A semi-implicit, semi-Lagrangian, p-adaptive discontinuous Galerkin method for the rotating shallow water equations

Giovanni Tumolo^a, Luca Bonaventura^b, Marco Restelli^b

- a The Abdus-Salam International Center for Theoretical Physics, Trieste
- b MOX Modellistica e Calcolo Scientifico, Dip. Matematica, Politecnico di Milano

Presentation summary

- Motivation and overview.
- Shallow Water Equations
- Numerical formulation "ingredients" :
 - discontinuous Galerkin finite elements
 - semi-implicit time integration of stiff terms
 - semi-Lagrangian treatment of advective terms
 - p-adaptivity
- Numerical validation:
 - (rarefaction) Riemann problem
 - hydraulics benchmark
 - pure gravity wave propagation
 - geostrophic adjustment
 - Stommel test
- Conclusions and future plans

Motivation: new approaches to dynamical cores

Long term goal: develop a new generation dynamical core for regional climate modelling (RegCM)

- Why do we need a new climate model dynamics ?
- Because, traditional models have serious limitations to satisfy all of the following properties:
 - Local and global conservation
 - High-order accuracy
 - High parallel efficiency
 - Resolution flexibility
 - monotonic (non-oscillatory) advection
- Discontinuous Galerkin (DG) based models have the potential to address all the above issues, but ...

Overview(I)

... when coupled to explicit time stepping, DG methods are affected by severe stability restrictions as polynomial order increases.

Example: the RKDG (Cockburn-Shu, 1991) algorithm is stable provided the following condition holds:

$$u\frac{\Delta t}{h} < \frac{1}{2k+1}$$

where *k* is the polynomial degree; (\Rightarrow for the linear case this implies a CFL limit $\frac{1}{3}$)

- ... moreover DG requires more degrees of freedom per element than Continuous Galerkin (CG) approach, thus more expensive.
- Short term goal: increase computational efficiency of DG by exploiting two techniques:
 - coupling to SI-SL techniques (no CFL conditions)

l

introduction of p-adaptivity (flexible degrees of freedom)

Overview(II): SI, SL and DG

Previously, the SI and SL techniques have been already coupled to DG, but only *separately*, up to now:

- SEMI-LAGRANGIAN time discretization of the advection equation ⇒ SLDG (M. Restelli, L. Bonaventura, R. Sacco, J. Comput. Phys., 2006).
- SEMI-IMPLICIT time integration ⇒ SIDG (M. Restelli, F. Giraldo, SIAM J. Sci. Comput. 2009).

The goal of this research is to combine *both* these techniques in order to write the first ever SISLDG scheme. In particular we want to:

- demonstrate feasibility of SISLDG approach in a simple modelling framework
- test the SISLDG algorithm on a series of idealised cases
- demonstrate the viability of p-adaptivity as an alternative/complement to mesh refinement(h-adaptivity)
- (in the future) apply this technology to a fully nonhydrostatic regional climate model (RegCM).

Shallow Water Equations (I): the testbed

This equations set allows to highlight several important aspects of the complete multidimensional problem, indeed it contains all of the horizontal operators required in a complete atmospheric model

 it represents the standard first test of newly proposed schemes for atmospheric models.

Shallow Water Equations (II)

Shallow Water equations (III)

The Shallow Water Equations are:

$$\partial_t \eta = -\nabla \cdot (h\mathbf{u})$$

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -g \nabla \eta + f \mathbf{k} \times \mathbf{u}.$$
 (1)

Problems in numerical solution of (1):

- mass conservation
- presence of gravity waves (stiff terms)
- constraint on the timestep size given by advection
- effects of Earth rotation
- > possibile appearance of spurious modes for η and/or **u**.

Numerical Formulation (I): DG

DG methods are finite elements methods where a piecewise polynomial solution is sought that might be discontinuous in the passage from one element to the neighboring one:

Defined a (regular) tasselation *T_h* of domain Ω and chosen ∀*K* ∈ *T_h* two integers *p^η_K* ≥ 0, *p^u_K* ≥ 0, we are looking for approximate solution s.t.

$$\eta \in H_{h} := \left\{ \mathbf{v} \in L^{2}(\Omega) : \mathbf{v}|_{K} \in \mathbb{Q}_{p_{K}^{\eta}}(K) \right\}$$
$$\mathbf{u} \in U_{h} := \left\{ \mathbf{v} \in L^{2}(\Omega) : \mathbf{v}|_{K} \in \mathbb{Q}_{p_{K}^{\nu}}(K) \right\}^{2}$$

The choice of different polynomial orders for η and u is not necessary but p^u = p^η + 1 shows good stability properties for the Stokes problem.

