
Tutorial on

Semi-Lagrangian schemes

Roberto Ferretti

“Recent advances on theory and applications of Semi-Lagrangian methods”

Roma, 05.12.11



• Some history

• Basic ideas and building blocks for SL schemes

• Convergence analysis for the linear problem

• Construction of Semi-Lagrangian schemes for convex HJ equations

• Convergence analysis for the nonlinear problem

1



Some history

• Semi–Lagrangian schemes: introduced as first–order schemes by

Courant, Isaacson and Rees (CPAM, ’52)

• Numerical Weather Prediction streamline: Wiin-Nielsen (Tel-

lus, ’59), Robert (Atmosphere-Ocean, ’81), Staniforth, Côté, Smo-

larkiewicz...

• Plasma physics streamline: Cheng–Knorr (’76), Bertrand–Izzo,

Besse–Mehrenberger,...
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In the first developments it had not yet been realized that the possible

advantage of SL schemes over conventional difference schemes was

to be able to work at large Courant numbers.

This feature has become important in NWP problems, in which an

orthogonal grid would have forced a conventional scheme to adopt

prohibitively small time steps because of the singularity on the poles.

A further analysis shows that large Courant numbers cause the scheme

to be less diffusive.

index
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Basic ideas and building blocks for SL schemes

For simplicity, we will discuss SL schemes focusing on the model

problem {
ut(x, t) + f(x, t) ·Du(x, t) = 0, (x, t) ∈ Rd × R
u(x,0) = u0(x) x ∈ Rd.

posed on the whole of Rd.
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Basic ideas and building blocks for SL schemes

For simplicity, we will discuss SL schemes focusing on the model

problem {
ut(x, t) + f(x, t) ·Du(x, t) = 0, (x, t) ∈ Rd × R
u(x,0) = u0(x) x ∈ Rd.

posed on the whole of Rd.

• We avoid the treatment of boundary conditions

• We treat separately and more explicitly the case of constant speed
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Any large time–step technique (in particular, Semi-Lagrangian ap-

proximations) stem from the method of characteristics. Let a system

of characteristic curves y(x, t; s) for the model equation be defined by:
d

ds
y(x, t; s) = f(y(x, t; s), s).

y(x, t; t) = x,

Then, the solution is constant along such trajectories, which means

that the following representation formula

u(y(x, t; t+ τ), t+ τ) = u(x, t).

holds for the solution u.
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Writing the representation formula at a node (xi, tn+1) and using

τ = −∆t, we have the time-discrete version

u(xi, tn+1) = u(y(xi, tn+1; tn), tn).

Its numerical discretization is obtained by combining:
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Writing the representation formula at a node (xi, tn+1) and using

τ = −∆t, we have the time-discrete version

u(xi, tn+1) = u(y(xi, tn+1; tn), tn).

Its numerical discretization is obtained by combining:

• A numerical technique to integrate backwards the ODE of charac-

teristics

• A reconstruction to approximate the value u(y(xi, tn+1; tn), tn), since

in general the foot of the characteristic y(xi, tn+1; tn) does not coin-

cide with any grid point.
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Semi–Lagrangian approximation for the advection equation:

In the SL scheme, the representation formula is discretized as

vn+1
i = I[V n](X∆(xi, tn+1; tn))
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Semi–Lagrangian approximation for the advection equation:

In the SL scheme, the representation formula is discretized as

vn+1
i = I[V n](X∆(xi, tn+1; tn))

• vn+1
i is the numerical solution computed at (xi, tn+1)

• X∆(xi, tn+1; tn) approximates the characteristic through (xi, tn+1)

• I[V n](X∆(xi, tn+1; tn)) =
∑
j v

n
j ψj(X

∆(xi, tn+1; tn)) is the interpola-

tion computed at (X∆(xi, tn+1; tn), tn)
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Approximation of characteristics X∆: typically, by one-step or

multisptep techniques
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Approximation of characteristics X∆: typically, by one-step or

multisptep techniques

• The advection field is known (in relevant problems) only at space-

time nodes
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Approximation of characteristics X∆: typically, by one-step or

multisptep techniques

• The advection field is known (in relevant problems) only at space-

time nodes

• Need to avoid intermediate times, as well as to interpolate the

advecting field among space grid nodes
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1st example: the explicit Euler scheme needs informations at time

step tn+1.

y(xi, tn+1; tn) ≈ X∆(xi, tn+1; tn) = xi −∆t f(xi, tn+1)

• This is the classical choice of the Courant–Isaacson–Rees scheme

• In general, it leads to a poor time approximation (1st order)

• If time step tn+1 is not available, it could be replaced by step tn:

y(xi, tn+1; tn) ≈ X∆(xi, tn+1; tn) = xi −∆t f(xi, tn)
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2nd example: a second-order RK scheme only needs the times t and

t −∆t, but if the vector field f is only known at the nodes, it must

be interpolated.

