A semi-Lagrangian particle level set finite element method for interface problems

R. Bermejo

Department of Applied Mathematics Universidad Politecnica de Madrid

Rome-2011

Outline

Introduction

Level set formulation

Reinitialization

Numerical method

- QMSL for level set transport equation
- PLS method
- QMSL method for reinitialization

4 Analysis

Numerical tests

- Zalesak slotted circle
- single vortex flow
- Two-phase interfacial flows: The bubble rising test

- The level set method is a front capturing technique to calculate the motion of fluid interfaces, as well as curves or surfaces whose speeds depend on local curvatures.
- The technique uses a fixed (Eulerian) mesh and finds the front as the zero level set (moving with time) of the signed distance function to the interface.

Basic bibliography

- S. Osher and J.A. Sethian, *Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations.* J. Comput. Phys. **79** (1988), pp. 12-49.
- J. A. Sethian, *Level Set Methods and Front Marching Methods.* Cambridge University Press (1999).
- S. Osher and R. Fedkiw, *Level Set Methods and Dynamic Implicit Surfaces.* Springer-Verlag. Berlin, Heidelberg (2002).

Let $D \subset \mathbb{R}^d$ (d = 2 or 3) be a bounded domain with boundary ∂D . For simplicity, assume D is composed of two subdomains, say, D_1 and D_2 (possibly multiconnected) with boundaries ∂D_i ($1 \le i \le 2$) and Γ_0 , such that

$$D=D_1\cup D_2\cup \Gamma_0.$$

- Γ₀ is a *d* − 1 manifold separating the domains *D*₁ and *D*₂ and undergoing a time dependent motion : Γ₀(*t*), *t* ∈ [0, *T*].
- $\Gamma_0(t)$ is called interface.
- At t = 0, Γ₀(0) is known.
- Let $u(t): D \to \mathbb{R}$,

$$\Gamma_0(t) := \{x \in D : u(x,t) = 0\}.$$

Level set formulation

- $\Gamma_0(t)$ is the zero level set of u.
- For many purposes is good to choose *u* as

$$u(x,t) = \pm \min_{y \in \Gamma_0(t)} |x - y|, \ x \in D,$$
 (1)

- |x y| denotes the Euclidean distance.
- Note that on the levels set u(x, t) = C, $\frac{Du}{Dt} = \frac{\partial u}{\partial t} + v \cdot \nabla u = 0$,
- $v(x, t) = \frac{dx}{dt}$ is a velocity field defined in *D*,
- when $x \in \Gamma_0(t)$, v(x, t) is the velocity of the points of the interface.

Level set formulation

• Characterization of u(x, t)

(1) On any level set u(x, t) = C: The initial value problem.

$$\begin{cases} \frac{Du}{Dt} = \frac{\partial u}{\partial t} + v \cdot \nabla u = 0 \text{ in } D \times (0, T], \\ u(x, 0) = \pm \min_{y \in \Gamma_0(0)} |x - y|, \ x \in D, \end{cases}$$
(2a)

(2) The distance property.

$$|\nabla u| = 1, \tag{2b}$$

and (3)

$$u(x,t) \begin{cases} >0 & \text{if } x \in D_1, \\ =0 & \text{if } x \in \Gamma_0(t), \\ <0 & \text{if } x \in D_2. \end{cases}$$
(2c)

Level set formulation

• Nice features of the level set method

Easy to calculate the geometr4ic quantities

• the normal to the level set U = C

$$\mathbf{n} = \frac{\nabla u}{|\nabla u|},\tag{3a}$$

the curvature

$$\kappa = -\nabla \cdot \mathbf{n},\tag{3b}$$

the integral

$$|D_2| = \int_D H(-u) dx, \qquad (3c)$$

the graph of Heaviside

$$H(u) = \begin{cases} 1 \text{ if } u > 0, \\ [0,1] \text{ if } u = 0, \\ 0 \text{ if } u < 0. \end{cases}$$
(3d)

Outline

Introduction

Level set formulationReinitialization

Numerical method

- QMSL for level set transport equation
- PLS method
- QMSL method for reinitialization

4 Analysi

Numerical tests

- Zalesak slotted circle
- single vortex flow
- Two-phase interfacial flows: The bubble rising test

-∢ ∃ ▶

Problems with this approach

- The numerical solution of the linear advection equation looses its distance character.
- Due to numerical errors, the conservation of volume property (also known as mass conservation) is also lost.
- After few time steps, *u* may become irregular or flat in some regions of the domain.

Remedies

• Reinitialization or redistancing.

