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The model problem: convection and diffusion

e Convection-diffusion

adtu(x./ t) 4+ V- Vu(x, t) = vV2u+ f(x),

with x € Q ¢ R? and V : RY x [0, T| — R? is a vector field,
u:RY %[0, T] — RY and u(x,0) = up(x). The convecting
vector field can also be V = wu.
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and can be v = y. Here C is the discretized convection

operator, A corresponds to the linear diffusion term, often
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The model problem: convection and diffusion

e Convection-diffusion

(",)

7tu(x./ t)+V-Vu(x, t) = vV2u + f(x),

‘

with x € Q € R? and V : RY x [0, T] — R? is a vector field,
v:R? %[0, T] — RY and u(x,0) = ug(x). The convecting
vector field can also be V = u. After semidiscretization

ye — C(v)y = Ay,  y(0) = o,
and can be v = y. Here C is the discretized convection
operator, A corresponds to the linear diffusion term, often
negative definite.
e Convection dominated problems: viscosity coefficients are
of the order of the mesh size.
e incompressible Navier-Stokes

%—FU-VU = 1/V2u—/l)Vp

V-u =0



Example: simulation of internal waves

Fluids with small density variations: Navier-Stokes +
Boussinesq approximation

%—&—U-Vu = l/Vzu—%Vp%—gﬁAS
V-u =0

9 +u-VS = aVv?s

Unknowns: velocity, pressure, salinity
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What are internal waves?

Waves occurring at the interface between two layers of a stratified
flow which do not affect the surface.

Internal wave created in a laboratory
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What are internal waves?

Waves occurring at the interface between two layers of a stratified
flow which do not affect the surface.

Internal wave created in a laboratory

Such waves influence the ecosystem in fjords.

Weather prediction influenced by the topography.

High order space discretizations (numerical dispersion).

Succesful simulations using a turbulence k-¢ model.



Consider y; — C(v)y = Ay,

y(0) = yo, and the method
Ynt1 = Yn + hC(¥n)yn + hAyni1
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Need for good integrators for convection dominated
problems: IMEX

Consider y; — C(v)y = Ay,  y(0) = yp, and the method

Yn+1 = Yn + hC(yn)yn + hAyni1

e DNS at high Re, Kolmogorov dissipative lenght scale =
NDoF ~ Re%*

in 3D. (= Use parallel implementations, domain
decomposition for the discretization in space)

37



Need for good integrators for convection dominated
problems: IMEX

Consider y; — C(v)y = Ay,  y(0) = yp, and the method

Yn+1 = Yn + hC(yn)yn + hAyni1

e DNS at high Re, Kolmogorov dissipative lenght scale =
NDoF ~ Re%*

in 3D. (= Use parallel implementations, domain
decomposition for the discretization in space)

e In time
3 1
hcrr, - Ret® 2 = 1
where 7 Kolmogorov temporal scale and o = 1,3/2,2
(Karniadakis et al. 2001, 2006)
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A simple improvement

We consider a first order integrator for

ve — C(y)y = Ay, y(0) = yo.

Example

Ynt1 = exp(hC(yn))yn + hAyny1.
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ye — Cly)y = Ay,  y(0) = yo.
Example

Ynt1 = exp(hC(yn))yn + hAyny1.

The exponential exp(vhC(w)) - g is the solution of the
semidiscretized equation

v = C(w)v, v(0)=g, in]|0,A],
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Ye+V-Vy=0, ~(x;,0)=g; in[0,h]xQ,
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We consider a first order integrator for

ye — Cly)y = Ay,  y(0) = yo.
Example

Ynt1 = exp(hC(yn))yn + hAyny1.

The exponential exp(vhC(w)) - g is the solution of the
semidiscretized equation

v = C(w)v, v(0)=g, in]|0,A],
which corresponds to the pure convection problem

=0, (x,0) =g, in[0,h xQ
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The corresponding transport diffusion algorithm

Keeping in mind y,, 11 = exp(hC(yn))yn + hAYpi1.

