
Lecture 3: Linear-quadratic Parabolic Control Problems

We consider first a simplified model for the time-dependent optimal boundary control

of the temperature distribution in Ω (cf. Example 3 in Lecture 1):

(44) min J(y,u) :=
1
2

∫
Ω

∣∣y(x,T )− yΩ(x)
∣∣2 dx +

λ

2

T∫
0

∫
Γ

|u(x, t)|2 dsdt,

subject to

(45)

yt −∆y = 0 in Q := Ω× (0,T )

∂ν y+α y = β u on Σ := Γ× (0,T )

y(x,0) = y0(x) in Ω

and

(46) ua(x, t)≤ u(x, t)≤ ub(x, t) for a.e. (x, t) ∈ Σ.
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General strategy

� Show that the IBVP (45) has for every u ∈Uad a unique solution in a suitable

function space.

� Show that the OCP has an optimal pair (ȳ, ū) .

� Derivation of first-order optimality conditions (which, due to the convexity of J ,

are also sufficient).

Before doing this, we again apply the formal Lagrange method in order to get an idea

of what sort of optimality conditions can be expected. To this end put

Uad := {u ∈ L2(Σ) : ua(x, t)≤ u(x, t)≤ ub(x, t) for a.e. (x, t) ∈ Σ} .
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Guessing the first-order necessary conditions

Let p := (p1, p2) . We consider the Lagrangian

L (y,u, p) = J(y,u)−
∫∫
Q

(yt −∆y) p1 dxdt−
∫∫
Σ

(
∂ν y+α y−β u) p2 dsdt.

We expect the necessary optimality conditions:

DyL (ȳ, ū, p)y = 0 for all y with y(0) = 0

DuL (ȳ, ū, p)(u− ū) ≥ 0 for all u ∈Uad .

Observing that the derivative of the linear and continuous (?) mapping y 7→ y(·,T )

coincides with the mapping itself, we find that
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Guessing the first-order necessary conditions

DyL (ȳ, ū, p)y =
∫
Ω

(
ȳ(T )− yΩ

)
y(T )dx−

∫∫
Q

(
yt −∆y

)
p1 dxdt

−
∫∫
Σ

(
∂ν y+αy

)
p2 dsdt.

Then, ∀ smooth y with y(0) = 0 :

0 =
∫
Ω

(
ȳ(T )− yΩ

)
y(T )dx−

∫
Ω

y(T ) p1(T )dx+
∫∫
Q

y p1,t dxdt

+
∫∫
Σ

p1 ∂ν ydsdt−
∫∫
Σ

y∂ν p1 dsdt +
∫∫

Q
y∆p1 dxdt

−
∫∫
Σ

p2 ∂ν ydsdt−
∫∫
Σ

α y p2 dsdt

=
∫
Ω

(
ȳ(T )− yΩ− p1(T )

)
y(T )dx+

∫∫
Q

(
p1,t +∆p1

)
ydxdt

−
∫∫
Σ

(
∂ν p1 +α p2

)
ydsdt +

∫∫
Σ

(
p1− p2

)
∂ν ydsdt.
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Guessing the first-order necessary conditions

∀ y ∈C∞
0 (Q) : y(T ),y(0),y,∂ν y vanish on Ω , resp. Σ .

=⇒ ∫∫
Q

(
p1,t +∆p1

)
y dxdt = 0 ∀y ∈C∞

0 (Q).

=⇒

p1,t +∆p1 = 0 in Q

Next, ∀ y ∈C1(Ω̄) such that y|Σ = 0 :∫
Ω

(
ȳ(T )− yΩ− p1(T )

)
y(T )dx = 0

=⇒ p1(T ) = ȳ(T ) − yΩ in Ω .
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Guessing the first-order necessary conditions

Now, put p1|Σ = p2 . Then we have∫∫
Σ

(∂ν p1 + α p1)ydsdt = 0 ∀ y ∈C1(Q̄) .