Numerical formulation (II): SI

For time discretization of stiff terms, associated with gravity wave propagation, a semi-implicit¹ method is used

$$\partial_t \eta = -\theta \nabla \cdot (h^n \mathbf{u}^{n+1}) \\ -(1-\theta) \nabla \cdot (h^n \mathbf{u}^n)$$

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -\frac{g\theta \nabla \eta^{n+1}}{-g(1-\theta)\nabla \eta^n} + \frac{\theta f \mathbf{k} \times \mathbf{u}^{n+1}}{(1-\theta)f \mathbf{k} \times \mathbf{u}^n}.$$

Notice that the implicit problem is linear.

¹See e.g. [Casulli, 1990] and [Casulli, Cattani, 1994]

Numerical formulation (III): SL

For time discretization of advective terms the semi-Lagrangian method is used: for a generic scalar q we set

$$\partial_t \boldsymbol{q} + \mathbf{u} \cdot \nabla \boldsymbol{q} \approx \frac{1}{\Delta t} \left(\boldsymbol{q}^{n+1} - \boldsymbol{q}^{n,*} \right)$$

where $q^{n,*}(\mathbf{x}) = q^n(\mathbf{x}^*)$ and \mathbf{x}^* is given by $\mathbf{X}(t^n)$, the solution backward in time of the trajectories problem

$$\frac{\frac{\partial \mathbf{X}}{\partial t}}{\mathbf{X}(t^{n+1})} = \mathbf{X}$$

The stability of the semi-Lagrangian scheme is indipendent from the Courant number $C = |\mathbf{u}|\Delta t/\Delta x$.

Numerical formulation (IV): SISLDG

If the solution at time level t^n is known, the resulting discrete formulation is given by:

find $(\eta^{n+1}, \mathbf{u}^{n+1}) \in H_h \times U_h$ such that, $\forall K \in \mathcal{T}_h, \forall (\phi, \psi) \in H_h \times U_h$,

$$\int_{K} \phi h^{n+1} = \int_{K} \phi h^{n} + \theta \Delta t \left(\int_{K} \nabla \phi \cdot h^{n} \mathbf{u}^{n+1} - \int_{\partial K} \hat{h}^{n} \hat{\mathbf{u}}^{n+1} \cdot \mathbf{n}_{\partial K} \right) \\ + (1 - \theta) \Delta t \left(\int_{K} \nabla \phi \cdot h^{n} \mathbf{u}^{n} - \int_{\partial K} \hat{h}^{n} \hat{\mathbf{u}}^{n} \cdot \mathbf{n}_{\partial K} \right) \\ \int_{K} \psi \cdot \mathbf{u}^{n+1} = \int_{K} \psi \cdot \mathbf{u}^{n,*} + \theta \Delta t \int_{K} \psi \cdot \left(-g \nabla_{h} h^{n+1} + f \mathbf{k} \times \mathbf{u}^{n+1} \right) \\ + (1 - \theta) \Delta t \int_{K} \psi \cdot \left(-g \nabla_{h} h^{n,*} + f \mathbf{k} \times \mathbf{u}^{n,*} \right)$$

where the numerical fluxes are given by ²

$$\hat{h} = \frac{1}{2} \left(h^L + h^R \right), \qquad \hat{\mathbf{u}} = \frac{1}{2} \left(\mathbf{u}^L + \mathbf{u}^R \right).$$

²See e.g. Bassi, Rebay 1997

•

Numerical formulation (V): ∇_h

Notice that the discrete gradient operator

$$\nabla_h : H_h \mapsto H_h$$

is defined by exploiting numerical fluxes as

$$\int_{\mathcal{K}} \phi \cdot \nabla_h h = -\int_{\mathcal{K}} \nabla \cdot \phi \, h + \int_{\partial \mathcal{K}} \phi \cdot \mathbf{n}_{\partial \mathcal{K}} \, \hat{h}$$

for each $\phi \in H_h^2$ and each $K \in \mathcal{T}_h$.

