
Lecture 2: Elliptic Control Problems

1. Existence, uniqueness and regularity of weak solutions to elliptic BVPs

In this section, we study linear elliptic operators of the form

(6) A y(x) =−
N

∑
i, j=1

Di
(
ai j(x)D j y(x)

)
, x ∈Ω⊂ RN .

General assumptions:

(H1) ai j ∈ L∞(Ω) , ai j = a ji , ∀ i, j.

(H2) ∃ γ0 > 0 such that
N
∑

i, j=1
ai j(x)ξi ξ j ≥ γ0 |ξ |2 a.e. in Ω , ∀ξ ∈ RN

We denote

(7) ∂νA y = directional derivative of y in the direction of the conormal νA , where

(8) (νA )i(x) =
N

∑
j=1

ai j(x)ν j(x) , 1≤ i≤ N
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Linear elliptic control problems

Consider the OCP

(9)
min J(y,u,v) :=

λΩ

2
‖y− yΩ‖2

L2(Ω) +
λΓ

2
‖y− yΓ‖2

L2(Γ)

+
λv

2
‖v‖2

L2(Ω) +
λu

2
‖u‖2

L2(Γ1)

subject to the constraints

(10)

A y+ c0 y = βΩ v in Ω

∂νA y+α y = βΓ u on Γ1

y = 0 on Γ0

and

(11)
va(x)≤ v(x) ≤ vb(x) for a.e. x ∈Ω

ua(x)≤ u(x) ≤ ub(x) for a.e. x ∈ Γ1

Mini-Course “Introduction to Optimal Control Problems for PDEs” · Cortona, July 2010 ·
Page 2 (36)



Linear elliptic control problems

General assumptions:

(H3) Γ = Γ0∪Γ1 , Γ0 and Γ1 measurable.

(H4) c0 ∈ L∞(Ω) , c0 ≥ 0 a.e., α ∈ L∞(Γ1) , α ≥ 0 a.e.

(H5) Either |Γ0|> 0 or Γ = Γ1 and ‖c0‖L2(Ω) +‖α‖L2(Γ) > 0 .

(H6) βΩ ∈ L∞(Ω) , βΓ ∈ L∞(Γ1) .

(H7) λΩ,λΓ,λv,λu are given nonnegative constants.

Moreover, we put

Vad =
{

v ∈ L2(Ω) : va(x)≤ v(x)≤ vb(x) for a.e. x ∈Ω
}
,

Uad =
{

u ∈ L2(Γ1) : ua(x)≤ u(x)≤ ub(x) for a.e. x ∈ Γ1
}

with va,vb ∈ L∞(Ω) , ua,ub ∈ L∞(Γ1) .
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The state equation

We consider first the BVP

(12)
A y+ c0 y = f in Ω

∂νA y+α y = g on Γ1
y = 0 on Γ0

We associate with (12) the following weak formulation:

Let V := {y ∈ H1(Ω) : y|Γ0 = 0
}
.

Define on V the bilinear form:

(13) a[y,v] :=
∫

Ω

N

∑
i, j=1

ai j DiyD jv dx+
∫

Ω

c0 yv dx+
∫

Γ1

α yvds

Then the weak form of (12) is to find some y ∈V such that

a[y,v] =
(

f ,v
)

L2(Ω) +
(
g,v

)
L2(Γ1)

∀v ∈V
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Existence of weak solutions

Theorem 5: Ω⊂ RN open, bounded; ∂Ω ∈C0,1 ; (H1)–(H5) fulfilled.
Then:

� ∀ ( f ,g) ∈ L2(Ω)×L2(Γ1) ∃1 weak solution y ∈V .

� ∃ cA > 0 : ‖y‖H1(Ω) ≤ cA

(
‖ f‖L2(Ω) +‖g‖L2(Γ1)

)
Lax–Milgram lemma: Let V,(·, ·)V ) be a real Hilbert space, and let a : V ×V → R
denote a bilinear form. Moreover, suppose that there exist positive constants α0 and
β0 such that the following conditions are satisfied for all v, y ∈V :

(14)
∣∣a[y,v]

∣∣≤ α0 ‖y‖V ‖v‖V (boundedness)

(15) a[y,y]≥ β0 ‖y‖2
V (V -ellipticity).