Replace $u(x, t_n)$ by a signed distance function $d(x, t_n)$ that has the same zero level set and better regularity properties, then set

$$u(x,t_n)=d(x,t_n),$$

and go to solve equation (2a) to calculate $u(x, t_{n+1})$.

Procedures to reinitialization

- Direct: geometrical or optimization
- Fast marching
- Hyperbolic PDE
- We use a mixed procedure: Direct (near) Hyperbolic (far).

- Basic references on hyperbolic reinitialization:
 - M. Sussman, P. Smereka and S. Osher, A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. **114** (1994), pp. 146-159.
 - M. Sussman and E. Fatemi, *An efficient interface preserving level* set redistancing algorithm and its applications to interfacial incompressible fluid flow. SIAM J. Sci. Comput. **20** (1999), pp. 1165-1191.

• M. Sussman, P. Smereka and S. Osher Reinitialization procedure:

For *d* : *D* × [0, *T*^{*}] → ℝ solve up to reach the steady state the first order nonlinear hyperbolic problem

$$\begin{cases} \frac{\partial d(x,\tau)}{\partial \tau} + w \cdot \nabla d = sign(u(x,t)) \text{ in } D \times (0, T^*], \\ d(x,0) = u(x,t), \end{cases}$$
(4a)

$$w = sign(u(x.t))\frac{\nabla d}{|\nabla d|} = sign(u(x.t))\mathbf{n}.$$
 (4b)

A D M A A A M M

- **→ → →**

• Note that when
$$\frac{\partial d(x,\tau)}{d\tau} = 0$$
, $|\nabla d| = 1$!!!!Distance!!!!

Reinitialization

Solution to equation (4a)

• (Far field solution)

$$\ln D_{1}, \ d(x,\tau) = \begin{cases} \tau + u(X_{w}(x,\tau;0),t) \ \text{if} \ \tau \leq t^{*}, \\ t^{*} \ \text{if} \ \tau > t^{*}, \end{cases}$$
(5a)

 t^* being the shortest distance from x to the zero level set,

$$In D_2, \ d(x,\tau) = \begin{cases} -\tau + u(X_w(x,\tau;0),t) & \text{if } \tau \le t^*, \\ -t^* & \text{if } \tau > t^*. \end{cases}$$
(5b)

Near field solution
 Since u ∈ C² in D₁ and D₂, for τ small enough, in a neighborhood of Γ₀(t)

$$d(x_0 \pm \tau \mathbf{n}(x_0)) = \pm \tau, \quad x_0 \in \Gamma_0(t) \tag{6}$$

Equation of the characteristics

$$\begin{pmatrix}
\frac{dX_w(x, s, \tau)}{d\tau} = w(X_w(x, s, \tau), \tau) \text{ in } D \times (0, T^*], \\
X_w(x, s; s) = x.
\end{cases}$$
(7)

• The new level set function at time t is

$$u(x,t)) = d(x,\tau^*) \text{ in } D \tag{8}$$

- Remark. Due to numerical errors the solution (8) does not satisfy yet the mass conservation property.
- Particle Level set (PLS)

 Step 1: Quasi-monotone semi-Lagrangian scheme (QMSL) to calculate uⁿ_h as an approximation to

$$\begin{cases} \frac{Du}{Dt} = \frac{\partial u}{\partial t} + v \cdot \nabla u = 0 \text{ in } D \times (0, T], \\ u(x, 0) = \pm \min_{y \in \Gamma_0(0)} |x - y|, \quad x \in D, \end{cases}$$
(9)

- Step 2: Apply the PLS method to correct u_h^n
- Step 3 Apply the QMSL scheme to calculate the numerical solution of the far field reinitialization.

$$In D_{1}, \ d(x,\tau) = \begin{cases} \tau + u(X_{w}(x,\tau;0),t) & \text{if } \tau \leq t^{*}, \\ t^{*} & \text{if } \tau > t^{*}, \end{cases}$$
(10)
$$In D_{2}, \ d(x,\tau) = \begin{cases} -\tau + u(X_{w}(x,\tau;0),t) & \text{if } \tau \leq t^{*}, \\ -t^{*} & \text{if } \tau > t^{*}. \end{cases}$$
(11)

Numerical method

- Space discretization: Finite elements P₁-iso P₂
- Partitions: D_H and D_h
- Finite element spaces associated to the partitions

$$\mathcal{V}_h := \{ v_h \in C^0(\overline{D}) : v_h \mid_{T_j} \in \mathcal{P}_1(T_j), \ 1 \leq j \leq NE2 \},$$

