
Lecture 4: General Differentiable Optim. Probl. in Banach Spaces

In the following, we assume:

� U,Z Banach spaces; G : U → Z is Fréchet differentiable; C ⊂U nonempty,

convex

� K ⊂ Z convex cone, i.e., if λ > 0 and z ∈ K , then λ z ∈ K .

We write for z1,z2 ∈ Z : z1 ≤K z2 ⇐⇒ z2− z1 ∈ K , and

z <K 0 ⇐⇒ −z ∈ int (K) .

� Def.: Let K ⊂ Z be a convex cone. Then the set

K+ = {z∗ ∈ Z∗ : (z∗,z)Z∗×Z ≥ 0 ∀ z ∈ K}

is called the dual cone of K.

� f : U → R is Fréchet differentiable.
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The minimization problem

We consider the general optimization problem:

(58)
min f (u),

G(u)≤K 0, u ∈C.

We look for local minimizers of (58), i.e., for ū ∈C with G(ū)≤K 0 such that

there is some ε > 0 such that

(59) f (ū)≤ f (u) whenever u ∈C , G(u)≤K 0 , and ‖u− ū‖U ≤ ε .

We eliminate the “complicated” constraint G(u)≤K 0 by means of a Lagrange

multiplier and introduce the Lagrangian

(60) L : U ×Z∗→ R , L(u,z∗) = f (u) + (z∗,G(u))Z∗×Z .
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Lagrange multipliers

Def.: Let ū be a local minimizer of (58). Any z∗ ∈ K+ such that

DuL(ū,z∗)(u− ū) ≥ 0 ∀ u ∈C,(61)

(z∗,G(ū))Z∗×Z = 0 (complementary slackness condition),(62)

is called a Lagrange multiplier associated with ū .

Remark: From (60), (61) we obtain:

(63) ( f ′(ū)+G′(ū)∗ z∗,u− ū)U∗×U ≥ 0 ∀u ∈C,

or, equivalently,

(64) ( f ′(ū),u− ū)U∗×U + (z∗,G′(ū)(u− ū))Z∗×Z ≥ 0 ∀ u ∈C .

For the existence of such a multiplier we need some so-called constraint
qualification to be satisfied.
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Zowe–Kurcyusz constraint qualification (1979)

Def.: Suppose that ū ∈C and G(ū)≤K 0 , and let

C(ū) :=
{

α (u− ū) : α ≥ 0, u ∈C
}
, K(z̄) :=

{
β (z− z̄) : β ≥ 0, z ∈ K

}
.

The condition

(65) G′(ū)C(ū)+K
(
−G(ū)

)
= Z

is called the Zowe–Kurcyusz constraint qualification.

Remarks:

1. (65) ⇐⇒ ∀ z ∈ Z ∃ u ∈C , v≥K 0 , α ≥ 0 , β ≥ 0 such that

(66) α G′(ū)(u− ū)+β
(
v+G(ū)

)
= z

2. Let C = U , K = {0} . Then (65) means: G′(ū)U = Z , i.e., G′(ū) is surjective.
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Constraint qualifications

3. If G(ū) <K 0 , i.e., if −G(ū) ∈ int (K) , then (65) is satisfied.

Problem: for 1≤ p < +∞ , the positive cones

K := {Lp(Ω) : u≥ 0 a.e. in Ω}

have empty interior in Lp(Ω) !

4. (65) is satisfied if the linearized Slater condition is fulfilled:

(67) ∃ ũ ∈C : G(ū)+G′(ū)(ũ− ū) <K 0

5. Other, more general constraint qualifications can be found in the book of
Neittaanmaki–Tiba–Sprekels.

The following multiplier rule is due to Zowe–Kurcyusz (1979):
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Existence of Lagrange multipliers

Theorem 17: Let ū ∈C be a local minimizer of (58), and let f and G be

continuously Fréchet differentiable in an open neighborhood of ū . If the constraint

qualification (65) holds, then there exists a Lagrange multiplier z∗ ∈ Z∗ associated

with ū . Moreover, the set of Lagrange multipliers associated with ū is bounded.

Example 1: Consider min f (u) , G(u) = 0 , u ∈C . Then K = {0} , and (65)

becomes: G′(ū)C(ū) = Z . It holds the variational inequality (61), while the

complementary slackness condition (62) is meaningless.
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One-sided box constraints

Example 2: Consider the minimization problem

(68) min f (u) :=
∫
Ω

ψ
(
x,u(x)

)
dx, u(x)≤ ub(x) for a.e. x ∈Ω

Assume: ub ∈ L∞(Ω) , ψ smooth and such that f : L2(Ω)→ R is continuously

Fréchet differentiable.

