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Overview

Overall Objective:

Develop a theory of decentralized decision-making in stochastic
dynamical systems with many competing or cooperating agents

Outline:

A motivating control problem from code division multiple
access (CDMA) uplink power control

Basic concepts of Mean Field (MF) control:
The Nash Certainty Equivalence - MF (NCE - MF)
methodology
Main NCE results for Linear-Quadratic-Gaussian (LQG)
systems

Adaptive NCE System Theory

Cucker-Smale Type Flocking: Stationary Solutions and
Perturbation Analysis
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Part 1 — CDMA Power Control

Base Station & Individual Agents




Part 1 — CDMA Power Control

Lognormal channel attenuation: 1 <7 < N
iyn, channel: dx; = —a(x; + b)dt + odw;, 1<i<N

Transmitted power = channel attenuation X power
= e‘”i(t)pi(t)
(Charalambous, Menemenlis; 1999)

Signal to interference ratio (Agent i) at the base station
) N .
= e®ipi/ | (B/N) )i €pi + 1
How to optimize all the individual SIR’s since it is self
defeating for everyone to increase their power?
Idea: Use properties of the system together

with
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Part 2 — Large Popn. Models with Game Theory Features

Cournot-Nash equilibria (Lambson)
game models (Erickson)
(Alpcan et al., Altman, HCM)
(Ma, MC)
voluntary vaccination games (Bauch & Earn)
stochastic PDE swarming models (Bertozzi et al.)
urban economics (Brock and Durlauf et al.)
charging control of PEVs (Ma et al.)
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Part 2 — Background & Current Related Work

40+ years of work on stochastic dynamic games and team problems:
Witsenhausen, Varaiya, Ho, Basar, et al.

Industry dynamics with many firms: Markov models and Oblivious
Equilibria (Weintraub, Benkard, Van Roy, 2005 -, Adlakha, Johari &
Goldsmith, 2008 -)

Mean Field Games: Stochastic control of many agent systems with
applications to finance (Lasry & Lions, 2006 -, Achdou,
Cardaliaguet, Capuzzo-Dolcetta, Buckdahn, 2006 -)

Mean Field Control of Oscillators: Controlled synchronization,
chaotic motion via MF game control of populations of oscillators.
Phase changes: NL-MF equation triple (The Illinois Four/Five:
Yin/Yang, Mehta, Meyn, Shanbhag, 2009 -)

Mean Field MDP Games on Networks: Exchangeability hypothesis;
propagation of chaos in the popn. limit; evolutionary games.
(Tembine et al., 2009 -)
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Part 2 — Basic LQG Game Problem

Massive game theoretic control systems: of
partially regulated agents

Fundamental issue: The relation between the actions of each
agent and the resulting behavior

dr; = (a;x; + bug)dt + oydw;, 1<i< N.

(scalar case only for simplicity of notation)

x;: state of the ith agent

u;: control

w: disturbance (standard Wiener process)
N: population size



Part 2 — Basic LQG Game Problem

Ji(uiv) & B / e [(; — )2 + rulldt
0

A

N
S 7(% Zk# )

Main feature:

Agents are coupled via their costs

Tracked process v:
stochastic
depends on other agents’ control laws
not feasible for x; to track all zj trajectories for large NV
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Part 2 — Preliminary Optimal LQG Tracking
Take z* (bounded continuous) for scalar model:
dxr; = a;x;dt + bu;dt + o;dw;

Ji(ug, ) = E/ e P(zs — z*)2 + ru?]dt
0

b2
pll; = 20,1, — —TI7 +1, I, >0
r
Set 81 = —a; + ?Hi, Ba = —a; + ?Hi + p, and assume £; > 0

ds; b2
— dtz = —ps; + a;S; — THiSi —x

*

b
u; = ——(ILz; + s;)
T

Boundedness condition on z* implies existence of unique solution s;
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Part 2 — Key Intuition

When the tracked signal is replaced by the
of the mass of agents:

Agent's feedback = feedback of agent's local

feedback of

Think Globally, Act Locally



Part 2 — LQG-NCE Equation Scheme

. a € A; common b for simplicity
2

dsq
— % = —pSq + as, — 7Hasa —z*
dT, b? b2
— - *Ha Ty — —Sa,
dt @ T Iz (7 °

3(t) = /A Ta()dF (a),
() =@ +7) 20

b2
pll, = 2all, — 7Hg +1, O, >0

Individual control action is optimal w.r.t

tracked z*

Does there exist a solution (T4, $q, 2*;a € A)?
Yes: holds for all sufficiently small ~.
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Part 2 — NCE Feedback Control