Numerical formulation (VI): fully discrete problem

If η^{n+1} , u^{n+1} and v^{n+1} contain the coefficients of the expansions of h^{n+1} , u^{n+1} , v^{n+1} over the basis functions

- ▶ \boldsymbol{u}^{n+1} and \boldsymbol{v}^{n+1} are expressed in terms of η^{n+1} from momentum equation and resulting expressions substituted into the continuity equations, (Casulli, JCP, 1990),
- discrete (vector) Helmholtz equation in the ηⁿ⁺¹ unknown only is obtained:

Numerical formulation (VII): fully discrete problem

where the computational stencil for the semi-implicit step and the names of the elements surrounding the element K_l are

 sparse block structured non symmetric linear system solved by GMRES with diagonal preconditioning.

Numerical formulation (VII): p-adaptivity

- The use of discontinuous elements makes easy the introduction of adaptivity in space by locally varying the polynomial degree p_K.
- Since structured meshes of quadrilaterals are employed, tensor products of Legendre polynomials are a good choice as :
 - hierarchical : good for adaptive computation of the p_l;
 - orthogonal : fully diagonal mass matrix.

• Hence the representation for a model variable α becomes

$$\alpha(\boldsymbol{x})\big|_{K_l} = \sum_{k=1}^{p_l^n+1} \sum_{l=1}^{p_l^n+1} \alpha_{l,k,l} \psi_{l_x,k}(\boldsymbol{x}) \psi_{l_y,l}(\boldsymbol{y}).$$

with $I = (I_x, I_y)$ suitable multi-index.

and the orthogonality of the basis implies:

$$\mathcal{E}^{tot} = \|\boldsymbol{P}\boldsymbol{\alpha}\|^2 = \sum_{k,l=1}^{p_l^{\alpha}+1} \alpha_{l,k,l}^2$$

where P is the L^2 projector onto the local polynomial subspace.

Orthogonality of the basis and p-adaptivity

▶ Then, for a given element $K_l \in T_h$, the "*energy*" contained in the r- th modal components of $\alpha|_{\kappa}$ is given by:

• while, for any integer $r = 1, ..., p_l^{\alpha} + 1$, the quantity

$$W_r = \sqrt{\frac{\mathcal{E}^r}{\mathcal{E}^{tot}}}$$

will measure the relative 'weight' of the *r*-th modal components of α with respect to the best approximation available for the L^2 norm of α .

p-adaptation algorithm

If α is a generic model variable, the following adaptation criterion is applied:

- Compute all model variables with p_{max} at initial time.
- Given an error tolerance ε_I > 0 for all I = 1,..., N, at each time step repeat following steps:
 - 1) compute w_{p_i} 2.1) if $w_{p_i} \ge \epsilon_i$, then 2.1.1) set $p_i(\alpha) := p_i(\alpha) + 1$ 2.1.2) set $\alpha_{i,p_i} = 0$, exit the loop and go the next element 2.2) if instead $w_{p_i} < \epsilon_i$, then 2.2.1) compute w_{p_i-1} 2.2.2) if $w_{p_i-1} \ge \epsilon_i$, exit the loop and go the next element 2.2.3) else if $w_{p_i-1} < \epsilon_i$, set $p_i(\alpha) := p_i(\alpha) - 1$ and go back to 2.2.1.

p-adaptivity on the advective part: deformational flow

Smolarkiewicz advection test case: Cone initial datum and advective velocity field defined by $\psi(x, y) = 8sin(4\pi x/L)cos(4\pi y/L)$

Figure: Initial datum for the Smolarkiewicz test.

Figure: Advective velocity field for the Smolarkiewicz test.

40

60

0.8

0.2

-0.2

-0.6

-0.8

100

p-adaptivity on the advective part: deformational flow

Smolarkiewicz advection test case: effectiveness of p-adaptivity approach for complex pattern in 2D

Figure: Solution contours evolution for $t \leq 300s$. $C_{vel} \approx 4$, $\epsilon = 10^{-2}$

Figure: Local polynomial degrees evolution for $t \leq 300s$. $C_{vel} \approx 4$, $\epsilon = 10^{-2}$

Numerical Validation

Nonlinear unsteady test: rarefaction wave

Riemann problem for equations (1) with f = 0 and $h(x, 0) = h_0$, $u(x, 0) = \begin{cases} u_l, & \text{if } x < 0\\ u_l, & \text{if } x \ge 0 \end{cases}$ where $h_0 = 2m, \quad u_r = -u_l = 0.5m/s$

p_η	p_u	E_2^η	E_1^η	$oldsymbol{\mathcal{E}}^\eta_\infty$
0	1	3.89e-2	1.90e-2	1.50e-1
1	2	4.27e-3	1.55e-3	2.48e-2
2	3	3.18e-4	1.36e-4	2.39e-3

Non-constant bathymetry: subcritical steady channel flow over a parabolic bump

River hydraulics benchmark considered e.g. Rosatti et al., IJNMF, 2011, and Vazquez-Cendon, JCP 1998.