We put: Z := U = L2(Ω) , G(u)(x) := u(x)−ub(x) , K := {z ∈U : z(x)≥ 0 for a.e.

x ∈Ω} .

Then: C = L2(Ω) =⇒ C(ū) = L2(Ω) , G′(u) = identity mapping. The problem

becomes:

min f (u) , G(u)≤K 0 .

(66) is satisfied with β = 0 , α = 1 , u = z+ ū for z ∈ Z .

=⇒ (65) is fulfilled.
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One-sided box constraints

Theorem 17=⇒ ∃ Lagrange multiplier z∗ ∈ Z∗ = L2(Ω)∗ . Identify z∗ ∈ Z∗ with µ ∈ L2(Ω) ,

µ ≥ 0 a.e. in Ω .

(63) takes the form

( f ′(ū)+G′(ū)∗ z∗, u− ū)L2(Ω)∗×L2(Ω) ≥ 0 ∀ u ∈ L2(Ω) .

Since f ′(ū) can be identified with ψu(·, ū(·)) ∈ L2(Ω) , we find:

∃ Lagrange multiplier µ ∈ L2(Ω) , µ ≥ 0 a.e. in Ω , such that ψu(·, ū(·))+ µ = 0 .

The complementary slackness condition (62) reads:∫
Ω

µ(x)(ū(x)−ub(x))dx = 0 .
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A distributed control problem

Example 3: The distributed control problem

(69) min J(y,u) :=
1
2

∫
Ω

∣∣y(x)− yΩ(x)
∣∣2 dx +

λ

2

∫
Ω

|u(x)|2 dx

subject to

(70)
−∆y+ y = u in Ω

y = 0 on Γ

and

(71) ua(x)≤ u(x)≤ ub(x) for a.e. x ∈Ω

is a special case of (31)–(33) with d(x,y) = y . The necessary conditions are (36),

(37) with dy(x, ȳ(x))≡ 1 .
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A distributed control problem

Put: Y = H1
0 (Ω) , Y ∗ = H−1(Ω) , EY = embedding operator H1

0 (Ω) ↪→ L2(Ω) ,

B = embedding operator L2(Ω) ↪→H−1(Ω) ; define A : Y →Y ∗ by the BF associated

with the BVP

a(y,v) :=
∫
Ω

(∇y ·∇v+ yv)dx , y,v ∈ H1
0 (Ω) .

=⇒
min J(y,v) =

1
2
‖EY y− yΩ‖2

L2(Ω) +
λ

2
‖v‖2

L2(Ω)

subject to

Ay = Bv , v ∈Vad := {v ∈ L2(Ω) : ua ≤ v≤ ub a.e. in Ω} .

Now, put: U := Y ×L2(Ω); u := (y,v) ∈U ; G : U →Y ∗ =: Z, G(u) := Ay−Bv ;

C := Y ×Vad ⊂U . Clearly, G is continuously differentiable, with
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A distributed control problem

G′(ū)(y,v) = Ay−Bv .

=⇒ min J(u) , G(u) = 0 , u ∈C

By the Lax–Milgram theorem, G′(ū) is surjective. It even can be shown that

G′(ū)C(ū) = Z = Y ∗ . Hence (65) is satisfied.

Theorem 17=⇒ ∃ Lagrange multiplier z∗ ∈ Z∗ = (Y ∗)∗ ∼= Y = H1
0 (Ω) .

Put: p := −z∗ . Then:

L(u, p) = L(y,v, p) = J(y,v)− (Ay−Bv, p)Y ∗×Y .

(61)
=⇒ D(y,v) L(ȳ, v̄, p)(y− ȳ,v− v̄) ≥ 0 ∀(y,v) ∈C = Y ×Vad
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A distributed control problem

=⇒ Dy L(ȳ, v̄, p)y = 0 ∀ y ∈ Y

=⇒ (ȳ− yΩ,y)− (A∗ p,y) = 0 ∀ y ∈ H1
0 (Ω)

=⇒ p is the weak solution to the adjoint equation (36),

−∆p + p = ȳ− yΩ in Ω

p = 0 on Γ .