 $V_H := \{ w_H \in C^0(\overline{D}) : w_H \mid_{T_k} \in P_2(T_k), \ 1 \le k \le NE1 \},$

Outline

Introduction

Level set formulatio
 Reinitialization

Numerical method

QMSL for level set transport equation

- PLS method
- QMSL method for reinitialization

4 Analysi

Numerical tests

- Zalesak slotted circle
- single vortex flow
- Two-phase interfacial flows: The bubble rising test

- 3 >

Numerical method: QMSL level set equation

$$\frac{Du}{Dt} = 0, \ t_{n-1} \le t \le t_n, \tag{13}$$

implies that

$$u(x, t_n) = u(X(x, t_n; t_{n-1}), t_{n-1}),$$
(14)

$$\begin{cases} \frac{dX(x, t_{n}; t)}{dt} = v(X(x, t_{n}; t), t), \quad t_{n-1} \le t < t_{n}, \\ X(x, t_{n}, t_{n}) = x. \end{cases}$$
(15)

Assuming that $v \in L^{\infty}(0, T; W^{1,\infty}(D)^d)$,

$$X(x,t_n;t) = x - \int_t^{t_n} v(X(x,t_n;\tau),\tau) d\tau.$$
(16)

Numerical method: QMSL level set equation

$$u_h^n(x_i) = u_h^{n-1}(X_h(x_i, t_n; t_{n-1})).$$
(17)

where $X_h(x_i, t_n; t_{n-1})$ denotes the calculated numerical approximation to the exact $X(x_i, t_n; t_{n-1})$

• At time t_n , we calculate the values $u_h^n(x_i) := U_i^n$, $1 \le i \le NN$, by the formula

$$U_{i}^{n} = (1 - \beta_{i}^{n-1})I_{h}u_{h}^{n-1}(X_{h}(x_{i}, t_{n}; t_{n-1})) + \beta_{i}^{n-1}I_{H}u_{h}^{n-1}(X_{h}(x_{i}, t_{n}; t_{n-1}))$$
(18)

• $I_h: C(\overline{D}) \to V_h$ and $I_H: C(\overline{D}) \to V_H$ interpolation operators.

$$I_h u_h^{n-1}(X_h(x_i, t_n; t_{n-1})) = \sum_{i=1}^{NN} U_i^{n-1} \psi_i(X_h(x_i, t_n; t_{n-1})), \quad (19)$$

$$I_{H}u_{h}^{n-1}(X_{h}(x_{i},t_{n};t_{n-1})) = \sum_{i=1}^{NN} U_{i}^{n-1}\overline{\psi}_{i}(X_{h}(x_{i},t_{n};t_{n-1})).$$
(20)

Numerical method: QMSL level set equation

• Calculation of the limiting coefficients β_i^{n-1} $\overline{T}_k \in D_H$, containing $X_h(x_i, t_{n+1}; t_{n-1})$, then calculate

$$\begin{cases} U^{+} = \max u_{h}^{n-1} \mid_{Nodes(\overline{T}_{k})} \text{ and } U^{-} = \min u_{h}^{n-1} \mid_{Nodes(\overline{T}_{k})}, \\ Q^{\pm} = U^{\pm} - I_{h} u_{h}^{n-1} (X_{h}(x_{i}, t_{n}; t_{n-1})), \\ P = I_{H} u_{h}^{n-1} (X_{h}(x_{i}, t_{n}; t_{n-1})) - I_{h} u_{h}^{n-1} (X_{h}(x_{i}, t_{n}; t_{n-1})), \\ \begin{cases} \text{If } P > 0, \quad \beta_{i}^{n-1} = \min \left(1, \frac{Q^{+}}{P}\right), \\ \text{else if } P < 0, \quad \beta_{i}^{n-1} = \min \left(1, \frac{Q^{-}}{P}\right), \\ \text{else if } P = 0, \quad \beta_{i}^{n-1} = 1. \end{cases}$$
(22)

Summarizing

$$U_{i}^{n} = \begin{cases} U^{+} \text{ if } I_{H} u_{h}^{n-1}(X_{h}(x_{i}, t_{n}; t_{n-1})) > U^{+}, \\ U^{-} \text{ if } I_{H} u_{h}^{n-1}(X_{h}(x_{i}, t_{n}; t_{n-1})) < U^{-}, \\ I_{H} u_{h}^{n-1}(X_{h}(x_{i}, t_{n}; t_{n-1})) \text{ otherwise.} \end{cases}$$
(23)

Finally, we set:

$$u_h^n(x) = \sum_{i=1}^{NN} U_i^n \psi_i(x).$$
(24)