The Finite System of N Agents with Dynamics:

dx; = a;x;dt + bu;dt + o;dw;, 1<i<N, t>0

A :
Let u_; = (w1, ,Ui—1,Uit1, - ,un); then

N
o0 1
Hussu) & B [ e o= Y on+n)l + rud b
0 ki

For ith agent with parameter (a;,b) compute:
x* using NCE Equation System
pIL; = 2,11, — 2112 + 1

b2H *
= iSi — X

ds;
g — —psitais; —
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Part 2 — Nash Equilibrium

Agent y is a maximizer

Agent x is a minimizer

Fi 2 o(zi(r);m < t) F¥ 2 0(zj(r);7 <t,1<j < N)

Fi adapted control: U ; FN adapted control: U

The set of controls U° = {ug; ug adapted to Ujpei, 1 <i < N}
generates a w.r.t. the costs
and // if, for each ¢,
Ji(u?,ugi) = inf Ji(ui,u(ii)
u; €U
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Part 2 — e-Nash Equilibrium

Given € > 0, the set of controls U° = {uf;1 < i < N} generates a
w.r.t. the costs {J;;1 <i < N} and
U if for each 4,

Ji(ud,u’,) — e < inf Ji(us,u’;) < Ji(ud,u’;)

u; €U

16
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Part 2 — NCE Control: First Main Result

Subject to technical conditions (s.t.t.c.), the NCE Equations have a
unique solution yielding the set of NCE Control Laws

UY ={u?1<i< N}, 1<N < oo, where

b

i _;
which are s.t.

All agent systems S(4;), 1 <i< N, are second order stable.

{Uy ;1 < N < oo} yields a
i.e. Ve >0 dN(e) s.t. VN > N(e)

Ji(ud,u?;) —e< uugu Ji(ui,u?;) < Ji(u?,u’,),

where u; € U is adapted to F.
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Part 2 — NCE Control: Key Observations

The information set for is minimal and
completely local since Agent A;'s control depends on:
Agent A;'s D ai(t)

F(0) on the dynamical parameters of
the mass of agents.

Hence NCE Control is truly decentralized.

It is a feature of this theory that the NCE control laws /°
result in trajectories for all finite
population sizes V.
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Part 3 — Localization of Influence

Consider the 2-D interaction:
Partition [—1, 1] x [—1, 1] into a 2-D lattice

Weight decays with distance by the rule w;,(ﬁ,z, = c|p; — p;| =

where c¢ is the normalizing factor and \ € (0, 2)

A\
0‘&\\

ol

A
/44
7%

55
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Part 3 — Separated and Linked Populations

2-D System
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Convertified by iSquint - http://www.isquint.org

connectTorus_audio.mp4
Media File (video/mp4)


Part 4 — Nonlinear MF Systems

NL Individual Dynamics (Uniform Finite Population Case):

da?z-— flxs, us, xj)dt + odw;, 1<i<N

||Mz

The Finite Populatlon Cost Function for the ith agent:

| N
Ji(ui,u,i) é E/O [N Z L(xi,ui,xj)} dt
g=1

f(,-,-) and L(-,-,-) are nonlinear functions
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Part 4 — Nonlinear MF Systems

S.tt.c.:
Infinite population limit:
det :f[xt,ut,ut]dt+adwt7 OStST

where flz,u, ] = [ f(@,u,y)pe(dy), with zo, po given
() = of population states at ¢ € [0, 7.

Infinite population limit: individual Agents' Costs:

J(u, i) éE/ Llzt, ug, pe]dt,

where L{z,u, ] = [ L(x, u, y)u(dy).



Part 4 — Mean Field and McK-V-HJB Theory

0 : oV % 9%V
— o, = inf {f[%%/tt]ax + L{z, u, ,ut]} TS 02
V(T,z) =0, (t,z) € [0,T] x R.

Oult,z) _ _otf[e,w Wut @)} | o® Oult )
ot ox 2 Ox?

= Ut = (p(tvx|,ut)7 (tax) € [OvT} x R.

Closed-loop McK-V equation:
dzy = flae, p(t, x|p.), pe]dt + odwy, 0<t<T.
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Part 4 — Mean Field and McK-V-HJB Theory

0 : oV % 9%V
— o, = inf {f[SC,U,/Lt]ax + L{z, u, ,ut]} TS 02
V(T,z) =0, (t,z) € [0,T] x R.

Oult,z) _ _otf[e,w Wut @)} | o® Oult )
ot ox 2 Ox?

