dx + \int_{\Gamma} \lambda_{\Gamma} \left(\bar{y} - y_{\Gamma} \right) h \, ds - a[h, p] = 0, \quad \forall h \in V.$$

The formal Lagrange method

(27)

 $p \in H^1(\Omega)$ is the unique weak solution to the adjoint state equation:

$$\begin{array}{rcl} \mathscr{A} p + c_0 p &=& \lambda_{\Omega} \left(\bar{y} - y_{\Omega} \right) & \mbox{ in } \Omega \\ \\ \partial_{\mathcal{V}_{\mathscr{A}}} p + \alpha p &=& \lambda_{\Gamma} \left(\bar{y} - y_{\Gamma} \right) & \mbox{ on } \Gamma_1 \\ \\ p &=& 0 & \mbox{ on } \Gamma_0. \end{array}$$

Also, again by Lagrange's method, we ought to have the variational inequalities:

(28)
$$D_{\mathbf{v}}\mathscr{L}(\bar{y},\bar{u},\bar{\mathbf{v}},p)(\mathbf{v}-\bar{\mathbf{v}}) = \int_{\Omega} (\lambda_{\mathbf{v}}\bar{\mathbf{v}}+\beta_{\Omega}p)(\mathbf{v}-\bar{\mathbf{v}}) \, dx \ge 0 \quad \forall \, \mathbf{v} \in V_{ad},$$

(29)
$$D_u \mathscr{L}(\bar{y}, \bar{u}, \bar{v}, p)(u - \bar{u}) = \int_{\Gamma_1} (\lambda_u \, \bar{u} + \beta_\Gamma \, p)(u - \bar{u}) \, ds \ge 0 \quad \forall \, u \in U_{ad}.$$

The techniques introduced above can be generalized to semilinear elliptic control problems. In the book of Tröltzsch, elliptic state equations are considered of the type:

(30)

$$\mathscr{A} y + c_0(x)y + d(x,y) = f \quad \text{in } \Omega$$

 $\partial_{V_{\mathscr{A}}} y + \alpha(x)y + b(x,y) = g \quad \text{on } \Gamma.$

Problems:

- State space? Existence, uniqueness? Control-to-state operator?
- Differentiability of nonlinearities (Nemytskii operators)?

The control problem

We consider, as example, the OCP with distributed control

(31)
$$\min J(y,u) := \frac{1}{2} \int_{\Omega} |y(x) - y_{\Omega}(x)|^2 dx + \frac{\lambda}{2} \int_{\Omega} |u(x)|^2 dx,$$

subject to

(32)
$$\begin{aligned} -\Delta y + d(x,y) &= u & \text{in } \Omega \\ y &= 0 & \text{on } \Gamma \end{aligned}$$

and

(33)
$$u_a(x) \le u(x) \le u_b(x)$$
 for a.e. $x \in \Omega$, where $u_a, u_b \in L^{\infty}(\Omega)$.

The BVP (32) is semilinear.

Cannot simply take $V = H_0^1(\Omega)$: if $y \in H_0^1(\Omega)$, do we have $d(\cdot, y(\cdot)) \in L^2(\Omega)$?

Even if $d(\cdot, y(\cdot)) \in L^2(\Omega)$ for $y \in H^1_0(\Omega)$, is $y \mapsto d(\cdot, y(\cdot))$ Fréchet differentiable?

We avoid this by considering nonlinearities for which we can work in $L^{\infty}(\Omega)$. We assume

(H1)
$$\Omega \subset \mathbb{R}^N$$
 open, bounded, $\Gamma \in C^{0,1}$.

- (H2) $d: \Omega \times \mathbb{R} \to \mathbb{R}$ is bounded and measurable with respect to $x \in \Omega$ for every $y \in \mathbb{R}$.
- **(H3)** *d* is continuous, and increasing and Lipschitz continuous in *y* for a.e. $x \in \Omega$.

(H4) d(x,0) = 0 for a.e. $x \in \Omega$. (not really necessary!)

Existence for the state equation

Theorem 10: Suppose (H1)–(H4) are fulfilled. Then the BVP (32) has a unique weak solution $y \in H_0^1(\Omega) \cap C(\overline{\Omega})$, i.e., we have

(34)
$$\int_{\Omega} \nabla y \cdot \nabla v dx + \int_{\Omega} d(x, y(x)) v(x) dx = \int_{\Omega} u v dx \quad \forall v \in H_0^1(\Omega).$$

Moreover, $\exists c_{\infty} > 0$ such that

(35)
$$\|y\|_{H^{1}(\Omega)} + \|y\|_{C(\bar{\Omega})} \leq c_{\infty} \|u\|_{L^{\infty}(\Omega)}.$$

Remarks:

- In the case $\Gamma \in C^{1,1}$ we also have $y \in W^{2,p}(\Omega)$ for $1 \le p < +\infty$.
- The proof of the theorem uses the Browder–Minty theorem on monotone operators.

• We denote
$$y = y(u)$$
.