Then for every F ∈V ∗ the variational equation a[y,v] = F(v) ∀ v ∈V admits a
unique solution y ∈V . Moreover, there is some constant ca > 0 , which does not
depend on F , such that

(16) ‖y‖V ≤ ca ‖F‖V ∗ .
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Proof of existence

We apply the Lax–Milgram lemma with V = {y ∈ H1(Ω) : v|Γ0
= 0}

(y,v)V :=
∫
Ω

(∇y ·∇v+ yv)dx , and

F(v) := ( f ,v)L2(Ω) +(g,v)L2(Γ1) .

Obviously F ∈V ∗ , since ∀ v ∈V , by the trace theorem,

|F(v)| ≤ ‖ f‖L2(Ω)‖v‖L2(Ω) +‖g‖L2(Γ1)‖v‖L2(Γ1)

≤
(
‖ f‖L2(Ω) +‖g‖L2(Γ1)

)
‖v‖H1(Ω)

By a similar calculation, we have

|a(y,v)| ≤ α0‖y‖H1(Ω)‖v‖H1(Ω) ∀ y,v ∈V , for some α0 > 0 .

Moreover,

Mini-Course “Introduction to Optimal Control Problems for PDEs” · Cortona, July 2010 ·
Page 6 (36)



Proof of existence

a[y,y] ≥ γ0

∫
Ω

|∇y(x)|2 dx +
∫
Ω

c0(x)|y(x)|2 dx +
∫
Γ1

α(x)|y(x)|2 ds .

If |Γ0|> 0 , then (15) follows from Poincaré’s inequality. If Γ = Γ1 , we have:

Lemma (Friedrichs) Let B : H1(Ω)×H1(Ω)→ R be a continuous BF such that
B[y,y]≥ 0 ∀ y ∈ H1(Ω) . If B[h,h] > 0 for h≡ 1 , then the norm

‖y‖ :=

∫
Ω

|∇y|2 dx

 1
2

+ B[y,y]
1
2

is equivalent to ‖ · ‖H1(Ω) on H1(Ω) .

The existence result now follows from the lemma and (H5) if we put

B[y,v] :=
∫
Ω

c0(x)yvdx+
∫
Γ1

α(x)yvds .
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Existence for OCP

Apply first Theorem 3 of Lecture 1 to show existence for OCP. We take:

V := as above; U := L2(Ω)×L2(Γ1) ; Uad := Vad ×Uad ; H = C = L2(Ω) ;

A : V →V ∗ the operator A ∈L (V,V ∗) defined by the BF (13);

B ∈L (U ,V ∗) the mapping assigning to (v,u) ∈Uad the linear functional
F = B(v,u) ∈V ∗ :

F(y) :=
∫
Ω

βΩ vydx +
∫
Γ1

βΓ uyds .

Since Uad is bounded and J : V ×U → R convex and l.s.c., OCP has at least one
minimum.

If λΩ > 0 and λv > 0 , then the minimum is unique.

Mini-Course “Introduction to Optimal Control Problems for PDEs” · Cortona, July 2010 ·
Page 8 (36)



2. Differentiation in Banach spaces

Let: (U,‖ · ‖U ),(V,‖ · ‖V ) B -spaces, U ⊂U nonempty, open, F : U →V .

Def.: Let u ∈U .

� If ∃ δ F(u,h) := lim
t↓0

1
t

(F(u+ t h)−F(u)) , then δ F(u,h) is called the

directional derivative of f at u in the direction h .

� If ∃ δ F(u,h) ∀ h ∈U , then h 7→ δ (u,h) is the first variation of F at u .

� Let ∃ the first variation δ F(u, ·) . F is said to be Gâteaux differentiable at
u :⇐⇒∃ A ∈L (U,V ) such that δ F(u,h) = Ah ∀ h ∈U . We write A = F ′

G(u) .

� F is said to be Fréchet differentiable at u :⇐⇒∃ A ∈L (U,V ) and a mapping
r(u, ·) : U →V such that: for all h ∈U with u+h ∈U , we have

F(u+h) = F(u) + Ah + r(u,h)

with
‖r(u,h)‖V

‖h‖U
→ 0 as ‖h‖U → 0 .
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Differentiation in Banach spaces

We write F ′(u) := A .