= Ut = <P(t7$|Mt)7 (taaj) € [OvT} x R.

Closed-loop McK-V equation:
dzy = flae, p(t, x|p.), pe]dt + odwy, 0<t<T.

Yielding expressed in terms of

, hence achieving a optimum.

24 /48



Part 4 — Mean Field and McK-V-HJB Theory

S.t.t.c., the McK-V (FPK) HJB Equations have a unique solution
with the best response control given by

u) = o(t, zlp), 1<i<N.
Furthermore {U';1 < N < oo} yields a

i.e. Ve >0 IN(e) s.t. VN > N(e)

Ji(u?,ugi) —e< ulréfu Ji(ui,ugi) < Ji(u?,ugi),

where u; € U is adapted to FV.
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Part 5 — Adaptive NCE Theory

Stochastic Adaptive Control replaces
by their recursively generated

To show this results in asymptotically optimal system behaviour in
the e-Nash sense

26
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Part 5 — Adaptive NCE: Self & Popn. Ident.

==

A; observes a random subset Obs;(NN) of all agents s.t.
|Obs;(N)| — oo, |Obs;(N)|/N —0as N — oo

0 = (Ai,By)
Fr=F/(0), 0O CCcR®+m e PCCRP



Part 5 — NCE-SAC Cost Function

Each agent's Long Run Average ( ) Cost Function:
Ji (s, @

= limsup — / {[z:(t) — mi(®)]" Qlzi(t) — mui ()] + 4 ()R ()} dt

T—o00
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Part 5 — NCE-SAC Control Algorithm

for agent A;,t > 0:

Parameter Identification:
Solve the RWLS Equations for the dynamical parameters
[AZ ty B1 t]
Parameter Identification:
Solve the RWLS equations for the dynamical parameters
6[1 = = [A1, Bj4], j € Obs;(N)
Solve the MLE equatlon to estimate ¢° via

¢, = argmingp L0 0),  No = |Obsi(N)]
Solve the set of NCE Equat|ons for all @ € ® generating

x*(T,lﬁ),TZt

The control law from
i(t) = —R'BY (ILia(t) +3(2) ) + & [e(t) — (k)]

Dither weighting: & = \/Ek, k>1 €(t) = Wiener Process
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Part 5 — NCE-SAC - Self & Popn. Ident.

Sttc,ast —ocoand N — o :
fir — 00 wpl 1<i<N
N = ePwpl
and the set of controls {U)Y; 1 < N < oo} is s.t.
Each S(A4;),1 <i < N, isan LRA — L? stable system
{UY;1 < N < oo} yields a
,i.e. Ve >0 IN(e,w) s.t.

Ji(ﬂi,afi) — € § inf Ji(ui,&ﬂ-) S Ji(’&i,ﬂfi), w.p.l

u; €U
where u; € U is adapted to FV.
Moreover J®(t;, 1) = JPud,u®,) wpl, 1<i<oo

=0
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Part 5 — NCE-SAC Simulation

400 Agents
System matrices {Ai}, {Br}, 1<k <400

S —0.2+ ay —2+a12] A|:]-+b1:|

14 a9y 0+ as T 04by

Population dynamical parameter distribution a;;'s and b;'s are
independent.

a;j ~ N(0,0.5) b; ~ N(0,0.5)
Population distribution parameters:

an =—02, o03,=05 bu=1 o} =05 etc

All agents performing individual parameter and population
distribution parameter estimation

Each of 400 agents observing its own 20 randomly chosen
agents’ outputs and control inputs
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Part 5 — NCE-SAC Animation

Animation of Trajectories



Convertified by iSquint - http://www.isquint.org

400_400_20_vid_audio.mp4
Media File (video/mp4)


Part 6 — Mean Field Synthesis of Flocking Behaviour

: one of the most widespread phenomenon in nature.

Flocking of birds

33/
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Part 6 — Mean Field Synthesis of Flocking Behaviour

Collective Motion:

Schooling of fish
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Part 6 — Mean Field Synthesis of Flocking Behaviour

: A group of agents has a flocking behaviour if:

agents’ velocities converge to a common value (e.g., mean of initial
velocities), i.e., consensus in velocity,

the distance between agents remains bounded.

1 Microscopic:

Individual based (particle like) models (ODEs, SDEs);
Local communication with other agents;
Example: Cucker-Smale algorithm.

2| Macroscopic:

Infinite (continuum) population model;
Distribution functions in space-time (PDEs);
Example: C-S continuum and hydrodynamic models.

