Lecture 4: General Differentiable Optim. Probl. in Banach Spaces

In the following, we assume:

B U,Z Banach spaces; G: U — Z is Fréchet differentiable; C C U nonempty,

convex

M K CZconvexcone, ie.,if A>0and z€K,then Az K.
We write for z1,20 €Z: 71 <gx 20 < 70— 71 € K, and

1<k 0 <= —ze€int (K).
B Def.: Let K C Z be aconvex cone. Then the set
K" =1{"cZ": (2)z2xz >0 VzEK}

is called the dual cone of K.

B f:U — R is Fréchet differentiable.
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The minimization problem

We consider the general optimization problem:

min f(u),
Gu) <g0, uecC.

(58)

We look for local minimizers of (58), i.e., for i € C with G(i1) <g 0 such that

there is some € > 0 such that

(59) f(@) < f(u) wheneveru € C, G(u) <g 0, and ||u—il||y <€.

We eliminate the “complicated” constraint G(u) <gx 0 by means of a Lagrange

multiplier and introduce the Lagrangian

(60) L:UXZ' =R, L) = fu)+ (,G)zxz.
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Lagrange multipliers

Def.: Let i be a local minimizer of (58). Any z¥ € K™ such that

(61) D,L(a,z")(u—a) > 0 VueC,

(62) (z°,G(it))z»xz = 0 (complementary slackness condition),
is called a Lagrange multiplier associated with i.

Remark: From (60), (61) we obtain:

(63) (f'(@)+G @) " u—i)yxv 20 Yuecd,

or, equivalently,

(64) (f (@), u—i)yxy + (5, G (@) (u—il))z:xz >0 YueccC.

For the existence of such a multiplier we need some so-called constraint
qualification to be satisfied.
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Zowe—Kurcyusz constraint qualification (1979)

Def.: Suppose that ii € C and G(i1) <k 0, and let

Ca):={au—i):a>0,ucC}, K(Z):={B(z—2):B>0,z€K}.

The condition

(65) G'(a)C(a)+K(—G(a) =Z

is called the Zowe—Kurcyusz constraint qualification.

Remarks:

1. (65) «—= VzeZ3dueC, v>k0, >0, B >0 such that

(66) oG (@) (u—i)+ B (v+G(@)) =z

2. Let C=U, K={0}.Then (65) means: G'(a)U =Z, i.e., G'(i1) is surjective.
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Constraint qualifications

3. If G(r) <k 0,i.e.,if —G(ia)€int (K), then (65) is satisfied.

Problem: for 1 < p < 40, the positive cones
K:={LP(Q): u>0 a.e.inQ}

have empty interior in L7 (Q)!

4. (65) is satisfied if the linearized Slater condition is fulfilled:

(67) daieC: G@a)+G (a)(d—i) <0

5. Other, more general constraint qualifications can be found in the book of
Neittaanmaki—Tiba—Sprekels.

The following multiplier rule is due to Zowe—Kurcyusz (1979):
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Existence of Lagrange multipliers

Theorem 17: Let i € C be a local minimizer of (58), and let f and G be
continuously Fréchet differentiable in an open neighborhood of i. If the constraint
qualification (65) holds, then there exists a Lagrange multiplier z* € Z* associated

with iz. Moreover, the set of Lagrange multipliers associated with i is bounded.

Example 1: Consider min f(u), G(u) =0, u e C. Then K = {0}, and (65)
becomes: G'(i1) C(ii) = Z. It holds the variational inequality (61), while the

complementary slackness condition (62) is meaningless.
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One-sided box constraints

Example 2: Consider the minimization problem

(68) min f(u) := /l//(x,u(x)) dx, u(x) <up(x) fora.e. xeQ
Q

Assume: u, € L”(Q), v smooth and such that f: L?(Q) — R is continuously

Fréchet differentiable.
Weput: Z:=U =L*(Q), Gu)(x):=u(x)—up(x), K:={z€U: z(x)>0fora.e.
xeQ}.
Then: C =1%(Q) = C(i) =L*(Q), G'(u)= identity mapping. The problem
becomes:
min f(u), G(u) <gO0.
(66) is satisfied with B =0, a =1, u=z+u for z€ Z.
— (65) is fulfilled.
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One-sided box constraints

Theorem 17
—

u>0a.e. inQ.

(63) takes the form

(f' (@) + G (@)* 2%, u— i) ;2 () wr2() =0 VueL*(Q).

Since f'(i1) can be identified with v, (-,i(-)) € L*(Q), we find:

3 Lagrange multiplier u € L?>(Q), u >0 a.e. in Q, such that v, (-,i(-))+u =0.

The complementary slackness condition (62) reads:

[ ) (@) ) dx = 0.
Q

3 Lagrange multiplier z* € Z* = L?(Q)*. Identify z* € Z* with u € L?(Q),
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A distributed control problem

Example 3: The distributed control problem

(69) min J(y,u) : 2/’)7 dx—|— 2/|u \2
subject to
—Ay+y = u in Q
(70)
y = 0 on I
and
(71) ug(x) <u(x) <up(x) fora.e. xeQ

is a special case of (3

1)—(33) with d(x,y) = y. The necessary conditions are (36),
(37) with dy(x,7(x)) = 1.
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A distributed control problem

Put: Y=H}(Q), Y*=H (Q), Ey = embedding operator H} (Q) — L*(Q),
B = embedding operator L?(Q) — H~!(Q); define A:Y — Y* by the BF associated
with the BVP

a(y,v) := /(Vy~VV+yV)dx, y,VvEH}(Q).
Q

. 1 A
minJ(y,v) = = |Eyy —yal22o) + = IVl%q
5 @ T 51V

subject to

Ay =Bv, veV,:={vel*(Q): u,<v<u, ae.inQ}.