� If F is Fréchet differentiable at every u ∈U , then F is said to be Fréchet
differentiable on U .

� If ∃ F ′(u) ∀ u ∈U and the mapping u 7→ F ′(u) is continuous, we speak of
continuous Fréchet differentiability on U .

Remarks:

� If ∃ F ′(u) , then ∃ F ′
G(u) , and F ′(u) = F ′

G(u) (but not vice versa!)

� If ∃ F ′(u) , then F ′(u)h = δ F(u,h) ∀ h ∈U .

� F ∈L (U,V ) =⇒ F ′(u) = F ∀ u ∈U .

� If V = R , then F ′(u) ∈L (U,R) = U∗ .
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Differentiation in Banach spaces

Example: (H,(·, ·)H) Hilbert space, F(u) := ‖u‖2
H = (u,u)H .

∀ u,h : F(u+h) − F(u) = 2(u,h)H + ‖h‖2
H

=⇒ F ′(u) ∈ H∗ given by F ′(u)h = 2(u,h)H ∀ h ∈ H .

Riesz =⇒ F ′(u) ∈ H∗ ∼= 2u ∈ H . We call 2u the gradient of F at u .

Theorem 6 (Chain rule)

Let: U,V,Z B -spaces, U ⊂U,V ⊂V open, F : U → V and

G : V → Z F -differentiable at u ∈U and F(u) ∈ V , respectively. Then

E := G◦F is F -differentiable at u , and we have

E ′(u) = G′(F(u))F ′(u) .
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Differentiation in Banach spaces

Example: (U,(·, ·)U ),(H,(·, ·)H) Hilbert spaces, z ∈ H fixed.

Let S ∈L (U,H) . Consider the functional E : U → R ,

E(u) = ‖Su− z‖2
H

Then E(u) = G
(
F(u)

)
, where G(v) = ‖v‖2

H and F(u) = Su− z .

We know:
G′(v)h = (2v , h)H , F ′(u)h = Sh.

=⇒ E ′(u)h = G′(F(u))F ′(u)h =
(
2v , F ′(u)h

)
H

= 2
(
Su− z , Sh

)
H

= 2
(
S∗(Su− z) , h

)
U .

Here, S∗ ∈L (H∗,U∗) is the adjoint of S .
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Adjoint operators

Def.: Let (U,‖ · ‖U ),(V,‖ · ‖V ) be Banach spaces, A ∈L (U,V ) . Then the mapping

A∗ ∈L (V ∗,U∗) , (A∗ g)( f ) := (g◦A)( f ) , g ∈V ∗, f ∈U∗ ,

is called the dual operator of A .

Def.: Let (U,(·, ·)U ),(V,(·, ·)V ) be Hilbert spaces, A ∈L (U,V ) . Then an operator

A? is called the Hilbert space adjoint of A if

(17)
(
v,Au

)
V =

(
A?v,u

)
U ∀u ∈U, ∀v ∈V

Using the Riesz representation theorem, Hilbert space adjoint and dual of an

operator A ∈L (U,V ) can be identified in the case of Hilbert spaces. We do

that and always speak of adjoints.
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3. First-order necessary optimality conditions

The whole theory is based on the following simple results:

Theorem 7: Let (U,‖ · ‖U ) be a normed space, J : U → (−∞,+∞] a mapping with

J 6≡+∞ . Then: ū ∈U minimizer of J ⇐⇒ 0 ∈ ∂J(ū) .

Proof: 0 ∈ ∂J(ū) means by definition of ∂J(ū) : J(ū)− J(u)≤ 0 ∀ u ∈U .

Theorem 8: Let (U,‖ · ‖U ) be a normed space; C ⊂U nonempty, convex, closed;

f : U → R Gâteaux differentiable, where C ⊂U ⊂U, U open. If ū ∈C is a

solution to

(18) min
u∈C

f (u),

then ū solves

(19) f ′(ū)(u− ū) ≥ 0 ∀ u ∈C .
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First-order necessary optimality conditions

Proof: Since C is convex, ū+ t(u− ū) ∈C ∀ t ∈ [0,1], ∀ u ∈C . Hence,
1
t
( f (ū+ t(u− ū))− f (ū))≥ 0 for 0 < t ≤ 1 =⇒ f ′(ū)(u− ū)≥ 0 .