Transport-diffusion: Pirroneau '82

D

u 1
D? = 0, un+%(x, tn) = un(x), on [tn, tn + h]
un+%(x) = un+%(X, t,,—‘rh)
Upi1 = un+%+hyv2un+1,

the convecting vector field is V(x) = u,(x).

The exact integration of the pure convection problem can be
obtained by introducing characteristics,

Upy 1 (%) = Uy 1 (%, tn + h) = un(X(tn))
&= un(X(7)), X(ta+h)=x,
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Semi-Lagrangian methods

e The transport diffusion algorithm is a semi-Lagrangian
method
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Semi-Lagrangian methods

e The transport diffusion algorithm is a semi-Lagrangian
method

e Semi-Lagrangian methods combined with high order space
discretizations lead to reduced dispersion error
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Semi-Lagrangian methods

e The transport diffusion algorithm is a semi-Lagrangian
method

e Semi-Lagrangian methods combined with high order space
discretizations lead to reduced dispersion error

e combine high order in space with higher order in time and

allow bigger time steps overcoming nomial CFL restrictions.
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Space discretization: spectral element method

° Spectral Galerkin on
= {(xF, J) i, j=0,...,p, k=0,...,Ne} on the
square, Gauss-Lobatto-Legendre nodes

e

()= D> D> uma(O)im()(), x=(x.)"

k=0 m=0 n=0

ug, (1) = u(x, x5, t) tensor product basis of Lagrange
basis functions:

P k

X — X:

k _ J
/i(X)_ H X-kfX-k'

J=04#i 71T

e piecewise polynomial approximations
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Incompressible Navier-Stokes: "thin" shear-layer roll up
problem

Initial data u = (u, v)

tanh(p(y — 0.25)) for y <0.5
u= v = 0.005sin(27x)
tanh(p(0.75 — y)) for y > 0.5

and layer thickness O (%)

e Doubly-periodic BCs on Q = [0,1]?

e spectral element method Ne = 16 x 16, polynomial degree 16

e Filtering procedure: o« = 0.3: on each element
Pa(x) = apn(x) + (1 — a)By-1(x).

e Re=10° h=10.01, Cr~12

e comparison with Fischer, Kruse and Loth (J. Sci. Comp.
2002), we have 10 times bigger Cr
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Incompressible Navier-Stokes: "thin" shear-layer roll up

problem
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The integration methods
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Commutator-free methods

Let M be a manifold and consider frame vector fields s.t.
TM =span{ &, ,... &}, VxeM,

for any vector field F is s.t.
d

d
Fly) = Z f(V)E(y), and Fp(x) =) fi(p)€i(x)

i=1
where £, is the vector field frozen at p.

Commutator-free method for y = F(y), y(t) = yo:

P = Yn
forr=1:sdo

Y, = exp( 4y X F) - exp( it ok Fi) (p)
F, = hFy, = h3 0 f(Y,)E;
end

Ynt1 = eXP(Ziﬂ ﬂﬁFk) e 'eXP(Ziﬂ ﬁka)P
(Celledoni, Marthinsen, Owren, 2003 FGCS)
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Lie group methods

In particular if

y=Cly)y, y(t)eG, C(y)eg,
then

Commutator-free method for

y=Cly)y, y(t)=yo

P=Yn
forr=1:sdo

Y, = exp(h Y ak,C) - exp(h -5 ok C)p
C, = C(Y,)

end

Yr1 =exp(hY_5_; B5C) - -exp(h Y 5_1 B Ck)p
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Consider
y=Cly)y =Ay, y(0)= .
and the change of variables y = Wz where W = C(Wz) - W and
W(0) = I by differentiation
W = C(Wz) W
z = WlAwz
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Consider

y=Cly)y =Ay, y(0)= .
and the change of variables y = Wz where W = C(Wz) - W and
W(0) = I by differentiation