-

Outline

Introduction

Level set formulation Reinitialization

Numerical method

- QMSL for level set transport equation
- PLS method
- QMSL method for reinitialization

4 Analysi

Numerical tests

- Zalesak slotted circle
- single vortex flow
- Two-phase interfacial flows: The bubble rising test

Numerical method: PLS method

 Distribute randomly n_p massless particles in a band Σ_β of radius β around the zero level set

$$\Sigma_{\beta} = \{x \in D : 0 \leq \min_{y \in \Gamma_{h0}(t)} |x - y| \leq \beta h\}.$$

• For each particle and time *t_n*

$$\text{Position} \begin{cases} \frac{dx_{p}(t)}{dt} = v(x_{p}(t), t), \quad t_{n-1} < t \le t_{n}, \\ x_{p}(t_{n-1}) = x_{p}^{n-1} \text{ is a datum}, \end{cases}$$

$$\text{radius } r_{p}^{n} = \begin{cases} r_{\max} \text{ if } s_{p}^{n}u_{h}^{n}(x_{p}^{n}) > r_{\max}, \\ s_{p}^{n}u_{h}^{n}(x_{p}^{n}) \text{ if } r_{\min} \le s_{p}^{n}u_{h}^{n}(x_{p}^{n}) < r_{\max}, \end{cases}$$

$$\text{where } s_{p}^{n} = signu_{h}^{n}(x_{p}^{n}), \text{ i.e., } s_{p}^{n} = 1 \text{ if } u_{h}^{n}(x_{p}^{n}) > 0, \text{ etc.} \end{cases}$$

$$\text{Position} \end{cases}$$

$$\text{(25)}$$

Numerical method: PLS method

- $r_{min} \le r_p \le r_{max}$, $r_{min} = 0.01h$, $r_{max} = 0.05h$
- Escaped particle: An escaped particle is the one that crosses the interface by a distance larger than its radius rⁿ_p
- Level set of an escaped particle

$$u_{h\rho}^{n}(x) = s_{\rho}^{n}(r_{\rho}^{n} - |x - x_{\rho}^{n}|).$$
(27)

 $u_{hp}^{n}(x)$ is locally computed at the vertices of the element in which is located.

• E_{ρ}^{+} and E_{ρ}^{+} be the set of escaped positive and negative particles

$$u_h^+(x) = \max_{p \in E^+} \left(u_{hp}^n(x), u_h^+(x) \right), \text{ for } u_{hp}^n(x) > 0$$
 (28)

$$u_h^-(x) = \min_{p \in E^-} \left(u_{hp}^n(x), u_h^-(x) \right) \text{ for } u_{hp}^n(x) < 0.$$
 (29)

 u_h^+ and u_h^- in the above two equations are initialized with u_h^n

• Finally, the corrected level set function is

$$u_{h}^{n}(x) = \begin{cases} u_{h}^{+}(x) & \text{if } |u_{h}^{+}(x)| \leq |u_{h}^{-}(x)|, \\ u_{h}^{-}(x) & \text{if } |u_{h}^{+}(x)| > |u_{h}^{-}(x)|. \end{cases}$$
(30)

• Radii adjusment: the particles which remain escaped have their radius set to *r_{min}*.

PLS algorithm

Choose the parameters β , n_p , r_{min} and r_{max} (1) At t = 0:

(1.1) Distribute randomly n_p particles in a band of radius βh around the zero level set $u_h(x, 0) = 0$.

(1.2) For each particle *p* find its position x_p^0 , calculate its radius r_p^0 using and identify whether is + or -.

(2) At t_n , assuming u_h^n is known:

(2.1) For each particle *p* calculate x_p^n and r_p^n , and define the sets E^+ and E^- .

(2.2) (Quantify the error) For each particle *p* calculate $u_{hp}^n(x)$ at the vertices of the element where is located.

(2.3) (Error correction) Calculate the new $u_h^n(x)$.

Outline

Introduction

Level set formulationReinitialization

Numerical method

- QMSL for level set transport equation
- PLS method
- QMSL method for reinitialization

Analysis

Numerical tests

- Zalesak slotted circle
- single vortex flow
- Two-phase interfacial flows: The bubble rising test

Numerical method: QMSL for reinitialization

Near field reinitialization

$$\Sigma_{\Gamma_{h0}(t_n)} = \{\bigcup_k T_k, \ T_k \in D_h : T_k \cap \Gamma_{h0}(t_n) \neq \emptyset\}.$$

Figure 2 shows graphically a piece of $\Sigma_{\Gamma_{h0}(t_n)}$.