=⇒ ∂ν p1 + α p1 = 0 in Σ .

Putting p := p1 , we have the adjoint equation

(47)

−pt = ∆p in Q

∂ν p+α p = 0 on Σ

p(T ) = ȳ(T )− yΩ in Ω.
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Guessing the first-order necessary conditions

Moreover, we have the variational inequality

(48) DuL (ȳ, ū, p)(u− ū) =
∫∫
Σ

(λ ū+β p)(u− ū)dsdt ≥ 0 ∀ u ∈Uad .

Note: This was just formal!
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Guessing the “right” state space

We test (45) by v ∈ H1(Ω) =: V . Formally, we obtain

(49)
∫
Ω

yt(t)vdx = −
∫
Ω

∇y(t) ·∇vdx +
∫
Γ

(β u(t)−α(t)y(t))vds ∀ t ∈ [0,T ] ,

where we write y(t)(x) := y(x, t) . Obviously, the right-hand side defines an element

F(t) ∈V ∗ .

=⇒ We should have yt ∈V ∗ , with a notion of “ d
dt ” yet to be defined

=⇒ spaces of vector-valued distributions
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The spaces Lp(a,b;X)

Let (X ,‖ · ‖X ) be a Banach space.

Def.:

(i) We denote by Lp(a,b;X) , 1 ≤ p < ∞ , the linear space of all (equivalence classes

of) measurable vector-valued functions y : [a,b]→ X having the property that

b∫
a

‖y(t)‖p
X dt < ∞.

The space Lp(a,b;X) is a Banach space with respect to the norm

‖y‖Lp(a,b;X) :=
( b∫

a

‖y(t)‖p
X dt

)1/p
.

(ii) We denote by L∞(a,b;X) the Banach space of all (equivalence classes of)

measurable vector-valued functions y : [a,b]→ X having the property that

‖y‖L∞(a,b;X) := ess sup
t∈[a,b]

‖y(t)‖X < ∞.
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C([a,b];X)

Theorem 14: Let (X ,(·, ·)X ) be a Hilbert space. Then L2(a,b;X) is a Hilbert space

with the scalar product

(50) (u,v)L2(a,b;X) :=
T∫

0

(u(t),v(t))X dt

Def.: Let (X ,‖ · ‖X ) be a Banach space. We say that a vector-valued function

y : [a,b]→ X is continuous at the point t ∈ [a,b] if we have lim
τ→t

‖y(τ)− y(t)‖X = 0 .

We denote the space of all vector-valued functions that are continuous at every

t ∈ [a,b] by C
(
[a,b],X

)
. The space C

(
[a,b],X

)
is a Banach space with respect to

the norm
‖y‖C([a,b],X) = max

t∈[a,b]
‖y(t)‖X .

Remark: If 1 < p < +∞ , 1
p + 1

q = 1 , and f ∈ Lq(Q) , then

f ∈ Lq(0,T ;Lq(Ω))⊂ Lq(0,T ;H1(Ω)∗) .
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Gelfand triples

Def.: Let (H,(·, ·)H) be a separable Hilbert space, (V,‖ · ‖V ) a reflexive separable

Banach space. If V is continuously and densely embedded in H , we speak of a

Gelfand triple V ⊂ H ⊂V ∗ .

Remark: “H ⊂V ” is understood in the following sense: ∀ f ∈ H the mapping

u 7→ ( f ,u)H belongs to V ∗ . By Riesz’s theorem, we may identify f with this

mapping. In this sense,

V ⊂ H ' H∗ ⊂V ∗ .

Standard examples: H1(Ω)⊂ L2(Ω)⊂ H1(Ω)∗ , H1
0 (Ω)⊂ L2(Ω)⊂ H−1(Ω) .