W = C(Wz) W
z = WlAWz

Explicit Lie Euler 4+ Implicit Euler

{Wn+1 = exp(hC(W,z,)) Wi

=1
Zn+1 = Zar hWn+1 A Wn+]_ Zn+1

and setting y, = W,z, and y,11 = W,112,11 we get

Ynt1 = exp(hC(yn))yn + hAynt1
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A new class of exponential integrators

e High order implicit integration method for z compatible with
the CF-method.
e No more than one linear system per stage (DIRK).

y — C(y)y = Ay, y(0) =y,

fori=1:sdo
Yi = piyn + h Y 3ijpic) LAY
pi =exp(h>_, O‘f(JC(Yk)) --exp(h 2, afy C(Y4))

end
Ynt1l = Pst1¥Yn + hz,s'zl bi‘ﬂerlQOiilAYi

ps+1 = exp(h 32, BFC(Yk)) - -exp(h 32, B C(Yi))
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A new class of exponential integrators

e High order implicit integration method for z compatible with
the CF-method.
e No more than one linear system per stage (DIRK).

y — C(y)y = Ay, y(0) =y,

fori=1:sdo
Yi = piyn + h Y 3ijpic) LAY
i = exp(hC(, Vi) - - - exp(hC(3 o Vi)

end
Ynt1l = Pst1¥Yn + hz,s'zl bi‘ﬂerlQOiilAYi

psi1 = exp(hC(3, B5Yi)) -~ exp(hC (3 Br Vi)
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Classical order conditions for the new methods

Assume that Z,le (J/J,:, =3jjfori=1,...,sandj=1,... 5, and

that 57, 3/ = by.
c|A el A
b b

Simplifying condition ¢; = ¢;.
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Order 1 og 2 conditions

|7| — 1 ‘ Tree ‘ F(7) ‘ (1) ‘ ‘ o(T)
1] 1 ! C 1| 3. b 1
1] 1 3 A 1 | Y bi 1
2 2 ! Q)| 2 [ Y bai| 1
2| 2 Pl 2 | by | 1
2| 2 : CA | 2 | bdy| 2
2| 2 : A2 2 | Y biaij| 1
Setz,lar{ gijfori=1,...,sandj=1,...,s, and

Z, 1B = Z)

e Order two conditions are the same as the condition§ of order
two for the PRK method defined by (A, b, ¢) and (A, b, ¢)
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Examples of methods

e Any couple of classical RK methods of order 1 give a method
of order 1

e A couple of partitioned RK methods of order 2 give a new
method of order 2

e We take a pair of PRK of order 3 or 4 (explicit + implicit )
and construct a Commutator Free method out of the explicit
method s. t.

«

J—1

> nk A j

bk = E edjflv akj = O‘JJfl,k
1=0 /

I
o

the resulting method satisfies the conditions for order 3 for
the new class of methods.

e Order four involves new coupling conditions.
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Order 2

Example
e 0lo
2 2 1 1
«)—ﬁz ; 313 0
2 0
pr = ep(3C(0) Y1 = et 3AV:
1 = ep(3C(Y1))  y1 = gt heipr A
2

Can be written as a transport-diffusion method.
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Order 3

Example

Partitioned RK:

0 0 0

1 1 1 _B 148

: : 2 3+5% ; 148

1|1-1 2 L= l458) =5
‘ I 2 2 1 2 2

6 3 3 ‘ 6 3 3
with 0 = ? Griepentrog '78.

0

1 1 0 0

2 2 1| _B 148

1]-1 2 2 2 2

3+5 1

11 1322 _(1+38) 42
2 3 Z 1 2 P
1 1 5 6 3 3
2 3 12
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BDF-CF method: applicable to DAEs

y=Cly)y +f(y,2),
0=g(y),

BDF-CF method

forn=k—-1: K—-1do
Pi = eXp(hZle ai+17jc()/nfk+j))7 1=0,...,k—1,
Ok Ynt1 + Z,-k:_ol SHUEH sl = i (il )

0= g(ynt1)

end

® |MEX counterpart:SBDFS by Asher et al.

® Relation to the Operator integrating factor splitting method by Maday, Patera
and Rgnquist.

