

A weather and climate modelling perspective on recent developments of the semi-Lagrangian method

Nigel Wood Dynamics Research, UK Met Office

With thanks to...

- Andrew Staniforth
- Andy White
- Elisabetta Cordero
- John Thuburn
- Mohamed Zerroukat

Outline

- The Met Office's Unified Model
- Advection of Scalars and Conservation
- Advection of Vectors and Departure Points
- Trajectories and Stability

Met Office's Unified Model

Unified Model (UM) in that it is a single model for:

- Operational weather forecasts at
 - Mesoscale (resolution approx. 12 km \rightarrow 4 km \rightarrow 1 km)
 - Global scale (resolution approx. 25 km)
- Global and regional climate predictions (resolution approx. 100km, run for 10-100 years)
- + Research mode (1km 10m) and single column model
- 21 years old this year

- Deep-atmosphere nonhydrostatic
- Two-time-level semi-implicit time stepping (via predictor-corrector)
- C-grid in horizontal, Charney-Phillips in vertical
- Semi-Lagrangian advection of all variables... ...except Eulerian for dry mass conservation
- Sophisticated coupling with the physics (mixed sequential/parallel split - Dubal et al. (2006))

How does it compare?

And for a basket of measures...

Ranking relative to Met Office Unweighted CBS Stats Area:NH

Advection of scalars...

Semi-Lagrangian scalar advection

Consider

$$\frac{DF}{Dt} = R$$

Integrate along trajectory:

$$\int_{t}^{t+\Delta t} \frac{DF}{Dt} dt = \frac{F^{t+\Delta t}\left(x\right) - F^{t}\left(x - U\Delta t\right)}{\Delta t} = \int_{t}^{t+\Delta t} Rdt \approx \frac{R^{t+\Delta t}\left(x\right) + R^{t}\left(x - U\Delta t\right)}{2}$$

i.e.

$$\left(F - \frac{\Delta t}{2}R\right)_{A}^{t + \Delta t} = \left(F + \frac{\Delta t}{2}R\right)_{D}^{t}$$

Pros and cons

- Semi-Lagrangian schemes allow:
 - enhanced stability and
 - accurate handling of meteorologically important slow modes
- But point-wise interpolation \Rightarrow non-conservation
- Two approaches to obtaining conserving forms:
 - A posteriori correction schemes (more or less ad hoc)
 - Finite-volume approach
 - ⇒ **SLICE**: Semi-Lagrangian Inherently Conserving and Efficient

Conservation...

SLICE

Two ingredients:

• Rewrite Eulerian flux form

$$\frac{\partial F}{\partial t} + \nabla \cdot (\mathbf{u}F) = 0$$

in finite-volume Lagrangian form

$$\frac{D}{Dt}\int_{\partial V} F dV = 0 \to F^{n+1} \times dV = \int_{\partial V_D} F^n dV$$

- Use Cascade remapping to enable split of $1 \times n$ -dimensional redistribution into $n \times 1$ -dimensional ones
 - [Cascade approach preserves characteristics of flow and hence minimises splitting error.]

SLICE-1D approach

Reconstruct subgrid variation using one's favourite method:

- Piecewise Parabolic Method
- Piecewise Cubic Method
- Parabolic Spline Method
- Quartic Spline Method

Figure 1: Superposition of Lagrangian and Eulerian grids away from poles.

SLICE-3D

Lagrangian(blue) Eulerian (red) grids & vertical intersections (+megenta)(MODIFIED CARTESIAN)

SLICE-3D (cont.)

Lagrangian(blue) Eulerian (red) grids & vertical intersections (+megenta)(MODIFIED CARTESIAN)

Lagrangian(blue) Eulerian (red) grids & vertical intersections (+megenta)(MODIFIED CARTESIAN)

- 1. No explicit calculation of complex geometry of irregular Lagrangian volumes
- 2. Uses C-grid staggering essential for good wave propagation
- 3. Cascade in 1D in the vertical, then N SLICE-2D problems in the (deformed) horizontal
- 4. SLICE-2D in turn is a series of horizontal sweeps of the same 1D-remapping algorithm

Läuter Exact Unsteady Flow - Initial Fields

(a) $(\Phi + \Phi^S) / g [300 \text{ m}];$ (b) $u [8 \text{ ms}^{-1}];$ (c) $v [8 \text{ ms}^{-1}].$

Mass-conserving. $\triangle t = 1 \text{ h}; (I = 128, J = 64).$

Contour intervals: 30 m for $(\Phi + \Phi^S)/g$; 1 ms^{-1} for u and v.