Remark: Also the embebdding H ⊂V ∗ is dense and continuous!
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Generalized time derivatives

Def.: Let V ⊂ H ⊂V ∗ be a Gelfand triple, 1 < p < +∞ , y ∈ Lp(0,T ;V ) .

w ∈ Lq(0,T ;V ∗) is called generalized derivative of y (denoted: w = yt ) iff
1
p + 1

q = 1 and

(51)
T∫

0

y(t)ϕ
′(t)dt = −

T∫
0

w(t)ϕ(t)dt ∀ ϕ ∈C∞
0 (0,T ) .

Lemma: Let y ∈ Lp(0,T ;V ) . Then w = yt if and only if

(52)
T∫

0

(y(t),v)H ϕ
′(t)dt = −

T∫
0

(w(t),v)V ∗×V ϕ(t)dt ∀ v ∈V ∀ ϕ ∈C∞
0 (0,T ) .

Lemma: Let V ⊂ H ⊂V ∗ be a Gelfand triple, 1 < p < +∞ , 1
p + 1

q = 1 .

Wp(0,T ) := {y ∈ Lp(0,T ;V ) : ∃ yt ∈ Lq(0,T ;V ∗)} is a Banach space with the norm

‖y‖Wp(0,T ) := ‖y‖Lp(0,T ;V ) +‖yt‖Lq(0,T ;V ∗) .
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The spaces Wp(0,T )

Properties:

(i) Every y ∈Wp(0,T ) coincides—possibly after a suitable modification on a set

of zero measure—with an element of C
(
[0,T ],H

)
. In this sense, we have the

continuous embedding Wp(0,T ) ↪→C
(
[0,T ],H

)
.

(ii) y(0),y(T ) are well-defined elements of H !

(iii) For all y, p ∈Wp(0,T ) the formula of integration by parts holds:∫ T

0

(
y′(t), p(t)

)
V ∗×V dt =

(
y(T ), p(T )

)
H −

(
y(0), p(0)

)
H

−
∫ T

0

(
p′(t),y(t)

)
V ∗×V dt.

(iv) ∀ y ∈Wp(0,T ) we have∫ T

0

(
y′(t),y(t)

)
V ∗×V dt =

1
2
‖y(T )‖2

H −
1
2
‖y(0)‖2

H .

(v) The set of “polynomials” p(t) :=
k

∑
i=0

t i xi , with xi ∈V , is dense in Wp(0,T )
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Existence for the state equation

We generally assume: Ω ⊂ RN open, bounded, with Γ ∈C0,1; ua,ub ∈ L2(Σ);

β ∈ L∞(Σ); α ∈ L∞(Σ) with α ≥ 0 a.e. and ‖α‖L∞(Σ) > 0; y0 ∈ L2(Ω) .

Theorem 15: Under the above assumptions, the IBVP (45) has for any u ∈Uad

a unique weak solution y ∈W2(0,T ) , where V = H1(Ω) , H = L2(Ω) . We have

y(0) = y0 , and

(yt(t),v)V ∗×V +
∫
Ω

∇y(t) ·∇vdx +
∫
Γ

α(t)y(t)vds =
∫
Γ

β (t)u(t)vds(53)

∀ v ∈V, for a.e. t ∈ (0,T ).

Moreover, the mapping u 7→ (y,y(0),y(T )) is continuous from L2(Σ) into
W2(0,T )×L2(Ω)×L2(Ω) .

Remark: A corresponding result holds for the state problem with distributed

nonstationary control!
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Existence of optimal controls

We return to the OCP (44)–(46). The mapping u 7→ Su := y(T ) is linear and

continuous from L2(Σ) into L2(Ω) , and hence the reduced cost functional

f (u) = J(Su,u) =
1
2

∫
Ω

|Su− yΩ|2 dx +
λ

2

∫∫
Σ

|u|2 dsdt

is proper, convex, l.s.c. Theorem 3=⇒ OCP has a solution ū ∈Uad . If λ > 0 , it is unique.