Figure: A piece of the zero level set at time t_n

• D_l the distance of nodes x_l of $\sum_{\Gamma_{h0}(t_n)}$ to $\Gamma_{h0}(t_n)$ is calculated by geometric or optimization procedures.

Numerical method: QMSL for reinitialization

• Far field reinitialization

- Define $\Omega_1 := D (D_2 \cup \Sigma_{\Gamma_{h0}(t_n)})$ and $\Omega_2 := D (D_1 \cup \Sigma_{\Gamma_{h0}(t_n)})$
- Write the equation to d as

$$d(x,\tau_m) = d(X_w(x,\tau_m;\tau_{m-1}),\tau_{m-1}) + \begin{cases} \Delta \tau & \text{if } x \in \Omega_1, \\ -\Delta \tau & \text{if } x \in \Omega_2, \end{cases}, \quad (31)$$

with the initial condition $d(x, \tau_0) = u_h^n(x)$ • Solve (31) by finite elements-QMSL method to get

$$\begin{cases} D_i^m = \overline{D}_i^{m-1} + \Delta \tau \text{ if } x_i \in \Omega_1, \\ D_i^m = \overline{D}_i^{m-1} - \Delta \tau \text{ if } x_i \in \Omega_2, \\ D_i^m = D_i \text{ if } x_i \in \Sigma_{\Gamma_{h0}(t_n)}. \end{cases}$$
(32)

When $m = m_1$, the new level set function at time t_n is then

$$u_h^n(x) = d_h^{m_1}(x).$$
 (33)

Analysis: Stability in the L^{∞} -norm

• Maximum mesh-dependent norm:

$$\|v\|_{h,\infty} = \max_{j} |v(x_{j})|, \quad v \in C(\overline{D}),$$

Equivalence of norms

$$\|\boldsymbol{v}_h\|_{h,\infty} \leq \|\boldsymbol{v}_h\|_{L^{\infty}(D)} \leq \|\boldsymbol{v}_h\|_{h,\infty}$$

Lemma

Let $\Delta t \in (0, \Delta t_0)$ and $h \in (0, h_0)$, $0 < \Delta t_0 < 1$ and $0 < h_0 < 1$. Then for any $t_n \in [0, T]$ the solution obtained by QMSL satisfies

$$\|u_h^n\|_{L^{\infty}(D)} \leq \left\|u^0\right\|_{L^{\infty}(D)}$$

• Idea of the proof: Let *k* be an index such that $\left\| u_h^{n-1} \right\|_{h,\infty} = \left| U_k^{n-1} \right|$, then by construction it follows that there is an index *I* such that

$$\|U_h^n\|_{h,\infty} = |U_k^n| \le |U_k^{n-1}|, \quad \text{are a rest in } = 90$$

Bermejo (UPM)

Analysis: Error estimates

- *ū*ⁿ_h(x) QMSL level set solution and uⁿ_h(x)= QMSL reinitialization ∘
 PLS(*ū*ⁿ_h(x))
- At time *t_n*:

$$e^n(x) = u^n(x) - u^n_h(x)$$
 and $\overline{e}^n(x) = u^n(x) - \overline{u}^n_h(x)$.

Ansatz

$$\|\boldsymbol{e}^{\boldsymbol{n}}\|_{\boldsymbol{h},\infty} \leq \gamma^{\boldsymbol{n}} \|\overline{\boldsymbol{e}}^{\boldsymbol{n}}\|_{\boldsymbol{h},\infty}, \ \boldsymbol{0} < \gamma^{\boldsymbol{n}} \leq \boldsymbol{1}. \tag{34}$$

Note the β_iⁿ⁻¹ are the largest possible values that minimize ||uⁿ - ū_hⁿ||_{h,∞} while ū_hⁿ satisfies the maximum principle locally.
Let 0 ≤ α_iⁿ⁻¹ ≤ β_iⁿ⁻¹ ≤ 1, and Ū_i^{*n} = (1 - α_iⁿ⁻¹) I_hu_hⁿ⁻¹(X(x_i, t_n; t_{n-1}))+α_iⁿ⁻¹I_Hu_hⁿ⁻¹(X(x_i, t_n; t_{n-1})),
||uⁿ - ū_hⁿ||_{h∞} ≤ ||uⁿ - ū_h^{*n}||_{h∞}.

