In the following, we assume:

■ U, Z Banach spaces; $G: U \rightarrow Z$ is Fréchet differentiable; $C \subset U$ nonempty, convex

■ $K \subset Z$ convex cone, i.e., if $\lambda > 0$ and $z \in K$, then $\lambda z \in K$. We write for $z_1, z_2 \in Z$: $z_1 \leq_K z_2 \iff z_2 - z_1 \in K$, and $z <_K 0 \iff -z \in int(K)$.

Def.: Let $K \subset Z$ be a convex cone. Then the set

$$K^{+} = \{ z^{*} \in Z^{*} : (z^{*}, z)_{Z^{*} \times Z} \ge 0 \quad \forall z \in K \}$$

is called the **dual cone of** *K*.

f: $U \to \mathbb{R}$ is Fréchet differentiable.

(58)

We consider the general optimization problem:

 $\min f(u),$ $G(u) \leq_K 0, \quad u \in C.$

We look for **local minimizers** of (58), i.e., for $\bar{u} \in C$ with $G(\bar{u}) \leq_K 0$ such that there is some $\varepsilon > 0$ such that

(59)
$$f(\bar{u}) \leq f(u)$$
 whenever $u \in C$, $G(u) \leq_K 0$, and $||u - \bar{u}||_U \leq \varepsilon$.

We eliminate the "complicated" constraint $G(u) \leq_K 0$ by means of a Lagrange multiplier and introduce the Lagrangian

(60)
$$L: U \times Z^* \to \mathbb{R}, \quad L(u, z^*) = f(u) + (z^*, G(u))_{Z^* \times Z}.$$

Def.: Let \bar{u} be a local minimizer of (58). Any $z^* \in K^+$ such that

(61)
$$D_u L(\bar{u}, z^*)(u - \bar{u}) \geq 0 \quad \forall u \in C,$$

(62) $(z^*, G(\bar{u}))_{Z^* \times Z} = 0$ (complementary slackness condition),

is called a Lagrange multiplier associated with \bar{u} .

Remark: From (60), (61) we obtain:

(63)
$$(f'(\bar{u}) + G'(\bar{u})^* z^*, u - \bar{u})_{U^* \times U} \ge 0 \quad \forall u \in C,$$

or, equivalently,

(64)
$$(f'(\bar{u}), u - \bar{u})_{U^* \times U} + (z^*, G'(\bar{u})(u - \bar{u}))_{Z^* \times Z} \ge 0 \quad \forall \, u \in C.$$

For the existence of such a multiplier we need some so-called **constraint qualification** to be satisfied.

Def.: Suppose that $\bar{u} \in C$ and $G(\bar{u}) \leq_K 0$, and let $C(\bar{u}) := \{ \alpha (u - \bar{u}) : \alpha \geq 0, u \in C \}, \quad K(\bar{z}) := \{ \beta (z - \bar{z}) : \beta \geq 0, z \in K \}.$

The condition

(65)
$$G'(\bar{u})C(\bar{u})+K(-G(\bar{u}))=Z$$

is called the **Zowe-Kurcyusz constraint qualification**.

Remarks:

1. (65) $\iff \forall z \in Z \exists u \in C, v \geq_K 0, \alpha \geq 0, \beta \geq 0$ such that

(66)
$$\alpha G'(\bar{u})(u-\bar{u}) + \beta \left(v + G(\bar{u})\right) = z$$

2. Let C = U, $K = \{0\}$. Then (65) means: $G'(\bar{u})U = Z$, i.e., $G'(\bar{u})$ is surjective.

3. If $G(\bar{u}) <_K 0$, i.e., if $-G(\bar{u}) \in int(K)$, then (65) is satisfied.

Problem: for $1 \le p < +\infty$, the positive cones

$$K := \{L^p(\Omega) : u \ge 0 \text{ a.e. in } \Omega\}$$

have empty interior in $L^p(\Omega)$!

