SUMMER SCHOOL
Optimal Control of Partial Differential Equations
Cortona, July, 12-17, 2010
Materials for the courses
J. Sprekels (WIAS, Berlin)
INTRODUCTION TO OPTIMAL CONTROL PROBLEMS FOR PDEs
References and materials:
F. Tröltzsch
Optimal Control of Partial Differential Equations: Theory, Methods and Applications.
To appear spring 2010 in Graduate Studies in Mathematics, American Mathematical Society.
P. Neittaanmaki, J. Sprekels, D. Tiba
Optimization of Elliptic Systems: Theory and Applications.
Springer Monographs in Mathematics, Springer, New York 2006.
SLIDES of LECTURES
R. Hoppe (Augsburg and Houston University)
NUMERICAL METHODS FOR OPTIMAL CONTROL OF PDEs
References and materials:
Hoppe R.H.W.
Numerical solution of parabolic optimal control problems
Hoppe R.H.W.
Numerical solution of elliptic optimal control problems
Hoppe R.H.W.
Adaptive finite element methods for elliptic optimal control problems
Hoppe R.H.W.
Diffeomorphic matching and dynamic deformable surfaces with
applications in 3d medical imaging
M. Grepl (Aachen) and G. Rozza (EPFL, Lousanne)
MODEL REDUCTION METHODS
References and materials:
Huynh D.B.P., Patera A.T., Rozza G.
Reduced basis approximation and a posteriori error estimation for
affinely parametrized elliptic coercice partial differential equations
Grepl M.A., Patera A.T.
A posterior error bounds for reduced-basis approximation of
parametrized parabolic partial differential equations
Grepl M.A., Maday Y., Nguyen N.C., Patera A.T.
Efficient reduced-basis treatment of nonaffine and nonlinear
partial differential equations
Huynh D.B.P., Nguyen N.C., Patera A.T., Rozza G.
Reduced basis approximation and a posteriori error estimation for parametrized
parabolic PDEs; Application to real-time Bayesian parameter estimation
Huynh D.B.P, Nguyen N.C., Patera A.T., Rozza G.
Real-time reliable simulation of heat transfer phenomena
Patera A.T., Rozza G.
Reduced Basis Approximation and A Posteriori Error Estimation for
Parametrized Partial Differential Equations - Book © MIT
SLIDES of LECTURES
F. Jouve (Paris VII )
SHAPE OPTIMIZATION
References and materials:
Allaire G., Bonnetier E., Francfort G., Jouve F.
Shape optimization by the homogenization method
Allaire G., Jouve F., Toader A.M.
Structural optimization using sensitivity analysis and a level-set method
Allaire G., de Gournay F., Jouve F., Toader A.M.
Structural optimization using topological and shape sensitivity via a level set method
Allaire G., Jouve F., Van Goethem N.
Damage evolution in brittle materials by shape and topological sensitivity analysis
SLIDES of LECTURES
Friday, 16-Jul-2010 08:25:51 CEST
|