SUMMER SCHOOL

Optimal Control of Partial Differential Equations

Cortona, July, 12-17, 2010


Materials for the courses


J. Sprekels (WIAS, Berlin)
INTRODUCTION TO OPTIMAL CONTROL PROBLEMS FOR PDEs

References and materials:

      F. Tröltzsch
      Optimal Control of Partial Differential Equations: Theory, Methods and Applications.
      To appear spring 2010 in Graduate Studies in Mathematics, American Mathematical Society.

      P. Neittaanmaki, J. Sprekels, D. Tiba
      Optimization of Elliptic Systems: Theory and Applications.
      Springer Monographs in Mathematics, Springer, New York 2006.

      SLIDES of LECTURES


R. Hoppe (Augsburg and Houston University)
NUMERICAL METHODS FOR OPTIMAL CONTROL OF PDEs

References and materials:

      Hoppe R.H.W.
      Numerical solution of parabolic optimal control problems

      Hoppe R.H.W.
      Numerical solution of elliptic optimal control problems

      Hoppe R.H.W.
      Adaptive finite element methods for elliptic optimal control problems

      Hoppe R.H.W.
      Diffeomorphic matching and dynamic deformable surfaces with
      applications in 3d medical imaging


M. Grepl (Aachen) and G. Rozza (EPFL, Lousanne)
MODEL REDUCTION METHODS

References and materials:

      Huynh D.B.P., Patera A.T., Rozza G.
      Reduced basis approximation and a posteriori error estimation for
      affinely parametrized elliptic coercice partial differential equations

      Grepl M.A., Patera A.T.
      A posterior error bounds for reduced-basis approximation of
      parametrized parabolic partial differential equations

      Grepl M.A., Maday Y., Nguyen N.C., Patera A.T.
      Efficient reduced-basis treatment of nonaffine and nonlinear
      partial differential equations

      Huynh D.B.P., Nguyen N.C., Patera A.T., Rozza G.
      Reduced basis approximation and a posteriori error estimation for parametrized
      parabolic PDEs; Application to real-time Bayesian parameter estimation

      Huynh D.B.P, Nguyen N.C., Patera A.T., Rozza G.
      Real-time reliable simulation of heat transfer phenomena

      Patera A.T., Rozza G.
      Reduced Basis Approximation and A Posteriori Error Estimation for
      Parametrized Partial Differential Equations - Book © MIT

      SLIDES of LECTURES


F. Jouve (Paris VII )
SHAPE OPTIMIZATION

References and materials:

      Allaire G., Bonnetier E., Francfort G., Jouve F.
      Shape optimization by the homogenization method

      Allaire G., Jouve F., Toader A.M.
      Structural optimization using sensitivity analysis and a level-set method

      Allaire G., de Gournay F., Jouve F., Toader A.M.
      Structural optimization using topological and shape sensitivity via a level set method

      Allaire G., Jouve F., Van Goethem N.
      Damage evolution in brittle materials by shape and topological sensitivity analysis

      SLIDES of LECTURES


Friday, 16-Jul-2010 08:25:51 CEST