4. (65) is satisfied if the **linearized Slater condition** is fulfilled:

(67)
$$\exists \tilde{u} \in C : G(\bar{u}) + G'(\bar{u})(\tilde{u} - \bar{u}) <_K 0$$

5. Other, more general constraint qualifications can be found in the book of Neittaanmaki–Tiba–Sprekels.

The following multiplier rule is due to Zowe–Kurcyusz (1979):

Theorem 17: Let $\bar{u} \in C$ be a local minimizer of (58), and let f and G be continuously Fréchet differentiable in an open neighborhood of \bar{u} . If the constraint qualification (65) holds, then there exists a Lagrange multiplier $z^* \in Z^*$ associated with \bar{u} . Moreover, the set of Lagrange multipliers associated with \bar{u} is bounded.

Example 1: Consider $\min f(u)$, G(u) = 0, $u \in C$. Then $K = \{0\}$, and (65) becomes: $G'(\bar{u})C(\bar{u}) = Z$. It holds the variational inequality (61), while the complementary slackness condition (62) is meaningless.

Example 2: Consider the minimization problem

(68)
$$\min f(u) := \int_{\Omega} \Psi(x, u(x)) \, dx, \qquad u(x) \le u_b(x) \quad \text{for a.e. } x \in \Omega$$

Assume: $u_b \in L^{\infty}(\Omega)$, ψ smooth and such that $f : L^2(\Omega) \to \mathbb{R}$ is continuously Fréchet differentiable.

We put: $Z := U = L^2(\Omega)$, $G(u)(x) := u(x) - u_b(x)$, $K := \{z \in U : z(x) \ge 0 \text{ for a.e.} x \in \Omega\}$.

Then: $C = L^2(\Omega) \implies C(\overline{u}) = L^2(\Omega)$, G'(u) = identity mapping. The problem becomes:

$$\min f(u), \quad G(u) \leq_K 0.$$

(66) is satisfied with $\beta = 0$, $\alpha = 1$, $u = z + \overline{u}$ for $z \in Z$.

 \implies (65) is fulfilled.

 $\stackrel{\text{Theorem 17}}{\Longrightarrow} \exists \text{ Lagrange multiplier } z^* \in Z^* = L^2(\Omega)^* \text{. Identify } z^* \in Z^* \text{ with } \mu \in L^2(\Omega) \text{,}$ $\mu \ge 0 \text{ a.e. in } \Omega \text{.}$

(63) takes the form

 $(f'(\bar{u})+G'(\bar{u})^*z^*, u-\bar{u})_{L^2(\Omega)^*\times L^2(\Omega)} \ge 0 \quad \forall u \in L^2(\Omega).$

Since $f'(\bar{u})$ can be identified with $\psi_u(\cdot, \bar{u}(\cdot)) \in L^2(\Omega)$, we find:

 \exists Lagrange multiplier $\mu \in L^2(\Omega)$, $\mu \ge 0$ a.e. in Ω , such that $\psi_u(\cdot, \bar{u}(\cdot)) + \mu = 0$.

The complementary slackness condition (62) reads:

$$\int_{\Omega} \mu(x)(\bar{u}(x) - u_b(x)) \, dx = 0 \, .$$

A distributed control problem

Example 3: The distributed control problem

(69)
$$\min J(y,u) := \frac{1}{2} \int_{\Omega} |y(x) - y_{\Omega}(x)|^2 dx + \frac{\lambda}{2} \int_{\Omega} |u(x)|^2 dx$$

subject to

(70)
$$\begin{aligned} -\Delta y + y &= u & \text{in } \Omega \\ y &= 0 & \text{on } \Gamma \end{aligned}$$

and

(71)
$$u_a(x) \le u(x) \le u_b(x)$$
 for a.e. $x \in \Omega$

is a special case of (31)–(33) with d(x,y) = y. The necessary conditions are (36), (37) with $d_y(x, \overline{y}(x)) \equiv 1$.

A distributed control problem

Put: $Y = H_0^1(\Omega), \ Y^* = H^{-1}(\Omega), \ E_Y = \text{embedding operator } H_0^1(\Omega) \hookrightarrow L^2(\Omega),$ $B = \text{embedding operator } L^2(\Omega) \hookrightarrow H^{-1}(\Omega); \text{ define } A : Y \to Y^* \text{ by the BF associated}$ with the BVP

$$a(y, \mathbf{v}) := \int_{\Omega} (\nabla y \cdot \nabla \mathbf{v} + y \, \mathbf{v}) \, dx, \quad y, \mathbf{v} \in H_0^1(\Omega).$$

$$\min J(y, \mathbf{v}) = \frac{1}{2} \| E_Y y - y_{\Omega} \|_{L^2(\Omega)}^2 + \frac{\lambda}{2} \| \mathbf{v} \|_{L^2(\Omega)}^2$$

subject to

$$Ay = Bv$$
, $v \in V_{ad} := \{ v \in L^2(\Omega) : u_a \le v \le u_b \text{ a.e. in } \Omega \}$.