Now, put: U:=YxL*(Q); u:=(v)eU; G:U—-Y*"=:Z Gu):=Ay—Bv;
C:=Y xV,;, CcU.Clearly, G is continuously differentiable, with
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A distributed control problem

G'(it)(y,v) = Ay—Bv.
—> minJ(u), Gu) =0, uecC

By the Lax—Milgram theorem, G’(i) is surjective. It even can be shown that
G'(a)C(id) = Z = Y*. Hence (65) is satisfied.

theare 173 | agrange multiplier z* € Z* = (Y*)* =Y = H} (Q).
Put:  p:= —z*. Then:

L(u,p) — L(ya Vap) — J(y7 V) - (Ay_Bvap)Y*xY .

(61 _ _ _
D(y,V)L(y7 Vap)(y_yav_ V) >0 V(y, V) cC=Y xXVy
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A distributed control problem

— DyL(y,v,p)y=0 VyeY

— (F—ya,y)—(A"p,y) =0 VyecHy(Q)

—> p Is the weak solution to the adjoint equation (36),
—Ap+p=y—yo in Q

p=20 onl.

We also obtain
DyL(3,V,p)(v—=7) >0 VVveVy

:>/(p+m)(v—-v)dxzo V V€ Vg, which is (37).
Q
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Problems with convex state constraints

We consider the general situation

B U,V,Z reflexive Banach spaces; (H,(-,-)y) Hilbert space, where V.C H C V*

with dense and continuous embeddings.
B AcL(V,Z), BeL(U,Z).
B CCH, U,; CU nonempty, convex, closed.

~

B J:V — R convex, l.s.c.

We include the constraints in the cost functional and consider:

~

(72) min J(y,u) := J(y,u) + Ikxv,, (y: 4)
subject to
(73) Ay = Bu
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Necessary optimality conditions

Assume: There is some (¥,i) € K x U,y such that Aj=Bii and y €int (K).

Theorem 18: Suppose the above condition is satisfied, and let 3A~! € L(Z,V).

Then it € U, is a solution to (72), (73) with optimal state y if and only if there is

some p € Z* such that

Ay = B .
« _ (Here: dJ = ((dJ)1,(dJ)»2) is
74 Apoe ~(00i0.8) the subdifferential of J)
B'p € (d))2y.a)

“Proof”: (Details: book of Neittaanmaki—Sprekels—Tiba)

With S := A~ 1 B we minimize the reduced functional
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Necessary optimality conditions

~

f(u) := J(Su,u) + Ixxy,,(Su,u) onU.
=R 0 € af(a)

Tiba’s (1977) chain rule for subdifferentials shows

<

(75) 0 € S*[(J)1 (S, )] + ()2 (S, ).

Step 1: Let (y,i) be optimal. Then Ay = Bi.
By (75), 3q € —(3J)(Sii, i) such that w:=B*A*"lgc (dJ),(Si,i).
Now put p:= (4*)"1q.

Step 2: If (74) holds, then y=A"!Bi = Si, and
S*[(dI)1(Si,d)] + (3)2(Sid, i) > —B*(A*) 'A*p+B*p =0.
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Mathematical programming

We assume
m (V,(-,-)v), (U,(-,-)y) Hilbert spaces.
B AcL(V,v¥), 3A e L(V*V), BEL(U,V*).
B J:V xU — R isconvex, continuous; #:V xU — R convex, continuous.

We want to solve the OCP

(76) min J(y, u)

(77) subjectto Ay = Bu and h(y,u) <0.

Let K:={(y,u) eV xU :Ay = Bu}.
We replace J by including the equality constraint:

JO,u) == J(y,u) + Ix(y,u) .
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Necessary optimality conditions

Theorem 19: Let the above conditions hold, and assume the following Slater

condition is satisfied:
(78) 1 (¥,i) € K suchthat (7,i) € int (D), where

D :={(yu) e VxU : h(y,u) <0}.

If (y,u) is an optimal pair for OCP, then 3 A > 0 such that

(79) (0,0) € dJ(¥,i) + Ik (y,i) + A Ih(y, i)

(80) Ah(y,u) =0 (complementary slackness)

Proof: See the book of Neittaanmaki—Sprekels—Tiba.
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Necessary optimality conditions

Corollary: Under the assumptions of Theorem 19, there are A > 0 and

p €V such that

—A*p € (aL)l(yal/_t) + A‘(ah)l(yaﬁ)
(81) B*p e (8L)2()7, I/_t) + )‘(8}1)2()77 I/_t)
Ah(y,a) =0

Proof: Since K is a subspace, dIx(7,i1) = K. Now one easily checks

that K+ = {(A* p,—B*p) : pe V}. "2 assertion. =
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