Läuter Exact Unsteady Flow - L2 Error Norms

$I \times J$	Δt	SLICE	SL	Δt	SLICE	SL
64×32	12	0.176E-02	0.179E-02	120	0.196E-01	0.201E-01
128×64	6	0.447E-03	0.447E-03	60	0.507E-02	0.510E-02
256 imes 128	3	0.113E-03	0.111E-03	30	0.123E-02	0.123E-02

5 day integration: Mass-conserving (SLICE) cf. non-conserving (SL)

Resolution given by $I \times J$; Δt in minutes

Advection of vectors...

For the vector equation

$$\frac{D\mathbf{v}}{Dt} = \mathbf{S}$$

Integrate along trajectory to obtain, as before:

$$\left(\mathbf{v} - \frac{\Delta t}{2}\mathbf{S}\right)_{A}^{t+\Delta t} = \left(\mathbf{v} + \frac{\Delta t}{2}\mathbf{S}\right)_{D}^{t}$$

All well and good...

But what of components?

The Problem of Curvilinear Coordinates...

The familiar problem that

$$\mathbf{i} \cdot \frac{D\mathbf{v}}{Dt} \equiv \mathbf{i} \cdot \frac{D}{Dt} (u\mathbf{i} + v\mathbf{j} + w\mathbf{k}) \neq \frac{D(\mathbf{i} \cdot \mathbf{v})}{Dt} \left[= \frac{Du}{Dt} \right]$$

translates into the SL equivalent that

$$\mathbf{i}_A.(\mathbf{v}_D) \neq (\mathbf{i}_A.\mathbf{v}_A)_D \ [= u_D]$$

In fact

$$\mathbf{v}_D = u_{\mathscr{D}}\mathbf{i}_D + v_{\mathscr{D}}\mathbf{j}_D + w_{\mathscr{D}}\mathbf{k}_D$$

so that, e.g.,

$$\mathbf{i}_{A}.(\mathbf{v}_{D}) = u_{\mathscr{D}}(\mathbf{i}_{A}.\mathbf{i}_{D}) + v_{\mathscr{D}}(\mathbf{i}_{A}.\mathbf{j}_{D}) + w_{\mathscr{D}}(\mathbf{i}_{A}.\mathbf{k}_{D})$$

The Matrix Formulation

• Extending this to all three directions:

$$\begin{pmatrix} u \\ v \\ w \end{pmatrix}_D = \mathbf{M} \begin{pmatrix} u_{\mathscr{D}} \\ v_{\mathscr{D}} \\ w_{\mathscr{D}} \end{pmatrix}$$

where

$$\mathbf{M} \equiv \begin{pmatrix} \mathbf{i}_A \cdot \mathbf{i}_D & \mathbf{i}_A \cdot \mathbf{j}_D & \mathbf{i}_A \cdot \mathbf{k}_D \\ \mathbf{j}_A \cdot \mathbf{i}_D & \mathbf{j}_A \cdot \mathbf{j}_D & \mathbf{j}_A \cdot \mathbf{k}_D \\ \mathbf{k}_A \cdot \mathbf{i}_D & \mathbf{k}_A \cdot \mathbf{j}_D & \mathbf{k}_A \cdot \mathbf{k}_D \end{pmatrix}$$

- M transforms
 - from: vector components in the departure-point frame
 to: vectors in the arrival-point frame

The Consequence...

