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Introduction
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The model problem: convection and diffusion

• Convection-diffusion
∂

∂t
u(x, t) + V · ∇u(x, t) = ν∇2u + f (x),

with x ∈ Ω ⊂ Rd and V : Rd × [0,T ]→ Rd is a vector field,
u : Rd × [0,T ]→ Rd , and u(x, 0) = u0(x). The convecting
vector field can also be V = u.

After semidiscretization

yt − C (v)y = Ay , y(0) = y0,

and can be v = y . Here C is the discretized convection
operator, A corresponds to the linear diffusion term, often
negative definite.

• Convection dominated problems: viscosity coefficients are
of the order of the mesh size.

• incompressible Navier-Stokes
∂u
∂t + u · ∇u = ν∇2u− 1

ρ∇p

∇ · u = 0
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Example: simulation of internal waves

Fluids with small density variations: Navier-Stokes +
Boussinesq approximation

∂u
∂t + u · ∇u = ν∇2u− 1

ρ∇p + gβ∆S

∇ · u = 0

∂S
∂t + u · ∇S = α∇2S

Unknowns: velocity, pressure, salinity
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What are internal waves?

Waves occurring at the interface between two layers of a stratified
flow which do not affect the surface.

Internal wave created in a laboratory

• Such waves influence the ecosystem in fjords.

• Weather prediction influenced by the topography.

• High order space discretizations (numerical dispersion).

• Succesful simulations using a turbulence k-ε model.
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Need for good integrators for convection dominated
problems: IMEX

Consider yt − C (v)y = Ay , y(0) = y0, and the method

yn+1 = yn + hC (yn)yn + hAyn+1

• DNS at high Re, Kolmogorov dissipative lenght scale ⇒

NDoF ≈ Re9/4

in 3D. (⇒ Use parallel implementations, domain
decomposition for the discretization in space)

• In time
hCFL · Re

3
4
α− 1

2 ≈ τ

where τ Kolmogorov temporal scale and α = 1, 3/2, 2

(Karniadakis et al. 2001, 2006)
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A simple improvement

We consider a first order integrator for

yt − C (y)y = Ay , y(0) = y0.

Example

yn+1 = exp(hC (yn))yn + hAyn+1.

The exponential exp(γhC (w)) · g is the solution of the
semidiscretized equation

v ′ = C (w)v , v(0) = g , in [0, h],

which corresponds to the pure convection problem

γt + V · ∇γ = 0, γ(xi , 0) = gi , in [0, h]× Ω,
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The corresponding transport diffusion algorithm

Keeping in mind yn+1 = exp(hC (yn))yn + hAyn+1.

Transport-diffusion: Pirroneau ’82

Du
n+ 1

2
Dt = 0, un+ 1

2
(x , tn) = un(x), on [tn, tn + h]

un+ 1
2
(x) = un+ 1

2
(x , tn + h)

un+1 = un+ 1
2

+ hν∇2un+1,

the convecting vector field is V(x) = un(x).

The exact integration of the pure convection problem can be
obtained by introducing characteristics,

un+ 1
2
(x) = un+ 1

2
(x , tn + h) = un(X (tn))

dX
dτ = un(X (τ)), X (tn + h) = x ,
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Semi-Lagrangian methods

• The transport diffusion algorithm is a semi-Lagrangian
method

• Semi-Lagrangian methods combined with high order space
discretizations lead to reduced dispersion error

• combine high order in space with higher order in time and
allow bigger time steps overcoming nomial CFL restrictions.
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Space discretization: spectral element method

• Spectral-Galerkin on
G = {(xk

i , x
k
j )T , i , j = 0, . . . , p, k = 0, . . . ,Ne} on the

square, Gauss-Lobatto-Legendre nodes

up(x, t) =
Ne∑
k=0

p∑
m=0

p∑
n=0

uk
m,n(t)lkm(x)lkn (y), x = (x , y)T ,

uk
m,n(t) ≈ u(xk

m, x
k
n , t) tensor product basis of Lagrange

basis functions:

lki (x) =

p∏
j=0,j 6=i

x − xk
j

xk
i − xk

j

.

