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Introduction. Definition of the level set method

@ The level set method is a front capturing technique to calculate the
motion of fluid interfaces, as well as curves or surfaces whose
speeds depend on local curvatures.

@ The technique uses a fixed (Eulerian) mesh and finds the front as
the zero level set (moving with time) of the signed distance
function to the interface.
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Introduction. Definition of the level set method

Basic bibliography

@ S. Osher and J.A. Sethian, Fronts propagating with curvature
dependent speed: algorithms based on Hamilton-Jacobi
formulations. J. Comput. Phys. 79 (1988), pp. 12-49.

@ J. A. Sethian, Level Set Methods and Front Marching Methods.
Cambridge University Press (1999).

@ S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit
Surfaces. Springer-Verlag. Berlin, Heidelberg (2002).
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Level set formulation

Let D c RY (d = 2 or 3) be a bounded domain with boundary dD. For
simplicity, assume D is composed of two subdomains, say, Dy and D,
(possibly multiconnected) with boundaries 9D; (1 < i < 2) and I,
such that

D=DiuD>UTy.

@ [y is a d — 1 manifold separating the domains D; and D, and
undergoing a time dependent motion : I'y(f), t € [0, T].

@ [y(t) is called interface.
@ Att =0, y(0) is known.
@ Letu(t): D—R,
o
Mo(t) :={x e D:u(x,t)=0}.
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Level set formulation

@ [o(t) is the zero level set of u.
@ For many purposes is good to choose u as
u(x,t) ==+ min |x yl, xeD, (1)
yelp(t

|x — y| denotes the Euclidean distance.

@ Note that on the levels set u(x, t) = C,
Du ou
ﬁt aft +v-Vu= 0

v(x,t) = E = is a velocity field defined in D,
when x € INy(1), v(x, t) is the velocity of the points of the interface.
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Level set formulation

@ Characterization of u(x, t)
(1) On any level set u(x, t) = C: The initial value problem.

gl'lzaall+v.vu:0in DX(O,T]g
t ot (2a)

U(X70) = iminyero(O) ’X_y|7 X € D7

(2) The distance property.

|Vu| =1, (2b)
and
(3)
>0 if xe€ Dy,
u(x,t)¢ =0 if x € Ty(t), (2¢)
{ <0 if xe Do.
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Level set formulation

@ Nice features of the level set method
Easy to calculate the geometr4ic quantities

e the normal to the level set U = C

Vu
n= ~ap (3a)
e the curvature
k=-V-n, (3b)
e the integral
Del = [ H(-u)o. (3¢)
D
o the graph of Heaviside
1ifu>0,
H(u) =< [0,1]ifu=0, (3d)
Oifu<O.
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e Level set formulation
@ Reinitialization
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Reinitialization

@ Problems with this approach
e The numerical solution of the linear advection equation looses its
distance character.
e Due to numerical errors, the conservation of volume property (also
known as mass conservation) is also lost.
o After few time steps, u may become irregular or flat in some regions
of the domain.

@ Remedies

e Reinitialization or redistancing.
Replace u(x, t,) by a signed distance function d(x, t,) that has the
same zero level set and better regularity properties, then set

u(x, ty) = d(x, tn),

and go to solve equation (2a) to calculate u(x, t,11).
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Reinitialization

Procedures to reinitialization

@ Direct: geometrical or optimization
@ Fast marching
@ Hyperbolic PDE

@ We use a mixed procedure: Direct (near) Hyperbolic (far).
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Reinitialization

@ Basic references on hyperbolic reinitialization:

e M. Sussman, P. Smereka and S. Osher, A level set approach for
computing solutions to incompressible two-phase flow. J. Comput.
Phys. 114 (1994), pp. 146-159.

e M. Sussman and E. Fatemi, An efficient interface preserving level
set redistancing algorithm and its applications to interfacial
incompressible fluid flow. SIAM J. Sci. Comput. 20 (1999), pp.
1165-1191.
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Reinitialization

@ M. Sussman, P. Smereka and S. Osher Reinitialization procedure:

e Ford: D x [0, T*] — R solve up to reach the steady state the first
order nonlinear hyperbolic problem

99X.7) | w.vd = sign(u(x. 1)) in D x (0, T,
or (4a)

d(x,0) = u(x, 1),

w= sign(u(x.z‘))é?l| = sign(u(x.t))n. (4b)
o Note that when 8ng’T) =0, |Vd| =1 llIDistance!ll!
T

o Note that w = 0 on y(t)
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Reinitialization

Solution to equation (4a)

@ (Far field solution)