X∆(xi, tn+1; tn) = xi −
∆t

2

[
f(xi, tn+1) + f̃(xi −∆tf(xi, tn+1), tn)

]
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2nd example: a second-order RK scheme only needs the times t and

t −∆t, but if the vector field f is only known at the nodes, it must

be interpolated.

X∆(xi, tn+1; tn) = xi −
∆t

2

[
f(xi, tn+1) + f̃(xi −∆tf(xi, tn+1), tn)

]

• f̃(ξ, tn) is an interpolate of the node values of f(xj, tn), computed

at the point ξ

• No interpolation is needed if f is explicitly known

• The approximation is second-order with respect to ∆t
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Numerical reconstruction of the value u(y(xj, tn+1; tn), tn):

Linear:

• Symmetric Lagrange interpolation (most common)

• Finite Element interpolation, cubic splines, sparse grids, Chebyshev

grids,...

Nonlinear:

• Non-Oscillatory (ENO/WENO) interpolation, monotone Hermite

interpolations,...
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Symmetric Lagrange Interpolation is performed using a symmetric

stencil of points around x:

stencils of interpolation (linear, cubic and quintic Lagrange)

24



-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2 2.5 3

region of interpolation (P3 finite elements and cubic Lagrange)
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SLI may be expressed in a set of basis functions as

I[V ](x) =
∑
j

vjψj(x)
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SLI may be expressed in a set of basis functions as

I[V ](x) =
∑
j

vjψj(x)

• The basis function ψj is obtained by interpolating the sequence ej,

i.e., a sequence which is everywhere zero except at the node xj
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SLI may be expressed in a set of basis functions as

I[V ](x) =
∑
j

vjψj(x)

• The basis function ψj is obtained by interpolating the sequence ej,

i.e., a sequence which is everywhere zero except at the node xj

• On a uniform grid, a basis function ψj can be written in terms of a

reference basis function ψ:

ψj(ξ) = ψ

(
ξ

∆x
− j

)
(obtained reconstructing e0 on a grid with ∆x = 1)
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When this procedure is applied to a Lagrange reconstruction of odd

order r, the reference basis function has the form:

ψ(ξ) =



[r/2]+1∏
k 6=0,k=−[r/2]

ξ − k
−k

if 0 ≤ ξ ≤ 1

... ...
r∏

k=1

ξ − k
−k

if [r/2] ≤ ξ ≤ [r/2] + 1

0 if ξ > [r/2] + 1

and extended by symmetry for ξ < 0.
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When this procedure is applied to a Lagrange reconstruction of odd

order r, the reference basis function has the form:

ψ(ξ) =



[r/2]+1∏
k 6=0,k=−[r/2]

ξ − k
−k

if 0 ≤ ξ ≤ 1

... ...
r∏

k=1

ξ − k
−k

if [r/2] ≤ ξ ≤ [r/2] + 1

0 if ξ > [r/2] + 1

and extended by symmetry for ξ < 0.

• The interpolation error is O(∆xr+1) for smooth functions
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Convergence analysis for the linear problem

To prove consistency, we need to compare the scheme:

vn+1
i = I[V n](X∆(xi, tn+1; tn))

with the representation formula:

u(xi, tn+1) = u(y(xi, tn+1; tn), tn).

assuming that u is a smooth solution and that vnj = u(xj, tn).

We also assume to have a general approximation of order p in time

and r in space
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It turns out that the local truncation error is estimated as:∣∣∣L∆(xi, tn+1)
∣∣∣ ≤ C (∆tp +

∆xr+1

∆t

)
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It turns out that the local truncation error is estimated as:∣∣∣L∆(xi, tn+1)
∣∣∣ ≤ C (∆tp +

∆xr+1

∆t

)

• The term ∆tp accounts for the error in the computation of charac-

teristics
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It turns out that the local truncation error is estimated as:∣∣∣L∆(xi, tn+1)
∣∣∣ ≤ C (∆tp +

∆xr+1

∆t

)

• The term ∆tp accounts for the error in the computation of charac-

teristics

• The term ∆xr+1

∆t accounts for the error generated by the accumula-

tion of interpolation errors
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It turns out that the local truncation error is estimated as:∣∣∣L∆(xi, tn+1)
∣∣∣ ≤ C (∆tp +

∆xr+1

∆t

)

• The term ∆tp accounts for the error in the computation of charac-

teristics

• The term ∆xr+1

∆t accounts for the error generated by the accumula-

tion of interpolation errors

• There exists an optimal ∆x/∆t balance which maximizes the con-

sistency rate
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A sharper estimate of the local truncation error might be obtained by

taking into account the space dependence of the interpolation error.