•
$$\widetilde{\beta}_i^{n-1} \longrightarrow u^{n-1}(X(x, t_n; t_{n-1}))$$

• $\overline{\beta}_i^{n-1} \longrightarrow u^{n-1}(X(x, t_n; t_{n-1})) - u_h^{n-1}(X(x, t_n; t_{n-1}))$
• $\alpha_i^{n-1} = \min(\widetilde{\beta}_i^{n-1}, \overline{\beta}_i^{n-1}, \beta_i^{n-1}),$

Error estimate with exact departure points

- 4 ∃ →

Theorem

Assume that for all n the ansatz (34) holds and $u^n(x) \in W^{r+1,\infty}(D)$, $r \ge 0$. Then there exist positive constants C_4 and K, C_4 being independent of Δt and h, and $0 < K \le 1$, such that for $p = \min(2, r+1)$ and $q = \min(3, r+1)$

$$\|\boldsymbol{e}^{n}\|_{h,\infty} \leq \frac{Kt_{n}}{\Delta t} \min\left(1, \frac{\Delta t \|\boldsymbol{v}\|_{L^{\infty}((0,t_{n})\times D)^{d}}}{h}\right) \times$$
(35)

$$C_4\left[\max_{i,n}(1-\alpha_i^{n-1})h^p+h^q\right]|u|_{I^{\infty}(0,t_n;W^{r+1,\infty}(D))}.$$

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Error estimates with non exact departure points

Theorem

Let the assumptions of Theorem 1 hold. Then, when the departure points $X_h(x, t_n; t_{n-1})$ are calculated by a single step method of order $k \ge 2$, we have that

$$\|\boldsymbol{e}^{n}\|_{h,\infty} \leq \frac{Kt_{n}}{\Delta t} \min\left(1, \frac{\Delta t \|\boldsymbol{v}\|_{L^{\infty}((0,t_{n})\times D)^{d}}}{h}\right) \times$$

$$\left[\max_{n}\max_{i}(1-\alpha_{i}^{n-1})h^{p}+h^{q}\right]|u|_{I^{\infty}(0,t_{n};W^{r+1,\infty}(D))}+$$

$$C_5 \mathcal{K} t_n \left(\| \boldsymbol{v} - \boldsymbol{v}_h \|_{I^{\infty}(0,t_n;L^{\infty}(D)^d)} + \Delta t^k \| D_t^k \boldsymbol{v} \|_{L^{\infty}(0,t_n;L^{\infty}(D)^d)} \right).$$

(36)

Outline

Introduction

Level set formulation Reinitialization

Numerical method

- QMSL for level set transport equation
- PLS method
- QMSL method for reinitialization

Analysis

Numerical tests

- Zalesak slotted circle
- single vortex flow
- Two-phase interfacial flows: The bubble rising test

- 3 >

Numerical tests: Zalesak slotted circle

$$\begin{cases} \frac{\partial u}{\partial t} + v \cdot \nabla u = 0 \text{ in } (0,1)^2 \times (0,T],\\ u(x,0) = u^0(x) = \pm \min_{y \in \Gamma(0)} |x - y|. \end{cases}$$
(37)

 $\Gamma_0(0)$ is the zero level set at time t = 0 and is represented by the boundary of a circle of radius 0.15 centered at (0.5, 0.75), with a slot of depth 0.25 and width 0.05. The stationary velocity field v is given by

$$v_1(x_1,x_2) = 0.5 - x_2, \ v_2(x_1,x_2) = x_1 - 0.5,$$

Numerical tests: Zalesak slotted circle

Parameters

۲

• Meshes: $M_1 = 50 \times 50$, $M_2 = 100 \times 100$, $M_3 = 200 \times 200$.

•
$$\Delta t$$
: $\Delta t_1 = 5.0 \cdot 10^{-2}$, $\Delta t_2 = 1.0 \cdot 10^{-2}$, $\Delta t_1 = 5.0 \cdot 10^{-3}$.

• (PLS):
$$r_{min} = 0.01h$$
, $r_{max} = 0.05h$, $n_p = 1.5 \cdot 10^4$, $\beta = 1.5$.

• Reinitialization: every time step, $m_1 = 4$, $\Delta \tau = \frac{\Delta t}{10}$

$$A_{loss} = \int_D \left(H(u) - H(u_h) \right) dx.$$

Meshes	Area loss	/∞	L ¹ -order	I^{∞} -order
<i>M</i> ₁	$3.92 \cdot 10^{-3}$	$7.62 \cdot 10^{-2}$	NA	NA
M ₂	1.88 · 10 ⁻³	2.44 · 10 ⁻²	1.06	1.55
M ₃	$7.13 \cdot 10^{-4}$	$2.40 \cdot 10^{-2}$	1.4	0.024

Table: Numerical results for Zalesak slotted cylinder after one revolution.