T+ u(Xw(x,7;0),t) if <t
In Dy, d(x,7)= (5a)
it T >t
t* being the shortest distance from x to the zero level set,
—7 + u(Xw(x,7;0),t) if 7 <t
In D5, d(x,7)= (5b)
—t* if >t

@ Near field solution
Since u € C? in Dy and Dy, for 7 small enough, in a neighborhood
of ro(t)
d(xo = m™n(xp)) = £7, Xo € To(t) (6)
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Reinitialization

@ Equation of the characteristics

XS T) _ (X0 (x,5,7),7) in Dx (0, T°],
ar (7)

Xw(X,s;8) = X.
@ The new level set function at time t is
u(x,t)) =d(x,7*)in D (8)

@ Remark. Due to numerical errors the solution (8) does not satisfy
yet the mass conservation property.

@ Particle Level set (PLS)

Bermejo (UPM) Short Paper Title Rome-2011 15/53



Numerical method

@ Step 1: Quasi-monotone semi-Lagrangian scheme (QMSL) to
calculate uj as an approximation to
Du ou .
E—E+V'VU—OIH DX(O,T],
(9)
U(X7 0) = iminyero(O) ‘X - y| , X € D7
@ Step 2: Apply the PLS method to correct uy

@ Step 3 Apply the QMSL scheme to calculate the numerical
solution of the far field reinitialization.

T+ u(Xw(x,7;0),t) if 7 <t
In Dy, d(x,7)= (10)
tif 7>t
—7 4+ u(Xw(x,7;0),t) if 7 <1t
In Dy, d(x,7)= (11)
—t*if 7>t
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Numerical method

@ Space discretization: Finite elements P;-iso P»
@ Partitions: Dy and Dy,
@ Finite element spaces associated to the partitions

Vi :={vh € CO(D) : vu |1,€ P1(T)), 1 <j< NE2},
(12)
Vi == {wy € CO(D) : wy |1, € Pa(Tk), 1 < k < NE1},

<N D
1% u
IN/N/
R
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e Numerical method
@ QMSL for level set transport equation
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Numerical method: QMSL level set equation

E - 0, tn_1 S tS tn, (13)
implies that
U(X7 tn) — U(X(X7 tn; tn—1)7tn—1)a (14)
X)X (x, b ,1), by < < b,
at (15)
X(X, tn, tn) = X.

Assuming that veL>(0, T; W'°(D)?),

X(X, to: 1) = X — / " Xty 7). 7). (16)
t
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Numerical method: QMSL level set equation

up(x;) = up ™ (Xn(Xi, to; tn1)). (17)
where Xu(x;, tn; t,_1) denotes the calculated numerical approximation
to the exact X(x;, tn; th—1)
@ Attime t,, we calculate the values uj(x;) .= U, 1 <i < NN, by
the formula
UP = (1= B Yt ™" (Xn(Xi, tni tr—1)) + B0~ gu ™" (Xa(Xi, toi ta-1))
(18)

@ Ip: C(D) — Vyand Iy : C(D) — Vy interpolation operators.

NN

/hUZ_1 (Xh(Xi, tn; th—1 )) = Z Uin_1w"(xh(x"’ I tn—1 ))7 (19)
i=1
NN B

/Hug—1 (Xh(x,', t; tn—1 )) = Z Uin_1’(/1,-(Xh(Xi, by tn—1 )) (20)

i=1
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Numerical method: QMSL level set equation

@ Calculation of the limiting coefficients 57~
Tk € Dy, containing Xp(x;, t,1; t,—1), then calculate

—1 — ; —1
Ut = maxuy |Nodes(7k) and U~ = minuj |Nodes(ﬂ)’
Qt = Ut — I,,u,’}’1 (Xn(Xi, tn; th—1)),

P = Iqul= (Xn(Xi, tn; t—1)) — Int =" (Xn(Xi, tn; ta1)),

(21)
n—1 : Q+
|fP>0, ﬂi = min 17? ,
else if P < 0, 571 = min <1,%> 7 (22)

elseif P=0, g =1.

Bermejo (UPM) Short Paper Title Rome-2011 21/58



Numerical method: QMSL level set equation

@ Summarizing
U™ if Igu (Xn(Xi, ti thty)) > U,
Ul = ¢ U if Igup ™" (Xn(Xi, i th1)) < U™, (23)

/HUZ_1 (Xh(Xi, tn; th—1)) otherwise.