If |x− xi| = O(∆t), then

|u(x)− I[U ](x)| ≤ C min
(
∆xr+1,∆t∆xr

)
.

As a result, the consistency error takes the form∣∣∣L∆(xi, tn+1)
∣∣∣ ≤ C (∆tp + min

(
∆xr+1

∆t
,∆xr

))

• The best estimate uses ∆xr for small Courant numbers, ∆xr+1/∆t

for large Courant numbers.
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To prove stability, we restrict for simplicity to the equation in the

constant coefficient form:

ut + cux = 0.

Here, we have assumed that the advection has constant speed c, so

that X∆(xi, tn+1; tn) = xi − c∆t and the SL scheme has the form

vn+1
i = I[V n](xi − c∆t).

We are in the typical framework of Von Neumann analysis, and in fact

it is possible to prove by Fourier analysis arguments that the scheme

is stable.
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Abbiamo quindi calcolato un grafico del modulo degli autovalori rispetto al

piano (α, θ), ottenendo la conferma che la relazione (5.8) è soddisfatta (vedi

fig. (5.5)).
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Amplitude of the amplification factors λ for cubic interpolation
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We will rather follow the line of proving stability by equivalence with

a stable scheme, in this case the Lagrange–Galerkin scheme which

has the form:∫
R
vn+1

∆ (ξ)φi(ξ)dξ =
∫
R
vn∆(ξ − c∆t)φi(ξ)dξ

that is, writing the numerical solution as vk∆(x) =
∑
j v

k
jφj(x),

∑
j

vn+1
j

∫
R
φj(ξ)φi(ξ)dξ =

∑
j

vnj

∫
R
φj(xi − c∆t)φi(ξ)dξ
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We will rather follow the line of proving stability by equivalence with

a stable scheme, in this case the Lagrange–Galerkin scheme which
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• In the LG scheme, interpolation is replaced by Galerkin projection
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We will rather follow the line of proving stability by equivalence with

a stable scheme, in this case the Lagrange–Galerkin scheme which

has the form:∫
R
vn+1

∆ (ξ)φi(ξ)dξ =
∫
R
vn∆(ξ − c∆t)φi(ξ)dξ

that is, writing the numerical solution as vk∆(x) =
∑
j v

k
jφj(x),

∑
j

vn+1
j

∫
R
φj(ξ)φi(ξ)dξ =

∑
j

vnj

∫
R
φj(xi − c∆t)φi(ξ)dξ

• In the LG scheme, interpolation is replaced by Galerkin projection

• As a consequence, ‖vn+1
∆ ‖2 ≤ ‖vn∆‖2 (i.e., the scheme is stable)
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The Galerkin basis is supposed to have a structure similar to the SL

basis:

φj(ξ) =
1√
∆x

φ

(
ξ

∆x
− j

)
where φ is the reference LG basis function, and the factor 1√

∆x
gives

the correct scaling in the integration
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The Galerkin basis is supposed to have a structure similar to the SL

basis:

φj(ξ) =
1√
∆x

φ

(
ξ

∆x
− j

)
where φ is the reference LG basis function, and the factor 1√

∆x
gives

the correct scaling in the integration

• The condition of equivalence between SL and LG schemes relates

the reference functions φ and ψ with integral equation:∫
R
φ(η + t)φ(η)dη = ψ(t)

that is, φ must have ψ as its autocorrelation
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This problem has a solution (in general, nonunique) if and only if:

• The function ψ is positive definite, that is

n∑
k=1

n∑
j=1

akψ(tk − tj)āj ≥ 0

for any tk ∈ R, ak ∈ C (k = 1, . . . , n) and for all n ∈ N

• Equivalently, the function ψ has a real positive Fourier transform ψ̂
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This problem has a solution (in general, nonunique) if and only if:

• The function ψ is positive definite, that is

n∑
k=1

n∑
j=1

akψ(tk − tj)āj ≥ 0

for any tk ∈ R, ak ∈ C (k = 1, . . . , n) and for all n ∈ N

• Equivalently, the function ψ has a real positive Fourier transform ψ̂

• The solution is given by φ(t) = F−1
{
ψ̂(ω)1/2

}
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This problem has a solution (in general, nonunique) if and only if:

• The function ψ is positive definite, that is

n∑
k=1

n∑
j=1

akψ(tk − tj)āj ≥ 0

for any tk ∈ R, ak ∈ C (k = 1, . . . , n) and for all n ∈ N

• Equivalently, the function ψ has a real positive Fourier transform ψ̂

• The solution is given by φ(t) = F−1
{
ψ̂(ω)1/2

}

• Existence of a solution implies L2 stability of SL schemes
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Situations covered by this result:

• High–order Lagrange interpolations which can be shown to have a

positive Fourier transform (tested for n ≤ 13):

ψ̂(n)(ω) = p(ω2)
sin

(
ω
2

)n+1

(
ω
2

)n+1

with p(ω2) a polynomial of degree [n/2] with positive coefficients.

• Interpolatory wavelets, usually defined to be positive definite func-

tions (e.g., in the case of the Shannon wavelet, ψ̂(ω) = 1(−π,π)(ω)).

• Cubic splines (no rigorous proof)
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• In general, (as for the case of the P1 base) we expect to have

multiple solutions to the problem: in fact, the relationship between φ̂

and ψ̂,

|φ̂(ω)|2 = ψ̂(ω)

poses no constraint on the phase of φ̂
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• In general, (as for the case of the P1 base) we expect to have

multiple solutions to the problem: in fact, the relationship between φ̂

and ψ̂,

|φ̂(ω)|2 = ψ̂(ω)

poses no constraint on the phase of φ̂

• The possibility to generate solutions with different phase terms is

a tool to select a solution with prescribed decay and/or smoothness

requirements (a key tool to treat the variable coefficient case)

index
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Construction of Semi-Lagrangian schemes for convex

HJ equations

Concerning HJ equations, we refer to the model problem:{
ut(x, t) +H(Du(x, t)) = 0, (x, t) ∈ Rd × [0, T ]
u(x,0) = u0(x) x ∈ Rd.

• Typical assumptions on H(p): smoothness, convexity, coercivity

(e.g., a lower bound on Hpp)
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Construction of Semi-Lagrangian schemes for convex

HJ equations

Concerning HJ equations, we refer to the model problem:{
ut(x, t) +H(Du(x, t)) = 0, (x, t) ∈ Rd × [0, T ]
u(x,0) = u0(x) x ∈ Rd.

• Typical assumptions on H(p): smoothness, convexity, coercivity

(e.g., a lower bound on Hpp)

• Various extensions (in particular, to Dynamic Programming Equa-

tions) are possible
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The representation formula which parallels the formula of character-

istics for HJ equations, is termed as the Hopf–Lax formula:

u(x, t+ τ) = min
a∈Rd

[τH∗(a) + u(x− aτ, t)]

where

H∗(a) = sup
p∈Rd

[a · p−H(p)]

is the Legendre transform of the Hamiltonian function H.
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The representation formula which parallels the formula of character-

istics for HJ equations, is termed as the Hopf–Lax formula:

u(x, t+ τ) = min
a∈Rd

[τH∗(a) + u(x− aτ, t)]

where

H∗(a) = sup
p∈Rd

[a · p−H(p)]

is the Legendre transform of the Hamiltonian function H.

Via the Hopf–Lax formula it can also be shown that the typical reg-

ularity achieved by the solution u is semiconcavity (roughly speaking,

a unilateral upper bound on the second incremental ratio).
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Semi–Lagrangian approximation for the convex HJ equation:

The Hopf–Lax representation formula is discretized as

vn+1
i = min

α∈Rd
[∆tH∗(α) + I[V n](xi − α∆t)].

In addition to the reconstruction operator I[V n], two new ingredients

are required:
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Semi–Lagrangian approximation for the convex HJ equation:

The Hopf–Lax representation formula is discretized as
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[∆tH∗(α) + I[V n](xi − α∆t)].

In addition to the reconstruction operator I[V n], two new ingredients
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• A numerical approximation of the Legendre transform H∗(α) (when-

ever it cannot be explicitly computed)
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Semi–Lagrangian approximation for the convex HJ equation:

The Hopf–Lax representation formula is discretized as

vn+1
i = min

α∈Rd
[∆tH∗(α) + I[V n](xi − α∆t)].