We also obtain
Dv L(ȳ, v̄, p)(v− v̄) ≥ 0 ∀ v ∈Vad

=⇒
∫
Ω

(p+λ v̄)(v− v̄)dx ≥ 0 ∀ v ∈Vad , which is (37).
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Problems with convex state constraints

We consider the general situation

� U,V,Z reflexive Banach spaces; (H,(·, ·)H) Hilbert space, where V ⊂ H ⊂V ∗

with dense and continuous embeddings.

� A ∈ L(V,Z) , B ∈ L(U,Z) .

� C ⊂ H , Uad ⊂U nonempty, convex, closed.

� J̃ : V → R convex, l.s.c.

We include the constraints in the cost functional and consider:

(72) min J(y,u) := J̃(y,u) + IK×Uad (y,u)

subject to

(73) Ay = Bu
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Necessary optimality conditions

Assume: There is some (ỹ, ũ) ∈ K×Uad such that Aỹ = Bũ and ỹ ∈ int (K) .

Theorem 18: Suppose the above condition is satisfied, and let ∃ A−1 ∈ L(Z,V ) .

Then ū ∈Uad is a solution to (72), (73) with optimal state ȳ if and only if there is

some p ∈ Z∗ such that

(74)
Aȳ = Bū

A∗ p ∈ −(∂J)1(ȳ, ū)
B∗ p ∈ (∂J)2(ȳ, ū)

(Here: ∂J = ((∂J)1,(∂J)2) is
the subdifferential of J)

“Proof”: (Details: book of Neittaanmäki–Sprekels–Tiba)

With S := A−1 B we minimize the reduced functional
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Necessary optimality conditions

f (u) := J̃(Su,u) + IK×Uad (Su,u) on U .

Theorem 7⇐⇒ 0 ∈ ∂ f (ū)

Tiba’s (1977) chain rule for subdifferentials shows

⇐⇒

(75) 0 ∈ S∗[(∂J)1(S ū, ū)] + (∂J)2(S ū, ū) .

Step 1: Let (ȳ, ū) be optimal. Then Aȳ = Bū .

By (75), ∃ q ∈ −(∂J)1(S ū, ū) such that w := B∗A∗−1 q ∈ (∂J)2(S ū, ū) .

Now put p := (A∗)−1 q .

Step 2: If (74) holds, then ȳ = A−1 Bū = S ū , and

S∗[(∂J)1(S ū, ū)] + (∂J)2(S ū, ū) 3 −B∗(A∗)−1 A∗ p + B∗ p = 0 .
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Mathematical programming

We assume

� (V,(·, ·)V ) , (U,(·, ·)U ) Hilbert spaces.

� A ∈ L(V,V ∗) , ∃ A−1 ∈ L(V ∗,V ) , B ∈ L(U,V ∗) .

� J : V ×U → R is convex, continuous; h : V ×U → R convex, continuous.

We want to solve the OCP

(76) min J(y,u)

(77) subject to Ay = Bu and h(y,u)≤ 0 .

Let K := {(y,u) ∈V ×U : Ay = Bu} .

We replace J by including the equality constraint:

J̃(y,u) := J(y,u) + IK(y,u) .
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Necessary optimality conditions

Theorem 19: Let the above conditions hold, and assume the following Slater
condition is satisfied:

∃ (ỹ, ũ) ∈ K such that (ỹ, ũ) ∈ int (D) , where(78)

D := {(y,u) ∈V ×U : h(y,u)≤ 0} .

If (ȳ, ū) is an optimal pair for OCP, then ∃ λ ≥ 0 such that

(79) (0,0) ∈ ∂J(ȳ, ū) + ∂ IK(ȳ, ū) + λ ∂h(ȳ, ū)

(80) λ h(ȳ, ū) = 0 (complementary slackness)

Proof: See the book of Neittaanmäki–Sprekels–Tiba.
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Necessary optimality conditions

Corollary: Under the assumptions of Theorem 19, there are λ ≥ 0 and

p ∈V such that

(81)

−A∗ p ∈ (∂L)1(ȳ, ū) + λ (∂h)1(ȳ, ū)

B∗ p ∈ (∂L)2(ȳ, ū) + λ (∂h)2(ȳ, ū)

λ h(ȳ, ū) = 0

Proof: Since K is a subspace, ∂ IK(ȳ, ū) = K⊥ . Now one easily checks

that K⊥ = {(A∗ p,−B∗ p) : p ∈V}. Theorem 19=⇒ assertion.
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