Numerical results: Zalesak slotted circle

Figure: Numerical solution after 1 revolution

Berme	io ((UPM)
Bound	,	

Outline

Introduction

Level set formulation Reinitialization

Numerical method

- QMSL for level set transport equation
- PLS method
- QMSL method for reinitialization

Analysis

Numerical tests

- Zalesak slotted circle
- single vortex flow
- Two-phase interfacial flows: The bubble rising test

- 3 >

Numerical tests: Single vortex flow

- This test illustrates the ability of the method to resolve thin filaments at scales of the mesh in stretching and tearing flows.
 - $\Gamma_0(0)$ is the boundary of a circle of radius 0.15 and center at (0.5, 0.75).
 - Velocity field, T = 8

$$v_1(x_1, x_2) = -\sin^2(\pi x_1)\sin(2\pi x_2)\cos\left(\frac{\pi t}{T}\right),$$

$$v_2(x_1, x_2) = -\sin(2\pi x_1)\sin^2(\pi x_2)\cos\left(\frac{\pi t}{T}\right),$$

Numerical results

Meshes	n _p	Area loss	I^{∞}	L ¹ -order	/∞-ord
<i>M</i> ₁	1.5 · 10 ⁴	$3.53 \cdot 10^{-4}$	$1.457 \cdot 10^{-1}$	NA	NA
M ₂	1.5 · 10 ⁵	$1.70 \cdot 10^{-4}$	$2.87 \cdot 10^{-2}$	1.04	2.34
<i>M</i> ₃	$1.5\cdot 10^6$	$2.58 \cdot 10^{-5}$	$1.42 \cdot 10^{-2}$	2.72	1.05

Table: Numerical results of the single vortex flow at time T = 8.

Numerical tests: Single vortex flow

• Comparison with other methods

• Mesh: 128 × 128 and T = 8, L^1 -norm $\int_D |u_{exac} - u_h| dx$

AMR-MOF	GPCA	Rider/Kothe	QMSL-PLS	QMSL-PLS
			$(1.5 \cdot 10^3)$	$(1.5 \cdot 10^4)$
$5.04 \cdot 10^{-4}$	$1.17 \cdot 10^{-3}$	$1.44 \cdot 10^{-3}$	$5.22 \cdot 10^{-4}$	$1.88 \cdot 10^{-4}$

Table: L^1 -norm errors at time T = 8.

- AMR-MOF: H. T. Ahn and M. Shashkov, Adaptive moment-of-fluid method. J. Comput. Phys. 228 (2009), pp. 2792-2821.
- GPCA: A. Cervone, S. Manservisi, R. Scardovelli and S. Zaleski, A geometrical predictor-corrector advection scheme and its application to the volume fraction function. J. Comput. Phys. 228 (2009), pp. 406-419.
- Rider/Kothe: W. J. Rider and D. B. Kothe, *Reconstructing volume tracking.* J. Comput. Phys. **141** (1998), pp. 112-152.

Figure: The numerical solution for the single vortex flow in mesh M_2 at time instants t = 0 (upper left panel), t = 1 (upper right panel), t = 3 (lower left panel) and t = 5 (lower right panel).

A D M A A A M M

Outline

Introduction

Level set formulation Reinitialization

Numerical method

- QMSL for level set transport equation
- PLS method
- QMSL method for reinitialization

Analysis

Numerical tests

- Zalesak slotted circle
- single vortex flow

Two-phase interfacial flows: The bubble rising test

- 3 >

Numerical tests: The bubble rising

• The geometry of the rising bubble

Figure: Geometry of the rising bubble problem. L is the characteristic length.

	4		1 E M 1 E M	-	*) 4 (*
Bermejo (UPM)	Short Paper Title		Rome-2011		45 / 53

Equations

$$\rho(u)\frac{Dv}{Dt} + \nabla \rho = \frac{1}{Re} \nabla \cdot (\mu(u)(\nabla v + (\nabla v)^{T})) + \frac{\rho(u)(-\mathbf{e}_{2})}{Fr^{2}} + \frac{1}{We} \kappa(u)\delta(u)\mathbf{e}_{2}$$
$$\nabla \cdot \mathbf{v} = \mathbf{0},$$

$$\frac{\partial u}{\partial t} + \mathbf{v} \cdot \nabla u = \mathbf{0},$$

where δ is the Dirac function, κ denotes the dimensionless curvature, and *Re*, *Fr*² and *We* are dimensionless numbers.