Finally, we set:

NN
up(x) =Y UMpi(x). (24)
i=1
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e Numerical method

@ PLS method

Bermejo (UPM) Short Paper Title Rome-2011 23/583



Numerical method: PLS method

@ Distribute randomly n, massless particles in a band X ; of radius 3
around the zero level set

Yp={xeD:0< m|n ]x y| < Bh}.
¥€Tho

@ For each particle and time t,

dngt) = v(xp(1), 1), tot <1<t

Position (25)
Xp(th—1) = x5~ is a datum,
rmax |f SpUh(X‘g) > rmax,
radius ry = ¢ Spup(xg) if fmin < SJUR(XF) < Fmax, (26)

Imin Otherwise,
n _ qj n ny i n __ i n n
where s; = signuj(xg), i.e., sp = 1if up(xg) > 0, etc.
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Numerical method: PLS method

@ I'min < Ip < I'max, I'min = 0.01h, rmax = 0.05h

@ Escaped particle: An escaped particle is the one that crosses the
interface by a distance larger than its radius rg

@ Level set of an escaped particle

Upp(X) = sp(rg —|x=x \ (27)

Upp(x) is locally computed at the vertices of the element in which
is located.

° Ep+ and Ep+ be the set of escaped positive and negative particles

() = max (upy(x), U7 (x)) , for ufp(x) >0 (28)
up (x) = p@,igrl (u,’,’p(x), uy (x)) for upp(x) < 0. (29)

uf and uj, in the above two equations are initialized with uj]
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Numerical method: PLS method

@ Finally, the corrected level set function is
up (x) it |uf (x)] < |up (x)
up(x) =

up (x) it |up(x)| > |up (x)].

)

(30)

@ Radii adjusment: the particles which remain escaped have their
radius set to rm;n.
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Numerical method: PLS method

@ PLS algorithm
Choose the parameters 3, np, fmin and rfmax
(1) At t =0:
(1.1) Distribute randomly n, particles in a band of radius 3h
around the zero level set up(x,0) = 0.
(1.2) For each particle p find its position x2, calculate its

radius r) using and identify whether is + or —.

(2) At t,, assuming ug is known:

(2.1) For each particle p calculate xjand rg, and define the
sets ET and E—.

(2.2) (Quantify the error) For each particle p calculate u[,'p(x)
at the vertices of the element where is located.

(2.3) (Error correction) Calculate the new up(x).
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e Numerical method

@ QMSL method for reinitialization
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Numerical method: QMSL for reinitialization

@ Near field reinitialization

Sttty = 1 Tks Tk € Dis Tie N Tro(ta) # 0}
k

Figure 2 shows graphically a piece of Zr (-

Cho(m)

Figure: A piece of the zero level set at time {,

@ D; the distance of nodes x; of I, (1) to T'ho(2s) is calculated by
geometric or optimization procedures.
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Numerical method: QMSL for reinitialization

@ Far field reinitialization
o Define Qy :=D — (D2 U Zrm(tn)) and Qo ;=D — (D1 U Zrho(fn))
o Write the equation to d as

At if x € Qq,
d(x,7n) = X7 hrmr) + {0 RAER L o)

with the initial condition d(x, 7o) = uf(x)
e Solve (31) by finite elements-QMSL method to get

—m—1

D" =D +Ar if x €,

D =D — At if x €, (32)
Dlm =D; if xj € Zrho(tn)'
When m = my, the new level set function at time f, is then

up(x) = dy" (x). (33)
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Analysis: Stability in the L*°-norm

@ Maximum mesh-dependent norm:
IVIlpe0 = max v(x)|, veC(D),

@ Equivalence of norms

Vel oo < 1Vall ooy < 1Vallnco

Let At € (0,Afy) and h € (0,hy), 0 < Afy <1 and0 < hy < 1. Then
for any t, € [0, T] the solution obtained by QMSL satisfies

i< ]
[Upll ooy < L<(D)

@ |dea of the proof: Let k be an index such that ‘ up! :

— Unf1
h,o0 ‘ k

then by construction it follows that there is an index / such that
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Analysis: Error estimates

@ Up(x) QMSL level set solution and uf(x)= QMSL reinitialization o
PLS(Tp(x))
@ Attime t,:

e"(x) = u"(x) — uf(x) and €"(x) = u"(x) — Up(x).
@ Ansatz
1€ 00 <" [[€ 0o 0 <" < 1. (34)
@ Note the ﬁ[’q are the largest possible values that minimize
|u™ - UZH,LOO while T}, satisfies the maximum principle locally.
o let0<of ' <p" <1, and

%N

uir= (1 - a/(H) oty (X (%, i ta—1))+af ™ Iyup ™ (X (X3, tai th—1)),

o = TRl o = (0" =Tl -
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Analysis: Error estimates