Now, put: $U := Y \times L^2(\Omega)$; $u := (y, v) \in U$; $G : U \to Y^* =: Z$, G(u) := Ay - Bv; $C := Y \times V_{ad} \subset U$. Clearly, *G* is continuously differentiable, with

$$G'(\bar{u})(y, \mathbf{v}) = A y - B \mathbf{v}.$$

$$\implies \min J(u), \quad G(u) = 0, \quad u \in C$$

By the Lax–Milgram theorem, $G'(\bar{u})$ is surjective. It even can be shown that $G'(\bar{u})C(\bar{u}) = Z = Y^*$. Hence (65) is satisfied.

$$\stackrel{\text{Theorem 17}}{\Longrightarrow} \exists \text{ Lagrange multiplier } z^* \in Z^* = (Y^*)^* \cong Y = H_0^1(\Omega).$$

Put: $p := -z^*$. Then:

$$L(u,p) = L(y, \mathbf{v}, p) = J(y, \mathbf{v}) - (Ay - B\mathbf{v}, p)_{Y^* \times Y}.$$

$$\stackrel{(61)}{\Longrightarrow} D_{(y,\mathbf{v})} L(\bar{y}, \bar{\mathbf{v}}, p)(y - \bar{y}, \mathbf{v} - \bar{\mathbf{v}}) \ge 0 \quad \forall (y,\mathbf{v}) \in C = Y \times V_{ad}$$

$$\implies D_y L(\bar{y}, \bar{v}, p) y = 0 \quad \forall y \in Y$$

$$\implies (\bar{y} - y_{\Omega}, y) - (A^* p, y) = 0 \quad \forall y \in H_0^1(\Omega)$$

 $\implies p$ is the weak solution to the adjoint equation (36),

$$\begin{aligned} -\Delta p + p &= \bar{y} - y_{\Omega} & \text{ in } \Omega \\ p &= 0 & \text{ on } \Gamma. \end{aligned}$$

We also obtain

$$D_{\mathbf{v}}L(\bar{\mathbf{y}},\bar{\mathbf{v}},p)(\mathbf{v}-\bar{\mathbf{v}}) \ge 0 \quad \forall \ \mathbf{v} \in V_{ad}$$

$$\implies \int_{\Omega} (p + \lambda \, \bar{\mathbf{v}}) (\mathbf{v} - \bar{\mathbf{v}}) \, dx \ge 0 \quad \forall \, \mathbf{v} \in V_{ad} \text{ , which is (37).}$$

We consider the general situation

■ U, V, Z reflexive Banach spaces; $(H, (\cdot, \cdot)_H)$ Hilbert space, where $V \subset H \subset V^*$ with dense and continuous embeddings.

 $\label{eq:alpha} A \in L(V,Z)\,, \quad B \in L(U,Z)\,.$

• $C \subset H$, $U_{ad} \subset U$ nonempty, convex, closed.

$$\widetilde{J}:V o\mathbb{R}$$
 convex, l.s.c.

We include the constraints in the cost functional and consider:

(72)
$$\min J(y,u) := \tilde{J}(y,u) + I_{K \times U_{ad}}(y,u)$$

subject to

$$(73) A y = B u$$

Assume: There is some $(\tilde{y}, \tilde{u}) \in K \times U_{ad}$ such that $A \tilde{y} = B \tilde{u}$ and $\tilde{y} \in int(K)$.