The first-order necessary (and sufficient) optimality condition reads, owing to

Theorem 8:

f ′(ū)(u− ū) = (S∗(S ū− yΩ),u(T )− ū(T ))L2(Ω) + (λ ū,u− ū)L2(Σ)(54)

= (ȳ(T )− yΩ,y(T )− ȳ(T ))L2(Ω) + (λ ū,u− ū)L2(Σ) ≥ 0

∀ u ∈Uad .

As always, we have to identify the adjoint operator S∗ !
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First-order necessary conditions

Put z := y− ȳ = Su−S ū . Then z solves

zt −∆z = 0 in Ω , ∂ν z+α z = β (u− ū) on Γ , z(0) = 0 .

Now consider the adjoint equation with the adjoint state p ,

−pt −∆p = 0 in Ω , ∂ν p+α p = 0 on Γ , p(T ) = ȳ(T )− yΩ .

Clearly, p ∈W2(0,T ) , and we have:

0 = −
T∫

0

(pt(t)z(t))V ∗×V dt +
∫∫
Q

∇z ·∇pdxdt +
∫∫
Σ

α pzdsdt

=
T∫

0

(zt(t), p(t))V ∗×V dt−
∫
Ω

p(T )z(T )dx+
∫∫
Q

∇z ·∇pdxdt +
∫∫
Σ

α pzdsdt

=
T∫

0

(zt(t), p(t))V ∗×V dt−
∫
Ω

(ȳ(T )− yΩ)(y(T )− ȳ(T ))dx+
∫∫
Q

∇z ·∇pdxdt +
∫∫
Σ

α pzdsdt.
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First-order necessary conditions

Similarly,

0 =
T∫

0

(zt(t), p(t))V ∗×V dt +
∫∫
Q

∇z ·∇pdxdt +
∫∫
Σ

α pzdsdt

−
∫∫
Σ

pβ (u− ū)dsdt

=⇒
∫
Ω

(ȳ(T )− yΩ)(y(T )− ȳ(T ))dx =
∫∫
Σ

β p(u− ū)dsdt .

We have thus shown:
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First-order necessary conditions

Theorem 16: Under the given assumptions, ū ∈Uad is optimal with associated

state ȳ ∈W2(0,T ) if and only if the unique solution p ∈W2(0,T ) to the adjoint

state equation

−pt −∆p = 0 in Q

∂ν p+α p = 0 on Σ

p(T ) = ȳ(T )− yΩ in Ω

satisfies the variational inequality

∫∫
Σ

(
β (x, t) p(x, t)+λ ū(x, t))(u(x, t)− ū(x, t)

)
ds(x)dt ≥ 0 ∀ u ∈Uad .
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First-order necessary conditions

Remarks: 1. If λ > 0 , we again obtain the projection formula

ū(x, t) = P[ua(x,t),ub(x,t)]

{
− 1

λ
β (x, t) p(x, t)

}
.

2. Consider the optimal nonstationary heat source problem

(55) min J(y,u) :=
1
2

∫∫
Σ

∣∣y(x, t)− yΣ(x, t)
∣∣2 ds(x)dt +

λ

2

∫∫
Q

|u(x, t)|2 dxdt,

subject to

(56)
yt −∆y = β u in Q

∂ν y = 0 on Σ

y(0) = 0 in Ω

and

(57) ua(x, t)≤ u(x, t)≤ ub(x, t) for a.e. (x, t) ∈ Q.
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Nonstationary heat source problem

Again, we obtain the existence of an optimal pair (ȳ, ū) with ȳ ∈W2(0,T ) , and

the first-order necessary optimality conditions read:

Adjoint equation:

−pt −∆y = 0 in Ω

∂ν p = ȳ− yΣ on Σ

p(T ) = 0 in Ω

Variational inequality:∫∫
Q

(β p+λ ū)(u− ū)dxdt ≥ 0 ∀u ∈Uad .

If λ > 0 , again a projection formula can be derived.
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