° El.”“ — U"Y(X(X, t; t_q))

o B — U (X(X, i tat)) — U (X(X, i tr1))
°
n—1 o . n—1 —n—1 n—1

@ Error estimate with exact departure points
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Analysis: Error estimates

Theorem

Assume that for all n the ansatz (34) holds and u"(x) € W+1->°(D),

r > 0. Then there exist positive constants C4 and K, C4 being
independent of At and h, and 0 < K < 1, such that for
p=min(2,r+1) andqg=min(3,r +1)

Kt, . ALVl oo ((0,t) x D)
n < - s n
e Hh,oo SN, min (1, b X

(35)

Ca [max;n(1 — af )1 + M) |0l o w0y
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Analysis: Error estimates

@ Error estimates with non exact departure points

Theorem

Let the assumptions of Theorem 1 hold. Then, when the departure

points Xu(x, ty; t,_1) are calculated by a single step method of order
k > 2, we have that

Kt, . At V]
1 < 0 i <1, [ «o,t,,)w)d> }

h

3 36
[max,7 max;(1 — o] P 4 hq} |Uljoo (0, w100 (D)) T %)

CsKty (HV — Vhlljoo (0,10 (D)) + ALK HD;(VHLOO(O,I,,;LOO(D)")> '
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e Numerical tests
@ Zalesak slotted circle
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Numerical tests:Zalesak slotted circle

@ Numerical tests: Zalesak slotted circle

ZL;JrV-Vu:O in (0,1)% x (0, T],
(37)
u(x,0) = uO(x) = £minyer(o) [x — yI.
Mo(0) is the zero level set at time t = 0 and is represented by the
boundary of a circle of radius 0.15 centered at (0.5,0.75), with a
slot of depth 0.25 and width 0.05. The stationary velocity field v is
given by

Vq (X17X2) =0.5—xo, V2(X1 R X2) = X1 — 05,
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Numerical tests: Zalesak slotted circle

@ Parameters
e Meshes: M; =50 x 50, M> = 100 x 100, M; = 200 x 200.

At: Aty =5.0-1072, A, =1.0-1072, At; =5.0- 1073,

(PLS): fmin = 0.01h, rmax = 0.05h, n, =1.5-10% 3= 1.5.

Reinitialization: every time step, my = 4, At = 1A—0’

Aloss = /D(H(U) — H(up)) dx.

Meshes | Area loss > L™-order | /°°-order
M, 392.10° %[ 762-10°2 NA NA
Mo 1.88-1073 | 2.44.1072 1.06 1.55
My 7.13-107% | 2.40-10°2 14 0.024

Table: Numerical results for Zalesak slotted cylinder after one revolution.
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Numerical resulis: Zalesak slotted circle
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Figure: Numerical solution after 1 revolution

Bermejo (UPM) Short Paper Title Rome-2011 39/53



e Numerical tests

@ single vortex flow
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Numerical tests: Single vortex flow

@ This test illustrates the ability of the method to resolve thin
filaments at scales of the mesh in stretching and tearing flows.

@ [o(0) is the boundary of a circle of radius 0.15 and center at

(0.5,0.75).

e Velocity field, T =8

Vy (X1,X2) = — Sin2(7TX1)Sin(27TX2) Ccos (ﬂ%) R

Va(X1, Xo) = —sin(2mxq) sin(mxz) cos (%)

@ Numerical results

Meshes Np Area loss /> L"-order | />*-orde
M, 1.5-10* | 3.53-10~% | 1.457 - 10" NA NA
M, 1.5-10° | 1.70-107% | 2.87-1072 1.04 2.34
Ms 15.108 | 258-1075 | 1.42-.1072 272 1.05
Table: Numerical results of the single vortex flow at time T = 8.
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Numerical tests: Single vortex flow

@ Comparison with other methods
e Mesh: 128 x 128 and T = 8, L'-norm [}, |Uexac — Un|dX

AMR-MOF | GPCA | Rider/Kothe | QMSL-PLS | QMSL-PLS
(15-10%) | (1.5-10%
504-10% | 117-103 | 144-10° | 522107 | 1.88-10%

Table: L'-norm errors at time T = 8.

o AMR-MOF: H. T. Ahn and M. Shashkov, Adaptive moment-of-fluid
method. J. Comput. Phys. 228 (2009), pp. 2792-2821.