Theorem 18: Suppose the above condition is satisfied, and let $\exists A^{-1} \in L(Z,V)$. Then $\bar{u} \in U_{ad}$ is a solution to (72), (73) with optimal state \bar{y} if and only if there is some $p \in Z^*$ such that

(74)
$$\begin{array}{rcl} A \, \overline{y} &=& B \, \overline{u} \\ A^* \, p &\in& -(\partial J)_1(\overline{y}, \overline{u}) \\ B^* \, p &\in& (\partial J)_2(\overline{y}, \overline{u}) \end{array}$$

(Here: $\partial J = ((\partial J)_1, (\partial J)_2)$ is the subdifferential of J)

"**Proof**": (Details: book of Neittaanmäki–Sprekels–Tiba) With $S := A^{-1}B$ we minimize the reduced functional

$$\begin{split} f(u) &:= \tilde{J}(Su, u) + I_{K \times U_{ad}}(Su, u) \quad \text{ on } U \,. \\ \stackrel{\text{Theorem 7}}{\iff} & 0 \in \partial f(\bar{u}) \end{split}$$

Tiba's (1977) chain rule for subdifferentials shows

 \iff

(75)
$$0 \in S^*[(\partial J)_1(S\bar{u},\bar{u})] + (\partial J)_2(S\bar{u},\bar{u}).$$

Step 1: Let (\bar{y}, \bar{u}) be optimal. Then $A \bar{y} = B \bar{u}$. By (75), $\exists q \in -(\partial J)_1(S \bar{u}, \bar{u})$ such that $w := B^* A^{*-1} q \in (\partial J)_2(S \bar{u}, \bar{u})$. Now put $p := (A^*)^{-1} q$.

Step 2: If (74) holds, then
$$\bar{y} = A^{-1}B\bar{u} = S\bar{u}$$
, and
 $S^*[(\partial J)_1(S\bar{u},\bar{u})] + (\partial J)_2(S\bar{u},\bar{u}) \ni -B^*(A^*)^{-1}A^*p + B^*p = 0.$

We assume

•
$$(V, (\cdot, \cdot)_V), (U, (\cdot, \cdot)_U)$$
 Hilbert spaces.

$$A \in L(V,V^*), \ \exists \ A^{-1} \in L(V^*,V), \ B \in L(U,V^*).$$

■ $J: V \times U \rightarrow \mathbb{R}$ is convex, continuous; $h: V \times U \rightarrow \mathbb{R}$ convex, continuous.

We want to solve the OCP

(76)
$$\min J(y,u)$$

(77) subject to
$$Ay = Bu$$
 and $h(y,u) \le 0$.

Let $K := \{(y, u) \in V \times U : Ay = Bu\}.$

We replace J by including the equality constraint:

$$\tilde{J}(y,u) := J(y,u) + I_K(y,u).$$

Theorem 19: Let the above conditions hold, and assume the following **Slater condition** is satisfied:

(78)
$$\exists (\tilde{y}, \tilde{u}) \in K \text{ such that } (\tilde{y}, \tilde{u}) \in \text{ int } (D), \text{ where}$$
$$D := \{(y, u) \in V \times U : h(y, u) \leq 0\}.$$

If (\bar{y}, \bar{u}) is an optimal pair for OCP, then $\exists \lambda \ge 0$ such that

(79)
$$(0,0) \in \partial J(\bar{y},\bar{u}) + \partial I_K(\bar{y},\bar{u}) + \lambda \,\partial h(\bar{y},\bar{u})$$

(80) $\lambda h(\bar{y}, \bar{u}) = 0$ (complementary slackness)

Proof: See the book of Neittaanmäki–Sprekels–Tiba.

(81)

Corollary: Under the assumptions of Theorem 19, there are $\lambda \ge 0$ and $p \in V$ such that

$$\begin{aligned} -A^* \, p &\in (\partial L)_1(\bar{y}, \bar{u}) + \lambda (\partial h)_1(\bar{y}, \bar{u}) \\ B^* \, p &\in (\partial L)_2(\bar{y}, \bar{u}) + \lambda (\partial h)_2(\bar{y}, \bar{u}) \\ \lambda \, h(\bar{y}, \bar{u}) &= 0 \end{aligned}$$

Proof: Since *K* is a subspace, $\partial I_K(\bar{y}, \bar{u}) = K^{\perp}$. Now one easily checks that $K^{\perp} = \{(A^* p, -B^* p) : p \in V\}$. Theorem 19 assertion.