• piecewise polynomial approximations
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Incompressible Navier-Stokes: ”thin” shear-layer roll up
problem

Initial data u = (u, v)

u =


tanh(ρ(y − 0.25)) for y ≤ 0.5

v = 0.005 sin(2πx)
tanh(ρ(0.75− y)) for y > 0.5

and layer thickness O
(

1
ρ

)
• Doubly-periodic BCs on Ω = [0, 1]2

• spectral element method Ne = 16× 16, polynomial degree 16

• Filtering procedure: α = 0.3: on each element
pα(x) = αpN(x) + (1− α)p̃N−1(x).

• Re = 105, h = 0.01, Cr ≈ 12

• comparison with Fischer, Kruse and Loth (J. Sci. Comp.
2002), we have 10 times bigger Cr
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Incompressible Navier-Stokes: ”thin” shear-layer roll up
problem
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The integration methods
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Commutator-free methods

Let M be a manifold and consider frame vector fields s.t.

TxM = span{E1|x , . . . Ed |x}, ∀ x ∈M,

for any vector field F is s.t.

F (y) =
d∑

i=1

fi (y)Ei (y), and Fp(x) :=
d∑

i=1

fi (p)Ei (x)

where Fp is the vector field frozen at p.

Commutator-free method for ẏ = F (y), y(t0) = y0:

p = yn
for r = 1 : s do

Yr = exp(
∑r−1

k=1 α
k
rJFk) · · · exp(

∑r−1
k=1 α

k
r1Fk)(p)

Fr = hFYr = h
∑d

i=1 fi (Yr )Ei
end

yn+1 = exp(
∑s

k=1 β
k
J Fk) · · · exp(

∑s
k=1 β

k
1 Fk)p

(Celledoni, Marthinsen, Owren, 2003 FGCS)
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Lie group methods

In particular if

ẏ = C (y) y , y(t0) ∈ G , C (y) ∈ g,

then

Commutator-free method for

ẏ = C (y) y , y(t0) = y0

p = yn
for r = 1 : s do

Yr = exp(h
∑r−1

k=1 α
k
rJCk) · · · exp(h

∑r−1
k=1 α

k
r1Ck)p

Cr = C (Yr )

end

yn+1 = exp(h
∑s

k=1 β
k
J Ck) · · · exp(h

∑s
k=1 β

k
1 Ck)p

17 / 37



Consider
ẏ − C (y)y = Ay , y(0) = y0.

and the change of variables y = Wz where Ẇ = C (Wz) ·W and
W (0) = I by differentiation{

Ẇ = C (Wz) ·W
ż = W−1AWz

Explicit Lie Euler + Implicit Euler

{
Wn+1 = exp(hC (Wnzn)) Wn

zn+1 = zn + hW−1
n+1 A Wn+1 zn+1

and setting yn = Wnzn and yn+1 = Wn+1zn+1 we get

yn+1 = exp(hC (yn))yn + hAyn+1
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A new class of exponential integrators

• High order implicit integration method for z compatible with
the CF-method.

• No more than one linear system per stage (DIRK).

ẏ − C (y)y = Ay , y(0) = y0,

for i = 1 : s do

Yi = ϕiyn + h
∑i

j=1 ai ,jϕiϕ
−1
j AYj

ϕi = exp(h
∑

k α
k
iJC (Yk)) · · · exp(h

∑
k α

k
i1C (Yk))

end

yn+1 = ϕs+1yn + h
∑s

i=1 biϕs+1ϕ
−1
i AYi

ϕs+1 = exp(h
∑

k β
k
J C (Yk)) · · · exp(h

∑
k β

k
1 C (Yk))
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Classical order conditions for the new methods

Assume that
∑J

l=1 α
j
il = âi ,j for i = 1, . . . , s and j = 1, . . . , s, and

that
∑J

l=1 β
j
l = b̂j .

c A

b

ĉ Â

b̂

Simplifying condition ci = ĉi .
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Order 1 og 2 conditions

|τ | − 1 Tree F (τ) γ(τ) σ(τ)

1 1 C 1
∑

i b̂i 1
1 1 A 1

∑
i bi 1

2 2 C ′(C ) 2
∑

i ,j b̂i âi ,j 1

2 2 C ′(A) 2
∑

i ,j b̂iai ,j 1

2 2 CA 2
∑

i ,j bi âi ,j 2

2 2 A2 2
∑

i ,j biai ,j 1

Set
∑J

l=1 α
j
il = âi ,j for i = 1, . . . , s and j = 1, . . . , s, and∑J

l=1 β
j
l = b̂j .