Guessing the first-order necessary conditions

We first use the formal Lagrange method to "guess" what the necessary conditions should look like. Define

$$L(y,u,p) = J(y,u) - \int_{\Omega} (-\Delta y + d(x,y(x)) - u) p \, dx$$

= $J(y,u) - \int_{\Omega} (\nabla y \cdot \nabla p + d(x,y(x)) p - u p) \, dx.$

Then:

$$D_{y}L(\bar{y},\bar{u},p)h = \int_{\Omega} (\bar{y}-\bar{y}_{\Omega})hdx - \int_{\Omega} (\nabla h \cdot \nabla p + d_{y}(x,\bar{y}(x))ph)dx \stackrel{!}{=} 0 \quad \forall h \in H^{1}_{0}(\Omega)$$

(36)
$$\begin{array}{c|c} -\Delta p + d_y(x, \bar{y}(x)) \, p = \bar{y} - y_\Omega & \text{in } \Omega \\ p = 0 & \text{on } \Gamma \end{array} \end{array} \left(\begin{array}{c} \text{(adjoint system)} \end{array} \right)$$

(37)
$$D_u L(\bar{y}, \bar{u}, p)(u - \bar{u}) = \int_{\Omega} (\lambda \, \bar{u} + p)(u - \bar{u}) \, dx \ge 0 \quad \forall \, u \in U_{ad} \, .$$

The rigorous proof uses:

Theorem 11: Let **(H2)–(H4)** and the following condition be satisfied:

(H5) *d* is continuously differentiable with respect to *y* for a.e. $x \in \Omega$, and we have:

- (i) $|d_y(x,0)| \leq K$ for a.e. $x \in \Omega$.
- (ii) d_y is locally Lipschitz with respect to $y \in \mathbb{R}$.

Then the Nemytskii operator $D: y \mapsto d(\cdot, y(\cdot))$ is continuously Fréchet differentiable from $L^{\infty}(\Omega)$ into itself, and we have

(38)
$$(D'(y)h)(x) = d_y(x,y(x))h(x) \quad \text{a.e. in } \Omega, \quad \forall h \in L^{\infty}(\Omega).$$

Remark: (H5) holds if d(x,y) = d(y) and $d \in C^2(\mathbb{R})$.

By Theorem 10, the control-to-state mapping $G: L^{\infty}(\Omega) \to H_0^1(\Omega) \cap C(\overline{\Omega})$, G(u) := y(u), is well defined, and it can easily be shown to be globally Lipschitz continuous. A forteriori, we have:

Theorem 12: Let (H1)–(H4) be satisfied. Then *G* is Fréchet differentiable from $L^{\infty}(\Omega)$ into $H_0^1(\Omega) \cap C(\overline{\Omega})$. The directional derivative at $\overline{u} \in L^{\infty}(\Omega)$ in the direction *h* is given by $G'(\overline{u})h = y$, where *y* denotes the weak solution to the linearized BVP

$$-\Delta y + d_y(x, \bar{y}) y = h$$
 in Ω
 $y = 0$ on Γ .

From this result, using the differentiability of the reduced cost

(39)

functional

(40)

$$f(u) := J(G(u), u) = \frac{1}{2} \int_{\Omega} |G(u) - y_{\Omega}|^2 dx + \frac{\lambda}{2} \int_{\Omega} |u|^2 dx,$$

we easily derive the first-order optimality conditions:

Theorem 13: Let **(H1)–(H5)** be satisfied, and let $\bar{u} \in U_{ad}$ be locally optimal and $\bar{y} = y(\bar{u})$ be the associated state. Then the adjoint state $p \in H_0^1(\Omega) \cap C(\bar{\Omega})$, which is the unique solution to the adjoint equation

$$egin{aligned} & -\Delta p + d_y(x, ar y(x)) \, p \, = \, ar y - y_\Omega & ext{ in } \Omega \ & p \, = \, 0 & ext{ on } \Gamma \end{aligned}$$

satisfies the variational inequality

(41)
$$\int_{\Omega} (\lambda \, \bar{u} + p)(x) (u(x) - \bar{u}(x)) \, dx \ge 0 \quad \forall \, u \in U_{ad} \, .$$

Remarks:

1. As in the linear case, we find for $\lambda > 0$:

(42)
$$\bar{u}(x) = \mathbb{P}_{[u_a(x), u_b(x)]} \left\{ -\frac{1}{\lambda} p(x) \right\}$$
 for a.e. $x \in \Omega$.

Consequently:

$$u_a, u_b \in C(\bar{\Omega}) (H^1(\Omega)) \implies \bar{u} \in C(\bar{\Omega}) (H^1(\Omega)).$$

2. Consider the OCP with boundary control:

$$\min J(y,u) := \frac{1}{2} \int_{\Omega} |y - y_{\Omega}|^2 dx + \frac{\lambda}{2} \int_{\Omega} |u|^2 dx,$$

subject to

(43)
$$\begin{aligned} -\Delta y + y &= 0 & \text{in } \Omega \\ \partial_v y + d(x, y) &= u & \text{on } \Gamma \end{aligned}$$

and

$$u_a(x) \le u(x) \le u_b(x)$$
 for a.e. $x \in \Gamma$.

One obtains in this case the adjoint equation (with $p \in H^1(\Omega) \cap C(\overline{\Omega})$)

$$-\Delta p + p = y - y_{\Omega}$$
 in Ω
 $\partial_{v} p + d_{y}(x, \bar{y}) p = 0$ on Γ

and the variational inequality

$$\int_{\Gamma} (\lambda \, \bar{u} + p)(x) \, (u(x) - \bar{u}(x)) \, ds \ge 0 \quad \forall \, u \in U_{ad} \, .$$