We return to the OCP (9)–(11). Obviously, the control-to-state mapping

G : (u,v) 7→ y is linear, continuous from L2(Γ1)×L2(Ω) in V .

Since H1(Ω) ↪→ L2(Ω) , also (EY := identity from H1(Ω) into L2(Ω))

S := EY ◦G : L2(Γ1) × L2(Ω) → L2(Ω)
is linear, continuous.

Also, by the trace theorem,

SΓ := τ ◦G , (u,v) 7→ (τ ◦G)(u,v) := y|Γ
is linear, continuous.

Mini-Course “Introduction to Optimal Control Problems for PDEs” · Cortona, July 2010 ·
Page 15 (36)



The reduced cost functional

We thus may introduce the reduced cost functional

J(y,u,v) = f (u,v) =
λΩ

2
‖S(u,v)− yΩ‖2

L2(Ω) +
λΓ

2
‖SΓ(u,v)− yΓ‖2

L2(Γ)(20)

+
λv

2
‖v‖2

L2(Ω) +
λu

2
‖u‖2

L2(Γ1).

To simplify the exposition, we now consider the special case

A =−∆, c0 ≡ 0, Γ0 = Γ, λv = λ , λΓ = λu = 0, βΓ ≡ 0, βΩ ≡ β .

We thus consider the optimal control problem (where we replace v,va,vb

by u,ua,ub ):
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A simplified case

(OCP) ∗

min J(y,u) :=
1
2
‖y− yΩ‖2

L2(Ω) +
λ

2
‖u‖2

L2(Ω),

subject to

−∆y = β u in Ω

y = 0 on Γ

and

ua(x)≤ u(x)≤ ub(x) for a.e. x ∈Ω.

We postulate: λ ≥ 0 . We have V = H1
0 (Ω) and

Uad = {u ∈ L2(Ω) : ua ≤ u≤ ub a.e. }.
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A simplified case

Reduced functional:

f (u) = J(y,u) =
1
2
‖Su− yΩ‖2

L2(Ω) +
λ

2
‖u‖2

L2(Ω) ,

where S = EY ◦G with G : L2(Ω)→ H1(Ω) , u 7→ y . Clearly

f ′(u)h = (S∗(Su− yΩ)+λ u,h)L2(Ω) ∀ h ∈ L2(Ω) ,

and the variational inequality (19) becomes(
S∗(S ū− yΩ)+λ ū,u− ū

)
L2(Ω) ≥ 0 ∀u ∈Uad .

We need to determine S∗ , i.e.,

(z,Su)L2(Ω) = (S∗ z,u)L2(Ω) ∀ z ∈ L2(Ω), ∀ u ∈ L2(Ω) .

We use the lemma:
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A simplified case

Lemma: Let functions z, u ∈ L2(Ω) and c0, β ∈ L∞(Ω) with c0 ≥ 0 a.e. in Ω be
given, and let y and p denote, respectively, the weak solutions to the elliptic
boundary value problems

−∆y+ c0 y = β u

y = 0

−∆p+ c0 p = z in Ω

p = 0 on Γ.

Then

(21)
∫

Ω

zydx =
∫

Ω

β pudx.

Proof: We invoke the variational formulations of the above boundary value
problems. For y , insertion of the test function p ∈ H1

0 (Ω) yields∫
Ω

(
∇y ·∇p+ c0 y p

)
dx =

∫
Ω

β pudx,

while for p we obtain with the test function y ∈ H1
0 (Ω) that∫

Ω

(
∇p ·∇y+ c0 py

)
dx =

∫
Ω

zydx.

Since the left-hand sides are equal, the assertion immediately follows.
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The adjoint state

Theorem 9: The adjoint operator S∗ : L2(Ω)→ L2(Ω) is given by S∗ z := β p ,

where p ∈ H1
0 (Ω) is the weak solution to

−∆p = z in Ω , p = 0 on Γ .