@ GPCA: A. Cervone, S. Manservisi, R. Scardovelli and S. Zaleski, A
geometrical predictor-corrector advection scheme and its
application to the volume fraction function. J. Comput. Phys. 228
(2009), pp. 406-419.

o Rider/Kothe: W. J. Rider and D. B. Kothe, Reconstructing volume
tracking. J. Comput. Phys. 141 (1998), pp. 112-152.
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Numerical tests: Single vortex flow

Figure: The numerical solution for the single vortex flow in mesh M, at time
instants t = 0 (upper left panel), t = 1 (upper right panel), t = 3 (lower left
panel) and t = 5 (lower right panel).
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e Numerical tests

@ Two-phase interfacial flows: The bubble rising test
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Numerical tests: The bubble rising

@ The geometry of the rising bubble

Figure: Geometry of the rising bubble problem. L is the characteristic length.
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Numerical tests: The bubble rising

@ Equations
o) 2 +9p = ()T )+ AL Ty
V-v=0,
ou
ot +v-Vu=0,

where § is the Dirac function, « denotes the dimensionless
curvature, and Re, Fr?2 and We are dimensionless numbers.
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Numerical tests: The bubble rising

@ Boundary conditions: (1) v = 0 on the upper and lower
boundaries, (2) free slip on lateral boundaries.

@ Dimensionless numbers
2 2
Re = p1UL, We = nY L, Fr:i
A o gL

where U = \/2gR and L = 2R

@ The coefficients

p(u) =2+ (1= )Hy(u), p(u)="2+(1-2)H, ()
P1 P1 1

)

@ the Heaviside graph

0 if u<—ny
1 u 1 . 7u
H,(u) = > 1+5+;sm(%) )
1 if u>n.
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Numerical tests: The bubble rising

Numerical solution method

@ Space discretization

e Taylor-Hood P,/ P; finite element for v and p and P;-iso P» for the
level set function

@ Time discretization

o BDF2-Modified Lagrange-Galerkin for the NS equations,
o QMSL-PSL for the level set equations.
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Numerical tests: The bubble rising

Physical parameters of the test

@ Benchmark test 2 proposed by:
S. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burnman, S.
Ganesan and L. Tobiska, Proposal for quantitative benchmark
computations of bubble dynamics. Int. J. Numer. Meth. Fluids 60

(2009), pp. 1259-1288.
p1 =1000, po =1, pu4 =10; uo=0.1, g=0.98,

Fr=1, 0 =196, Re=35 We=125.

Parameters of the numerical experiments:
At=H/8,np=15" 104, = h; B3, rmax and ry, as in Zalesak slotted

circle experiment.
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Numerical tests: The bubble rising

Quantities to monitor the performance of the method

Jp, x(1) IXoco
Xcog(t) = (X1cog(t), X2cog(t) = DzTa Vacog () = th <,
circ(t) = p2.

Results at different meshes

1/H 40 80 160
Circmn | 0.5222 | 0.5394 | 0.5334
t (Circ min) | 2.4313 | 2.3003 | 2.3168
Veogmax1 | 0.2586 | 0.2584 | 0.2579
t (Voogmax1) | 0.6672 | 0.6566 | 0.6449
Veogmaxz | 0.2495 | 0.2612 | 0.2558
t (Voog.max2) | 1.9499 | 2.0078 | 2.0297
Yeog(t=13) | 1.0950 | 1.1205 | 1.1195

Table: Minimum circularity and (both) maximum rise velocities, with

d 4 @
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Numerical tests: The bubble rising

Comparison with the results of the methods of Hysing et al. paper

Group TP2D | FREELIFE | MooNMD | QMSL-PLS
CIrc min 0.5869 0.4647 0.5114 0.5334
t(circmin) | 2.4004 3.0000 3.0000 2.3168
Veogmax1 | 0.2524 0.2514 0.2502 0.2579
t (Veog,max1) | 0.7332 0.7281 0.7317 0.6449
Veogmax2 | 0.2434 0.2440 0.2393 0.2558
t (Veog,max2) | 2.0705 1.9844 2.0600 2.0297
Yeog(t =3) | 1.1380 1.1249 1.1376 1.1195

Table: Test quantities calculated by the following methods: TP2D with
H = 1/640, FREELIFE with H = 1/160, MooNMD with NDOF;,; = 900, and
QMSL-PLS with H = 1/160.
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Numerical tests: The bubble rising

Comparison with the results of the methods of Hysing et al. paper
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Figure: Graphics of Yeog, Veog, Circ of the bubble.
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Numerical tests: The bubble rising

Comparison with the results of the methods of Hysing et al. paper
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Figure: Shape of the bubble at T = 3. TP2D (H = 1/320) dark line,
QMSL-PLS (H = 1/160) grey line .
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