In addition to the reconstruction operator I[V n], two new ingredients

are required:

• A numerical approximation of the Legendre transform H∗(α) (when-

ever it cannot be explicitly computed)

• A derivative-free minimization procedure

index
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Convergence analysis for the nonlinear problem

Beside consistency, two main concepts of stability are available for

proving convergence in the nonlinear case:
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Convergence analysis for the nonlinear problem

Beside consistency, two main concepts of stability are available for

proving convergence in the nonlinear case:

• Barles–Souganidis theorem: the scheme should be invariant for the

addition of constants, and monotone up to a term o(∆t)
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Convergence analysis for the nonlinear problem

Beside consistency, two main concepts of stability are available for

proving convergence in the nonlinear case:

• Barles–Souganidis theorem: the scheme should be invariant for the

addition of constants, and monotone up to a term o(∆t)

• Lin–Tadmor theorem: the numerical solutions should be uniformly

semiconcave
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To prove consistency, at least in the sense of Barles–Souganidis, we

compare again the scheme with the Hopf–Lax representation formula,

assuming that u is a smooth solution and that vnj = u(xj, tn). It results

that the local truncation error has the estimate:∣∣∣L∆(xi, tn+1)
∣∣∣ ≤ C∆xr+1

∆t
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To prove consistency, at least in the sense of Barles–Souganidis, we

compare again the scheme with the Hopf–Lax representation formula,

assuming that u is a smooth solution and that vnj = u(xj, tn). It results

that the local truncation error has the estimate:∣∣∣L∆(xi, tn+1)
∣∣∣ ≤ C∆xr+1

∆t

• A time discretization term O(∆tp) appears again as soon as char-

acteristics are no longer straight lines
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To prove consistency, at least in the sense of Barles–Souganidis, we

compare again the scheme with the Hopf–Lax representation formula,

assuming that u is a smooth solution and that vnj = u(xj, tn). It results

that the local truncation error has the estimate:∣∣∣L∆(xi, tn+1)
∣∣∣ ≤ C∆xr+1

∆t

• A time discretization term O(∆tp) appears again as soon as char-

acteristics are no longer straight lines

• Consistency analysis is more technical in the Lin–Tadmor theory,

although it comes to similar conclusions

67



Proving monotonicity is trivial for the first-order scheme. Mono-

tonicity up to an o(∆t) is possible even for high-order reconstructions

provided:
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Proving monotonicity is trivial for the first-order scheme. Mono-

tonicity up to an o(∆t) is possible even for high-order reconstructions

provided:

• The numerical solutions are Lipschitz stable, so that the reconstruc-

tion satisfies monotonicity up to an O(∆x)
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Proving monotonicity is trivial for the first-order scheme. Mono-

tonicity up to an o(∆t) is possible even for high-order reconstructions

provided:

• The numerical solutions are Lipschitz stable, so that the reconstruc-

tion satisfies monotonicity up to an O(∆x)

• The Courant number goes to infinity: ∆x = o(∆t) – here, the SL

schemes have some more degrees of freedom in choosing the ∆t/∆x

relationship
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Lipschitz stability result: Consider the scheme in R

vn+1
i = min

α∈R
[∆tH∗(a) + Ir[V

n](xi − α∆t)]

for a Hamiltonian function H(p) such that Hpp ≥ mH. Assume that,

for some constant C < 1:

|Ir[V ](x)− I1[V ](x)| ≤ C max
xj−1,xj,xj+1∈S(x)

|vj+1 − 2vj + vj−1|

(I1 denoting the P1 interpolation, and S(x) denoting the reconstruc-

tion stencil at x) and that ∆x = O(∆t2). Then, the family of numer-

ical solutions V n is Lipschitz stable.
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Admissible reconstructions: the previous condition is satisfied for La-

grange reconstructions up to degree 5, provided the reconstruction

stencil overlaps with the cell in which the reconstruction is performed.
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• Consequences: Lipschitz stability holds for ENO and finite element

reconstructions up to degree 5
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• Consequences: Lipschitz stability holds for ENO and finite element

reconstructions up to degree 5

• Furthermore, the case of symmetric Lagrange or WENO recon-

structions can be treated by proving that (linear) weights of WENO

interpolation are nonnegative. This gives Lipschitz stability up to

degree 5/9 for WENO and up to degree 9 for symmetric Lagrange.
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• Consequences: Lipschitz stability holds for ENO and finite element

reconstructions up to degree 5

• Furthermore, the case of symmetric Lagrange or WENO recon-

structions can be treated by proving that (linear) weights of WENO

interpolation are nonnegative. This gives Lipschitz stability up to

degree 5/9 for WENO and up to degree 9 for symmetric Lagrange.

• In the practical use of the SL scheme, the condition ∆x = O(∆t2)

seems overly restrictive.

index
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