• Order two conditions are the same as the conditions of order
two for the PRK method defined by (A, b, c) and (Â, b̂, ĉ)
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Examples of methods

• Any couple of classical RK methods of order 1 give a method
of order 1

• A couple of partitioned RK methods of order 2 give a new
method of order 2

• We take a pair of PRK of order 3 or 4 (explicit + implicit )
and construct a Commutator Free method out of the explicit
method s. t.

b̂k =
J−l∑
l=0

βkJ−l , âk,j =
J−l∑
l=0

αj
J−l ,k

the resulting method satisfies the conditions for order 3 for
the new class of methods.

• Order four involves new coupling conditions.
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Order 2

Example

1
2

1
2
1
2

0 0
1
2

1
2 0

0 1

ϕ 1
2

= exp(h2 C (y0)) Y 1
2

= ϕ 1
2
y0 + h

2 AY 1
2

ϕ1 = exp(h2 C (Y 1
2
)) y1 = ϕ1y0 + hϕ1ϕ

−1
1
2

AY 1
2

Can be written as a transport-diffusion method.
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Order 3

Example

Partitioned RK:

0
1
2

1
2

1 −1 2
1
6

2
3

2
3

0 0
1
2 −β

2
1+β

2

1 3+5β
2 −(1 + 3β) 1+β

2
1
6

2
3

2
3

with β =
√

3
3 , Griepentrog ’78.

0
1
2

1
2

1 −1 2
1

12
1
3 −1

4
1

12
1
3

5
12

0 0
1
2 −β

2
1+β

2

1 3+5β
2 −(1 + 3β) 1+β

2
1
6

2
3

2
3
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BDF-CF method: applicable to DAEs

ẏ = C (y)y + f (y , z),

0 = g(y),

BDF-CF method

for n = k − 1 : K − 1 do

ϕi = exp(h
∑k

j=1 ai+1,jC (yn−k+j)), i = 0, . . . , k − 1,

αk yn+1 +
∑k−1

i=0 αi ϕi yn+1−k+i = hf (yn+1, zn+1),

0 = g(yn+1)

end

• IMEX counterpart:SBDFS by Asher et al.
• Relation to the Operator integrating factor splitting method by Maday, Patera

and Rønquist.
• Relation to SL methods proposed by Xiu and Karniadakis. 26 / 37



A-stability

Improved stability properties compared to the IMEX counterparts.
We consider the test equation:

ẏ = λy + îµy ,

z := v + îw where v = λh and w = µh.

• For the RK-type methods: the A-stability is determined by the
stability of the DIRK method with stability function R̃(v).
Stability function:

R(v ,w) = e îw R̃(v)

IMEX counterpart

R(v ,w) := 1 + (vbT + îw b̂T )(Is − vA− îwÂ)−11s ,

• Similarly for the BDF-CF vs SBDF.
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Viscous Burgers equation: ut + uux = νuxx

10−4 10−310−3

10−2

10−1

100

 

 

10−3 10−210−3

10−2

10−1

100

 

 

ν ∈ [10−4, 10−3] ν ∈ [10−3, 10−2]

• u(x , 0) = sin(πx), fixed ∆x = 1/81, t = 2, h = 1.8∆x ;

• plot: viscosity ν on the x-axis relative error y -axis

• time integrators: IMEX (dotted line), DIRK-CF (dashed line) and
SL DIRK-CF (solid line);

• finite differences with piecewise cubic monotonic interpolation;

• Symbols: (o) order 1; (x) order 2, (+) order 2 of type L; diamonds
order 3 and squares order 3 type G.