Component form of momentum equations can be written as:

$$\left(\mathbf{v} - \frac{\Delta t}{2}\mathbf{S}\right)_{\mathscr{A}}^{t+\Delta t} = \mathbf{M}\left(\mathbf{v} + \frac{\Delta t}{2}\mathbf{S}\right)_{\mathscr{D}}^{t}$$

where

$$\mathbf{X}_{\mathscr{A}} \equiv \left(X_{\mathscr{A}}, Y_{\mathscr{A}}, Z_{\mathscr{A}} \right)^{T}$$
$$\mathbf{X}_{\mathscr{D}} \equiv \left(X_{\mathscr{D}}, Y_{\mathscr{D}}, Z_{\mathscr{D}} \right)^{T}$$

- No explicit metric terms
- No singularity at the pole

Where have the Metric Terms Gone?

- SL form holds for finite displacements
- Reduces to Eulerian form as displacement ($\Delta \lambda \equiv \lambda_A \lambda_D$) and $\Delta t \rightarrow 0$:
- In this limit:

$$\sin \Delta \lambda \to \Delta \lambda, \ \frac{\Delta \lambda}{\Delta t} \to \frac{u_{\mathscr{A}}}{r_A \cos \phi_A}, \ u_{\mathscr{D}} \to u_{\mathscr{A}}, \ v_{\mathscr{D}} \to v_{\mathscr{A}}$$

and so:

$$M_{12}v_{\mathscr{D}} = v_{\mathscr{D}}\sin\phi_D\sin\Delta\lambda \to \frac{u_{\mathscr{A}}v_{\mathscr{A}}\tan\phi_A}{r_A}\Delta t$$

• Each off-diagonal element of M generates one metric term

Departure points...

Rotation Matrix for Departure Points?

• They are also governed by a vector equation

$$\frac{D\mathbf{x}}{Dt} = \mathbf{v}$$

- So can we apply consistent approach (and avoid polar singularity issues)?
- Discrete vector form is

$$\mathbf{x}_D = \mathbf{x}_A - \frac{\Delta t}{2} \left(\mathbf{v}_A + \mathbf{v}_D \right)$$

Rotation Matrix for Departure Points II

As before component form can be written as

$$\mathbf{M}\mathbf{x}_{\mathscr{D}} = \mathbf{x}_{\mathscr{A}} - \frac{\Delta t}{2} \left(\mathbf{v}_{\mathscr{A}} + \mathbf{M}\mathbf{v}_{\mathscr{D}} \right)$$

Or, since $\mathbf{x}_{\mathscr{A}} = (0, 0, r_A)^T$ and $\mathbf{x}_{\mathscr{D}} = (0, 0, r_D)^T$:

$$M_{13}r_{\mathcal{D}} = -\frac{\Delta t}{2} \left[u_{\mathcal{A}} + \left(M_{11}u_{\mathcal{D}} + M_{12}v_{\mathcal{D}} + M_{13}w_{\mathcal{D}} \right) \right]$$
$$M_{23}r_{\mathcal{D}} = -\frac{\Delta t}{2} \left[v_{\mathcal{A}} + \left(M_{21}u_{\mathcal{D}} + M_{22}v_{\mathcal{D}} + M_{23}w_{\mathcal{D}} \right) \right]$$
$$M_{33}r_{\mathcal{D}} = r_{A} - \frac{\Delta t}{2} \left[w_{\mathcal{A}} + \left(M_{31}u_{\mathcal{D}} + M_{32}v_{\mathcal{D}} + M_{33}w_{\mathcal{D}} \right) \right]$$

A Local Cartesian Transform Approach

The result can be cast into a local Cartesian form:

$$X_{DA} = -\frac{\Delta t}{2} (U_{\mathscr{A}} + U_{DA})$$
$$Y_{DA} = -\frac{\Delta t}{2} (V_{\mathscr{A}} + V_{DA})$$
$$Z_{DA} = r_A - \frac{\Delta t}{2} (W_{\mathscr{A}} + W_{DA})$$

where

$$\mathbf{X}_{DA} \equiv \mathbf{M}\mathbf{x}_{\mathscr{D}},$$

and

$$\mathbf{V}_{DA} \equiv \mathbf{M} \mathbf{v}_{\mathscr{D}}$$

are Departure point coordinates and velocities as seen in the Arrival-point Cartesian system