Proof: By the above lemma, ∀ z,u ∈ L2(Ω) ,

(z,Su)L2(Ω) = (z,y)L2(Ω) = (β p,u)L2(Ω) .

Moreover, the mapping z 7→ β p belongs to L (L2(Ω),L2(Ω)) .

Def.: The weak solution p ∈ H1
0 (Ω) to the adjoint state equation

−∆p = ȳ− yΩ in Ω(22)

p = 0 on Γ

is called the adjoint state associated with ȳ .
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The optimality system

We now find:

S∗(S ū− yΩ) = S∗(ȳ− yΩ) = β p

=⇒ (β p + λ ū,u− ū) ≥ 0 ∀ u ∈Uad

=⇒ Optimality system: a control u , together with the optimal state y and the
adjoint state p , is a solution of (OCP) ∗ if and only if

(23)

−∆y = β u

y|Γ = 0

−∆p = y− yΩ

p|Γ = 0

u ∈Uad(
β p+λ u,v−u

)
L2(Ω) ≥ 0 ∀v ∈Uad .
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Pointwise interpretation

The inequality ∫
Ω

(β p+λ ū) ū dx ≤
∫

Ω

(β p+λ ū)u dx ∀u ∈Uad

means: ∫
Ω

(β p+λ ū) ū dx = min
u∈Uad

∫
Ω

(β p+λ ū)u dx.

We easily obtain:

Lemma: The variational inequality is satisfied if and only if, for a.e. x ∈Ω ,

(24) ū(x) =


ua(x) if β (x) p(x)+λ ū(x) > 0

∈ [ua(x),ub(x)] if β (x) p(x)+λ ū(x) = 0

ub(x) if β (x) p(x)+λ ū(x) < 0.

We obtain as consequences:
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Pointwise interpretation

Case λ = 0 : Then, a.e. in Ω ,

ū(x) =

{
ua(x) if β (x) p(x) > 0

ub(x) if β (x) p(x) < 0.

Hence: If β (x) p(x) 6= 0 a.e. in Ω =⇒ ū is a bang-bang control.

Case λ > 0 : Then, a.e. in Ω ,

(25) ū(x) = P[ua(x),ub(x)]

{
− 1

λ
β (x) p(x)

}
for almost every x ∈Ω.

Notice: Let β ∈C0,1(Ω̄) , ua,ub ∈ H1(Ω) . Since P[a,b](u) = min{b,max{a,u}} ,

and since the adjoint state p belongs to H1(Ω) , we have ū ∈ H1(Ω) for λ > 0 !

Hence: The regularizing term ‖u‖2
L2(Ω) in the cost functional has a regularizing effect

on the optimal control.
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4. The formal Lagrange method

A convenient method to “guess” the necessary optimality conditions is the formal
Lagrange method. We explain it for the OCP (9)–(11):

(9)
min J(y,u,v) :=

λΩ

2
‖y− yΩ‖2

L2(Ω) +
λΓ

2
‖y− yΓ‖2

L2(Γ)

+
λv

2
‖v‖2

L2(Ω) +
λu

2
‖u‖2

L2(Γ1)

subject to the constraints

(10)

A y+ c0 y = βΩ v in Ω

∂νA y+α y = βΓ u on Γ1

y = 0 on Γ0

and

(11)
va(x)≤ v(x) ≤ vb(x) for a.e. x ∈Ω

ua(x)≤ u(x) ≤ ub(x) for a.e. x ∈ Γ1
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The formal Lagrange method

The state space was V = {y ∈ H1(Ω) : y|Γ0
= 0} . The general idea is to include

the “difficult” equation constraints (10) into the Lagrangian and thus to minimize

L (y,u,v, p) := J(y,u,v)−
∫
Ω

(
A y + c0 y − βΩ v

)
pdx(26)

−
∫
Γ1

(
∂νA y + α y − βΓ u

)
pds

over Vad ×Uad . We do not care whether this expression makes sense and simply

integrate by parts to find, with the BF (13):

L (y,u,v, p) = J(y,u,v) − a[y, p] +
∫
Ω

βΩ v pdx +
∫
Γ1

βΓ u pds .