• the characteristic velocity U ≤ 1 the Peclet number is Pe ≤ 1
81ν and

the Courant number is 1.8.
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Application to the Navier-Stokes equations, the one step
case

• Semidiscretization and BCs

• semi-Lagrangian implementation

• Joint work with Kometa and Verdier
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Navier-Stokes equations, space discretization

∂
∂t

u + u · ∇u = ν∇2u− 1
ρ
∇p

∇ · u = 0

• Semidiscretization (SEM) based on Galerkin weak formulation.

• Ne rectangular uniform elements.

• Approximation space: PN − PN−2 compatible velocity-pressure discrete spaces:
N-degree polynomial for the velocity, (N − 2)-degree polynomial for the
pressure, both based on Gauss-Lobatto-Legendre points.

Σẏ = QQTAy + QQTC(y) y + QQTDTp,

Dy = 0,

y = Qȳ .

• M: total number of degrees of freedom including the boundaries, y ∈ RM ;

• k ≤ M: degrees of freedom necessary and sufficient to express the numerical
solution: ȳ ∈ Rk ; Q : Rk → RM .

• Σ = QQTB, B mass matrix, QQT enforces boundary conditions: Σ invertible
on the range of Q.
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Semi-discrete Navier-Stokes equations

• Minimal number of degrees of freedom:

B̄ ˙̄y = Ā ȳ + C̄(ȳ) ȳ + D̄Tp,

D̄ȳ = 0,

B̄ = QTBQ, Ā = QTAQ, C̄(ȳ) = QTC(Qȳ)Q and D̄ = DQ.
• Projected equations

˙̄y = Π̄B̄−1(Ā ȳ + C̄(ȳ) ȳ).

Π̄ = I − H̄ and H̄ := B̄−1D̄T (D̄B̄−1D̄T )−1D̄.

for i = 1 : s do

Ȳi = ϕi ȳn + h
∑i

j=1 ai,jϕiϕ
−1
j Π̄B̄−1ĀȲj

Ȳ γi :=
∑

k α
k
i γ Ȳk for γ = 1, . . . , J

ϕi = exp(hΠ̄B̄−1C̄(Ȳ J
i )) · · · exp(hΠ̄B̄−1C̄(Ȳ 1

i ))

end

ȳn+1 = ϕs+1ȳn + h
∑s

i=1 biϕs+1ϕ
−1
i Π̄B̄−1ĀȲi , yn+1 = Qȳn+1

Ȳ γs+1 :=
∑

k β
k
γ Ȳk for γ = 1, . . . , J

ϕs+1 = exp(hΠ̄B̄−1C̄(Ȳ J
s+1)) · · · exp(hΠ̄B̄−1C̄(Ȳ 1

s+1))
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Semi-Lagrangian implementation

The exponential exp(hΠ̄B̄−1C̄ (w̄)) · g is the solution of the
semidiscretized equation

B̄ ˙̄v = C̄ (w̄) v̄ + D̄Tp,

D̄v̄ = 0, [0, h],

which corresponds to a set of linearized Euler equations

γt + V · ∇γ = ∇p, γ(xi , 0) = gi , in [0, h]× Ω,

∇ · γ = 0,

Options:

• Use a projection method of high order for γ:

exp(hΠ̄B̄−1C̄ (w̄)) · g = Π̄ exp(hB̄−1C̄ (w̄)) · g + Π̄E

• Consider the vorticity formulation: ωt + V · ∇ω + f (ω) = 0
and ω = ∇× γ.
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Lid-driven cavity flow, 2D

• u = 1 on upper portion of ∂Ω, u = 0 elsewere.

• Ne = 10, N = 10.

• ∆t = 0.03, Cr = 9.0911.
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0
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0.4
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1

Re = 400 Re = 3200
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CONCLUSIONS
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Summary

• So far we wanted to verify that the approach works and really
allows larger time steps for convection dominated problems.

• This depends also on a number of smart choices in the
implementation.

Future work

• Implementation issues (projections). Lots of possible
improvements.

• Convergence analysis both of the Eulerian and the
semi-Lagrangian case.
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