Consider

$$\mathbf{x}_D = \mathbf{x}_A - \frac{\Delta t}{2} \left(\mathbf{v}_A + \mathbf{v}_D \right)$$

At the equator and for v = 0

$$\left(r_{\mathscr{A}} - \frac{\Delta t}{2}w_{\mathscr{A}}\right)^{2} + \left(\frac{\Delta t}{2}u_{\mathscr{A}}\right)^{2} = \left(r_{\mathscr{D}} + \frac{\Delta t}{2}w_{\mathscr{D}}\right)^{2} + \left(\frac{\Delta t}{2}u_{\mathscr{D}}\right)^{2}$$

Consider small perturbations

$$(u, v, w) = (U + u', 0, w')$$

then

$$r_{\mathscr{A}} - r_{\mathscr{D}} \simeq \frac{\Delta t}{2} \left(w_{\mathscr{A}} + w_{\mathscr{D}} \right) + \left(\frac{\Delta t}{2} \right)^2 \frac{2U}{r_{\mathscr{A}}} \left(u_{\mathscr{D}} - u_{\mathscr{A}} \right)$$

Fuller analysis of compressible case shows instability $\propto UN^2$

and

Project onto the arrival spherical shell, i.e. write

$$\frac{D\mathbf{r}}{Dt} = \frac{D}{Dt}(r\mathbf{k}) = \mathbf{k}\frac{Dr}{Dt} + r\frac{D\mathbf{k}}{Dt}, \text{ where } \mathbf{k} \equiv \mathbf{r}/r$$
This leads to
$$\frac{dr}{dt} = w$$
and
$$\frac{d\mathbf{k}}{dt} = \frac{\mathbf{v}^{H}}{r}$$

Solve by constraining departure point to remain on arrival sphere:

$$\mathbf{x}_D = \mathbf{x}_A - \frac{\Delta t}{2} \left(\mathbf{v}_A + \mathbf{v}_D \right) + \mathscr{B} \left(\mathbf{x}_A + \mathbf{x}_D \right)$$

Procedure

1. Cartesian transformation as before

$$\mathbf{X}_{DA} \equiv \mathbf{M} \mathbf{x}_{\mathscr{D}}$$

2. and

$$\mathbf{X}_{\mathscr{D}}^{H} = -\left(\frac{1+M_{33}}{2}\right)\frac{\Delta t}{2}\left(\mathbf{V}_{\mathscr{A}}^{H} + \mathbf{V}_{\mathscr{D}}^{H}\right)$$

3. but velocities transform using momentum shallow-atmosphere rotation matrix

$$\mathbf{V}_{DA} \equiv \begin{pmatrix} p & q \\ -q & p \end{pmatrix} \mathbf{v}_{\mathscr{D}}$$

where

$$p = \frac{M_{11} + M_{22}}{1 + M_{33}}, \ q = \frac{M_{12} - M_{21}}{1 + M_{33}}$$

What does it all mean?

Single set of equations:

$$\left(u_{i}-\alpha\Delta t\Psi_{i}\right)^{n+1}=M_{ij}\left(u_{j}+\beta\Delta t\Psi_{j}\right)_{D}^{n}$$

with similar ones for departure point equations

Identical numerical system encompassing hierarchy of model geometries:

- 1. Spheroidal
- 2. Spherical
- 3. Shallow-atmosphere approximation (non-Euclidean geometry)

4. Cartesian

Trajectories and stability...