® Relation to SL methods proposed bv Xiu and Karniadakis.
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A-stability

Improved stability properties compared to the IMEX counterparts.
We consider the test equation:

v =Xy +ipy,

z:= v+ iw where v = \h and w = ph.

e For the RK-type methods: the A-stability is determined by the
stability of the DIRK method with stability function R(v).
Stability function:

R(v,w) = e"R(v)
IMEX counterpart

R(v,w) =1+ (vbT +iwbT)(ls — vA — iwA) 14,

e Similarly for the BDF-CF vs SBDF.
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Viscous Burgers equation: u; + uu, = v,

10°

v €[107%,1073) v €[1073,1072

o u(x,0) =sin(mx), fixed Ax =1/81, t =2, h = 1.8Ax;
e plot: viscosity  on the x-axis relative error y-axis

e time integrators: IMEX (dotted line), DIRK-CF (dashed line) and
SL DIRK-CF (solid line);

o finite differences with piecewise cubic monotonic interpolation;

e Symbols: (o) order 1; (x) order 2, (+) order 2 of type L; diamonds
order 3 and squares order 3 type G.

1

81lv and

e the characteristic velocity U < 1 the Peclet number is Pe <
the Courant number is 1.8.

28
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Application to the Navier-Stokes equations, the one step
case

e Semidiscretization and BCs
e semi-Lagrangian implementation

e Joint work with Kometa and Verdier
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Navier-Stokes equations, space discretization

Sutu-Vu = vV2u-— %Vp

ot

V-.u = 0

® Semidiscretization (SEM) based on Galerkin weak formulation.

® \e rectangular uniform elements.

® Approximation space: Py — Py _o compatible velocity-pressure discrete spaces:

N-degree polynomial for the velocity, (N — 2)-degree polynomial for the
pressure, both based on Gauss-Lobatto-Legendre points.

Yy = QQTAy+QQRTC(y)y+QQ"TDTp,
Dy = 0,
y = Qy.

® \: total number of degrees of freedom including the boundaries, y € RM;

® k < M: degrees of freedom necessary and sufficient to express the numerical
solution: y € R¥; Q: RK - RM,

® 5 — QQTB, B mass matrix, QQ enforces boundary conditions: ¥ invertible
on the range of Q.
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Semi-discrete Navier-Stokes equations

® Minimal number of degrees of freedom:
By = Ay+C(7)y+DTp,
Dy = o
B=Q7BQ, A= QTAQ, C(y) = QT C(Qy) Q and D = DQ.
® Projected equations

fl—/—Fand A:= B-1DT(DB-1DT)

fori=1:sdo
Yi = @iyn + h32[_ aijeip "NBTIAY;
W o= Zkaffv\_/k fory=1,...,J
@; = exp(hIB1C(Y/)) - - exp(hAB~LC (V1))
end
Vi1l = Pst1¥n + h 301 bipsi10; 'NB7IAY,  ypi1 = Q¥ns1
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Semi-Lagrangian implementation

The exponential exp(h[1B~*C()) - g is the solution of the
semidiscretized equation

= C(w)v+DTp,

= 0, [0, A],

<I <l

O o

which corresponds to a set of linearized Euler equations
v+ V-Vy=Vp, ~(x,0)=g;, in]0,h] xQ,
V.y =0,

Options:
e Use a projection method of high order for ~:

exp(hAB~1C(w)) - g = Mexp(hB™1C(W)) - g + NE

e Consider the vorticity formulation: w; +V - Vw + f(w) =0
and w =V X 7.
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Lid-driven cavity flow, 2D

e 1 = 1 on upper portion of 902, u = 0 elsewere.
e Ne =10, N =10.
e At =0.03, Cr =9.0911.

Re = 400 Re = 3200
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CONCLUSIONS
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Summary

e So far we wanted to verify that the approach works and really
allows larger time steps for convection dominated problems.

e This depends also on a number of smart choices in the
implementation.

Future work

e Implementation issues (projections). Lots of possible
improvements.

e Convergence analysis both of the Eulerian and the
semi-Lagrangian case.
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