Numerical tests: The bubble rising

- Boundary conditions: (1) v = 0 on the upper and lower boundaries, (2) free slip on lateral boundaries.
- Dimensionless numbers

$$Re = rac{
ho_1 UL}{\mu_1}, \quad We = rac{
ho_1 U^2 L}{\sigma}, \quad Fr = rac{U^2}{gL}$$

where $U = \sqrt{2gR}$ and L = 2R

The coefficients

$$\rho(u) = \frac{\rho_2}{\rho_1} + (1 - \frac{\rho_2}{\rho_1})H_{\eta}(u), \quad \mu(u) = \frac{\mu_2}{\mu_1} + (1 - \frac{\mu_2}{\mu_1})H_{\eta}(u);$$

the Heaviside graph

$$H_{\eta}(u) = \begin{cases} 0 \quad \text{if } u < -\eta \\ \frac{1}{2} \left[1 + \frac{u}{\eta} + \frac{1}{\pi} \sin(\frac{\pi u}{\eta}) \right] \\ 1 \quad \text{if } u > \eta. \end{cases}$$

Numerical solution method

- Space discretization
 - Taylor-Hood *P*₂/*P*₁ finite element for *v* and *p* and *P*₁-iso *P*₂ for the level set function
- Time discretization
 - BDF2-Modified Lagrange-Galerkin for the NS equations,
 - QMSL-PSL for the level set equations.

Physical parameters of the test

• Benchmark test 2 proposed by:

S. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burnman, S. Ganesan and L. Tobiska, *Proposal for quantitative benchmark computations of bubble dynamics.* Int. J. Numer. Meth. Fluids **60** (2009), pp. 1259-1288.

$$\rho_1 = 1000, \ \rho_2 = 1, \ \mu_1 = 10; \ \mu_2 = 0.1, \ g = 0.98,$$

 $Fr = 1, \sigma = 1.96, Re = 35, We = 125.$

Parameters of the numerical experiments:

 $\Delta t = H/8$, $n_p = 1.5 \cdot 10^4$, $\eta = h$; β , r_{max} and r_{min} as in Zalesak slotted circle experiment.

Numerical tests: The bubble rising

Quantities to monitor the performance of the method

$$\mathbf{x}_{cog}(t) = (x_{1cog}(t), x_{2cog}(t) = \frac{\int_{D_2} \mathbf{x}(t)}{D_2}, \quad \mathbf{v}_{2cog}(t) = \frac{dx_{2cog}}{dt},$$

$$circ(t) = \frac{P_a}{P_b}.$$

Results at different meshes

1/ <i>H</i>	40	80	160
<i>circ</i> _{min}	0.5222	0.5394	0.5334
$t(circ_{min})$	2.4313	2.3003	2.3168
V _{cog,max1}	0.2586	0.2584	0.2579
$t(v_{cog, max1})$	0.6672	0.6566	0.6449
V _{cog,max2}	0.2495	0.2612	0.2558
$t(v_{cog, max2})$	1.9499	2.0078	2.0297
$y_{cog}(t=3)$	1.0950	1.1205	1.1195

 Table: Minimum circularity and (both) maximum rise velocities, with

 corresponding times, and final position of center of gravity for test case2

 Bermejo (UPM)
 Short Paper Title
 Rome-2011
 50 / 53

Comparison with the results of the methods of Hysing et al. paper

Group	TP2D	FREELIFE	MooNMD	QMSL-PLS
<i>circ</i> _{min}	0.5869	0.4647	0.5114	0.5334
$t(circ_{\min})$	2.4004	3.0000	3.0000	2.3168
V _{cog,max1}	0.2524	0.2514	0.2502	0.2579
$t(v_{cog, max1})$	0.7332	0.7281	0.7317	0.6449
V _{cog,max2}	0.2434	0.2440	0.2393	0.2558
$t(v_{cog, max2})$	2.0705	1.9844	2.0600	2.0297
$y_{cog}(t=3)$	1.1380	1.1249	1.1376	1.1195

Table: Test quantities calculated by the following methods: TP2D with H = 1/640, FREELIFE with H = 1/160, MooNMD with $NDOF_{int} = 900$, and QMSL-PLS with H = 1/160.

Comparison with the results of the methods of Hysing et al. paper

Figure: Graphics of *y*_{cog}, *v*_{cog}, *circ* of the bubble.

Numerical tests: The bubble rising

Comparison with the results of the methods of Hysing et al. paper

Figure: Shape of the bubble at T = 3. TP2D (H = 1/320) dark line, QMSL-PLS (H = 1/160) grey line .

Bermejo (UPM)

Rome-2011 53 / 53