A prototypical problem

Consider coupled problem

$$\frac{DW}{Dt} = B - \gamma z$$
 and $\frac{DB}{Dt} = 0$

Linearize about

$$(W,B) = (0,\gamma z) + (w,b)$$

to obtain

$$\frac{\partial w}{\partial t} = b$$
 and $\frac{\partial b}{\partial t} + \gamma w = 0$

Solution is given by

$$\frac{\partial^2 w}{\partial t^2} + \gamma w = 0$$

Semi-Implicit Semi-Lagrangian discretization

Semi-implicit scheme "linearizes" about specified state, i.e.

$$B(z,t) = b^*(z,t) + \gamma^* z$$

so that

$$b^* = b + (\gamma - \gamma^*) z$$

 $Dt o \mathscr{D}/\mathscr{D}t$, $\partial/\partial t o \delta/\delta t$, $F o \overline{F}^t$ ave

Discretize $(D/Dt \to \mathscr{D}/\mathscr{D}t, \partial/\partial t \to \delta/\delta t, F \to \overline{F}'$ average along trajectory)

$$\frac{DB}{Dt} = 0 \underbrace{\text{SISL}}_{\mathcal{D}t} \frac{\mathscr{D}b^*}{\mathscr{D}t} + \gamma^* \overline{w}^t = 0$$

$$\frac{\mathscr{D}b^*}{\mathscr{D}t} + \gamma^* \overline{w}^t = 0 \xrightarrow{\text{linear}} \frac{\delta b}{\delta t} + (\gamma - \gamma^*) \left(\frac{z_A - z_D}{\Delta t}\right) + \gamma^* \overline{w}^t = 0$$

Departure point equation

Requires mid-point velocity

$$\frac{z_A - z_D}{\Delta t} = w^M = w^M \left(w^{n+1}, w^n, w^{n-1}, \dots \right)$$

So finally

$$\frac{\delta w}{\delta t} = \overline{b}^t$$

and

$$\frac{\delta b}{\delta t} + (\gamma - \gamma^*) w^M + \gamma^* \overline{w}^t = 0$$

Solution is given by

$$\frac{\delta^{2}w}{\delta t^{2}} + \gamma^{*} \overline{w}^{tt} + \overline{(\gamma - \gamma^{*})} w^{M} = \mathbf{0}$$

Consequence

When $\gamma^* \neq \gamma$ estimate w^M for mid-point velocity in trajectory calculation is critical to accuracy and stability.

AOK if

$$w^M \equiv \overline{w}^t$$

but not for extrapolations such as:

$$w^M \equiv w^n$$

or

$$w^M \equiv \frac{3}{2}w^n - \frac{1}{2}w^n$$

An example from Cordero et al (2005)

Figure 2: Linear evolution of the *w* component of the first internal mode of the operational problem computed for $T_s = 340$ K. The solid curve denotes the analytic mode, squares and diamonds denote the mode computed using extrapolated trajectory schemes t_1 (1-term) and t_2 (2-term) respectively. For reference, the mode computed using the interpolated trajectory scheme is also plotted and it is denoted by plus symbols.

Summary

- Semi-Lagrangian scheme is powerful, especially when combined with the semi-implicit scheme
- Conservation is an issue schemes exist (SLICE) but they come at a price
- A particular attraction is SL applied to vectors 'hides' metric terms and makes for straightforwardly switchable code
- But! In terms of stability scheme is not as innocuous as may seem...

Thank you!

Questions?

Further details can be found in:

- Impact of semi-Lagrangian trajectories on the discrete normal modes of a non-hydrostatic vertical column model Cordero, Wood and Staniforth. 2005 Q.J.R.Meteorol.Soc. 131 pp 93-108
- SLICE-S: a semi-Lagrangian Inherently Conserving and Efficient scheme for transport problems on the Sphere Zerroukat, Wood and Staniforth. 2004 Q.J.R.Meteorol.Soc. 130 pp 2649-2664
- Rotation matrix treatment of vector equations in semi-Lagrangian models of the atmosphere I: Momentum equation Staniforth, White and Wood. 2010 Q.J.R.Meteorol.Soc. 136 pp 497-506
- Rotation matrix treatment of vector equations in semi-Lagrangian models of the atmosphere II: Kinematic equation Wood, White and Staniforth. 2010 Q.J.R.Meteorol.Soc. 136 pp 507-516
- A geometrical view of the shallow-atmosphere approximation, with application to the semi-Lagrangian departure point calculation Thuburn and White 2012 submitted to Q.J.R.Meteorol.Soc.