Lagrange’s method tells us that we should have DyL = 0 , i.e.:

DyL (y,u,v, p)h =
∫
Ω

λΩ (ȳ− yΩ)hdx+
∫
Γ

λΓ (ȳ− yΓ)hds−a[h, p] = 0, ∀ h ∈V .

=⇒
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The formal Lagrange method

p ∈ H1(Ω) is the unique weak solution to the adjoint state equation:

(27)

A p+ c0 p = λΩ (ȳ− yΩ) in Ω

∂νA p+α p = λΓ (ȳ− yΓ) on Γ1

p = 0 on Γ0.

Also, again by Lagrange’s method, we ought to have the variational inequalities:

(28) DvL (ȳ, ū, v̄, p)(v− v̄) =
∫
Ω

(λv v̄+βΩ p)(v− v̄) dx ≥ 0 ∀v ∈Vad ,

(29) DuL (ȳ, ū, v̄, p)(u− ū) =
∫
Γ1

(λu ū+βΓ p)(u− ū) ds≥ 0 ∀u ∈Uad .
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More general elliptic problems

The techniques introduced above can be generalized to semilinear elliptic

control problems. In the book of Tröltzsch, elliptic state equations are

considered of the type:

(30)
A y+ c0(x)y+d(x,y) = f in Ω

∂νA y+α(x)y+b(x,y) = g on Γ.

Problems:

� State space? Existence, uniqueness? Control-to-state operator?

� Differentiability of nonlinearities (Nemytskii operators)?

� Problem nonconvex =⇒ necessary conditions are not sufficient =⇒ need

second-order sufficient conditions =⇒ new problems
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The control problem

We consider, as example, the OCP with distributed control

(31) min J(y,u) :=
1
2

∫
Ω

∣∣y(x)− yΩ(x)
∣∣2 dx +

λ

2

∫
Ω

|u(x)|2 dx,

subject to

(32)
−∆y+d(x,y) = u in Ω

y = 0 on Γ

and

(33) ua(x)≤ u(x)≤ ub(x) for a.e. x ∈Ω, where ua,ub ∈ L∞(Ω).

The BVP (32) is semilinear.
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What is the “right” state space?

� Cannot simply take V = H1
0 (Ω) : if y ∈H1

0 (Ω) , do we have d(·,y(·)) ∈ L2(Ω)?

� Even if d(·,y(·)) ∈ L2(Ω) for y ∈ H1
0 (Ω) , is y 7→ d(·,y(·)) Fréchet differentiable?

We avoid this by considering nonlinearities for which we can work in L∞(Ω) . We
assume

(H1) Ω⊂ RN open, bounded, Γ ∈C0,1 .

(H2) d : Ω×R→ R is bounded and measurable with respect to x ∈Ω for every

y ∈ R .

(H3) d is continuous, and increasing and Lipschitz continuous in y for a.e. x ∈Ω .

(H4) d(x,0) = 0 for a.e. x ∈Ω . (not really necessary!)
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Existence for the state equation

Theorem 10: Suppose (H1)–(H4) are fulfilled. Then the BVP (32) has a unique
weak solution y ∈ H1

0 (Ω)∩C(Ω̄) , i.e., we have

(34)
∫
Ω

∇y ·∇vdx +
∫
Ω

d(x,y(x))v(x)dx =
∫
Ω

uvdx ∀ v ∈ H1
0 (Ω) .

Moreover, ∃ c∞ > 0 such that

(35) ‖y‖H1(Ω) + ‖y‖C(Ω̄) ≤ c∞‖u‖L∞(Ω) .

Remarks:

� In the case Γ ∈C1,1 we also have y ∈W 2,p(Ω) for 1≤ p < +∞ .

� The proof of the theorem uses the Browder–Minty theorem on monotone

operators.

� We denote y = y(u) .
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Guessing the first-order necessary conditions

We first use the formal Lagrange method to “guess” what the necessary conditions
should look like. Define

L(y,u, p) = J(y,u) −
∫
Ω

(−∆y+d(x,y(x))−u) pdx

= J(y,u) −
∫
Ω

(∇y ·∇p+d(x,y(x)) p−u p)dx .