Δt	t step nb	C _{vel}	C_{cel}	E_{∞}^{U}	E_2^{G}
0.00625	48000	0.20	0.33	1.91e-5	1.33e-6
0.0125	24000	0.40	0.66	6.36e-4	3.85e-5
0.025	12000	0.80	1.32	1.23e-3	7.41e-5
0.05	6000	1.56	2.64	5.15e-3	3.75e-4
0.1	3000	3.10	5.31	7.46e-4	5.85e-5
0.2	1500	6.20	10.60	2.89e-3	2.18e-4

Gravity waves propagation

Initial datum: fluid at rest, free surface perturbation with circular symmetry (Gaussian bell); Square domain $(0 \text{ } km, 10^4 \text{ } km)^2$, with free slip wall boundary conditions.

A regular mesh of 50 \times 50 elements is employed.

Pure gravity wave (I): no rotation

f = 0

Results at time 10 *h*; clockwise: η , η contours, local p^{eta} . Maximum $C_{cel} = 2.23$.

Pure gravity wave (I): no rotation

Fraction of degree of freedom *actually* used at *each* timestep:

$$\Delta_{\textit{dof}}^{n} := rac{\sum_{l=1}^{\textit{Nel}} (p_l^{\eta}+1)^2}{N_{el}(p_{\textit{max}}^{\eta}+1)^2}$$

Relative error on the celerity at different Courant numbers:

$$E_{cel} := \frac{\frac{(r_{peak}^{f} - r_{peak}^{i})}{(t^{t} - t^{i})} - \sqrt{gH}}{\sqrt{gH}}$$

Geostrophic adjustment (I): f-plane

 $f = f_0 = 10^{-4}$, (*f*-plane at midlatidudes) Results at time 20 *h*; clockwise: η , η -contours, p^{η} . Maximum $C_{cel} = 2.23$.

Geostrophic adjustment (I): f-plane

Geostrophic adjustment (I): f-plane

Fraction of degree of freedom *actually* used at *each* timestep:

$$\Delta_{dof}^{n} := rac{\sum_{I=1}^{Nel} (p_{I}^{\eta}+1)^{2}}{N_{el} (p_{max}^{\eta}+1)^{2}}$$

Stommel gyre (I)

$$\partial_t \eta = -\nabla \cdot (h\mathbf{u})$$

$$\partial_t \mathbf{u} + \mathbf{u} \cdot \nabla \mathbf{u} = -g \nabla \eta + f \mathbf{k} \times \mathbf{u} + \frac{\tau^s}{\rho h} - \gamma \mathbf{u}.$$
 (2)

where

- $f = f_0 + \beta y$, $f_0 = 10^{-4}$, $\beta = 10^{-11} \text{m}^{-1}$, (β -plane at midlatitudes)
- $\tau^s = 0.1 \times sin(\pi y/L) \boldsymbol{e}_x$: wind stress.
- $\tau^{b} = -\rho h \gamma \mathbf{u}$: linear dissipation term.

Simplest ocean basin model:

- no flux boundary conditions;
- not perturbed, zero velocity initial datum;
- square domain(-L/2, L/2)², L = 10³km, covered with a regular mesh f of 50 × 50 elements.

Stommel gyre (II): after two weeks

Results after two weeks, clockwise: η -contours, p^{η} and v.

Stommel gyre (III): after five weeks

Conclusions and perspectives

- Summary:
 - A SISL DG discretization for rotating SWE has been presented. extending succesfully the SISL approach to DG framework.
 - Simple p-adaptivity approach allows to reduce the computational cost.
 - Numerical experiments in 1D and in 2D prove the effectiveness of the proposed approach.
 - Stability is studied considering the size of the maximum allowable Courant number.
- Open Issues:
 - Theoretical stability and dispersion analysis (on the way).
 - Coupling with conservative tracers advection (on the way).
 - Improvement of solver for SI step (preconditioning strategy).
 - Comparison with other stiff time integration techniques (e.g. Rosenbrock and exponential integrators).
- Future perspectives
 - Extension to the sphere (through introduction of suitable metric factors)
 - Use the presented SISLDG numerical technique to solve the Euler
 Use the presented SISLDG numerical technique to solve the Euler equations to develop a nonhydrostatic dynamical core for RegCM.

Thank you for your attention!