Then:

Dy L(ȳ, ū, p)h =
∫
Ω

(ȳ− ȳΩ)hdx −
∫
Ω

(∇h ·∇p+dy(x, ȳ(x)) ph)dx != 0 ∀ h ∈ H1
0 (Ω)

(36)
−∆p+dy(x, ȳ(x)) p = ȳ− yΩ in Ω

p = 0 on Γ
(adjoint system)

(37) Du L(ȳ, ū, p)(u− ū) =
∫
Ω

(λ ū+ p)(u− ū)dx ≥ 0 ∀ u ∈Uad .
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Differentiability of the Nemytskii operator

The rigorous proof uses:

Theorem 11: Let (H2)–(H4) and the following condition be satisfied:

(H5) d is continuously differentiable with respect to y for a.e. x ∈Ω , and we have:

(i) |dy(x,0)| ≤ K for a.e. x ∈Ω .

(ii) dy is locally Lipschitz with respect to y ∈ R .

Then the Nemytskii operator D : y 7→ d(·,y(·)) is continuously Fréchet differentiable

from L∞(Ω) into itself, and we have

(38) (D′(y)h)(x) = dy(x,y(x))h(x) a.e. in Ω , ∀ h ∈ L∞(Ω) .

Remark: (H5) holds if d(x,y) = d(y) and d ∈C2(R) .
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Differentiability of the control-to-state mapping

By Theorem 10, the control-to-state mapping G : L∞(Ω)→ H1
0 (Ω)∩C(Ω̄) ,

G(u) := y(u) , is well defined, and it can easily be shown to be globally Lipschitz

continuous. A forteriori, we have:

Theorem 12: Let (H1)–(H4) be satisfied. Then G is Fréchet differentiable from

L∞(Ω) into H1
0 (Ω)∩C(Ω̄) . The directional derivative at ū ∈ L∞(Ω) in the direction h

is given by G′(ū)h = y , where y denotes the weak solution to the linearized BVP

(39)
−∆y+dy(x, ȳ)y = h in Ω

y = 0 on Γ .

From this result, using the differentiability of the reduced cost
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The first-order necessary conditions

functional

f (u) := J(G(u),u) =
1
2

∫
Ω

|G(u)− yΩ|2 dx +
λ

2

∫
Ω

|u|2 dx ,

we easily derive the first-order optimality conditions:

Theorem 13: Let (H1)–(H5) be satisfied, and let ū ∈Uad be locally optimal and

ȳ = y(ū) be the associated state. Then the adjoint state p ∈ H1
0 (Ω)∩C(Ω̄) , which is

the unique solution to the adjoint equation

(40)
−∆p+dy(x, ȳ(x)) p = ȳ− yΩ in Ω

p = 0 on Γ

satisfies the variational inequality

(41)
∫
Ω

(λ ū+ p)(x)(u(x)− ū(x))dx ≥ 0 ∀ u ∈Uad .
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The first-order necessary conditions

Remarks:

1. As in the linear case, we find for λ > 0 :

(42) ū(x) = P[ua(x),ub(x)]

{
− 1

λ
p(x)

}
for a.e. x ∈Ω.

Consequently:
ua,ub ∈C(Ω̄) (H1(Ω)) =⇒ ū ∈C(Ω̄) (H1(Ω)) .

2. Consider the OCP with boundary control:

min J(y,u) :=
1
2

∫
Ω

|y− yΩ|2 dx +
λ

2

∫
Ω

|u|2 dx ,

subject to

(43)
−∆y+ y = 0 in Ω

∂ν y+d(x,y) = u on Γ

and
ua(x)≤ u(x)≤ ub(x) for a.e. x ∈ Γ.
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The first-order necessary conditions

One obtains in this case the adjoint equation (with p ∈ H1(Ω)∩C(Ω̄) )

−∆p+ p = y− yΩ in Ω

∂ν p+dy(x, ȳ) p = 0 on Γ

and the variational inequality∫
Γ

(λ ū+ p)(x) (u(x)− ū(x))ds ≥ 0 ∀ u ∈Uad .
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