35
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Part 6 — Mean Field Synthesis of Flocking Behaviour

dx(;ft) = ui(%), 1<i<N,
N
i) = 23 alllalt) - 2 ) (w3(6) = wi(e)

A special time-varying consensus algorithm (with communication
rates a;;(-)).

For 0 < < % we have (i.e., regardless of initial
configurations)
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Part 6 — Mean Field Synthesis of Flocking Behaviour

: the positions and velocities of a group of 100 agents in the
one dimensional C-S algorithm with § = 0.4.




Part 6 — Mean Field Synthesis of Flocking Behaviour

Advection equation with velocity field £(f)

of o "
5¢ T 0 Vef = -Vo. 6],

s f 0w dydw
Nt 2 [ sy w)dydo,

where f(z,v,t) is the of agents positioned at
(z,t) with velocity v

For 0 < 3 < % we have
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Part 6 — Mean Field Synthesis of Flocking Behaviour

The flocking problem will now be analyzed using the

Flocking behaviour synthesized from optimization;

Global (mass population) optimal control + local (individual) feedback
with respect to mass behaviour;

Nash equilibria between individuals.

For large population this theory reproduces the flocking behaviour of individuals
under the (ad hoc) global feedback of the standard formulations
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Part 6 — Mean Field Synthesis of Flocking Behaviour

d$L(t) = U,‘,(t)dt, 1 S ) S N
dv; (t) — U, (t)dt + C'dw; (t),
written as

dzi(t) = (Fzi(t) + Gui(t))dt + Ddw(t),

(34) o () 24 (2)

(1<i<N):

1 /7
JN 2 lim sup = / (cz)iv(xi,u,;;x,,;,v,i) + HuLHQ) dt,
0

T — o0

with the normalized cost-coupling:

il N
Zj'vzl a(||lzs — z4]|) ; allzi — ;) (v; — vi)

N (@i, vis w—iyv_s) &

2
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Part 6 — Mean Field Synthesis of Flocking Behaviour

It is assumed that the generic agent's cost wrt mass converges (implied
by various conditions):

N (@, 053, 0_5) =5 ¢ (x, v, 1)

where ¢°° only depends on x = z; and v = v;.
Replacing ¢ (z4,vi;x—i,v—;) with ¢>°(z,v,t) reduces the game model
to a set of IV independent optimal control problems.

(relative value function) equation: Agent (z,v)
oh TP 0o 1 T o
— +m1Z141 (Fz4+ Gu) - V.h+u u+ ¢ + §Tr(DD Ah) » = p°,
- 1 o’
u’ = arg rmn {(Fz + Gu) - Voh+u"u+ ¢™ + §Tr(DDI Ah)} )
where p° is the optimal cost.
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Part 6 — Mean Field Synthesis of Flocking Behaviour

The Nonlinear MF Triple of Equations (NCM, 2010 after Yin et. al., ACC 2010

and HMC, 2006):
MF-HJB : 8:h(z,t) + <Fz — %G’GTvzh(z,tO - V.h(z,t)
+6%(z, 1) + %Tr(DDTAh(z, 1) = %,
MF-FPK : 8;f(z,t) + V. - ((Fz = %GGTVZh(z,t))f(z,t))

— %Tr(DDTAf(z,t)),

Juzn allle = &)’ = v)f (!, 0/, t)da’do’

MEF-CC : =(z,0) =
‘15 (Z ) ’ fRzn Hl’_x'H x’,vﬂt)dx’d’l)’

Best Response: u°(-) :== —2GT Vh(z, ")
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Part 6 — Mean Field Synthesis of Flocking Behaviour

Assume that the weight function a(||z]|) is integrable (i.e., [, a(||z]]) < o),

and ¥ = CCT > 0, then the stationary of the MF Triple of equations is given
by

hoo (V) = $oo(v) = |lv — ull*,  p° =Tr(CCT),
1 1 _
foo(v) = W”D(‘ i(U—M)TE 1(U—M)>7
uge(v) = —(v — p),
where =[5, vf(z,v,0)dvdz is the

: The following weights satisfy the integrability condition:

The C-S weights a(||z||) = W for 8 > 1,

The Gaussian weights a([|z||) = exp ( — o z[|*) for a > 0.

43
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Part 6 — Mean Field Synthesis of Flocking Behaviour

: By applying the MF control laws,

THOES févvh,oc(v)‘q:w = —(vi(+) — ),

the agents in a finite N population system reach mean-consensus in velocity
asymptotically as time goes to infinity, that is to say,

Jim [[Bui(t) — Bos(0)| =0, 1<i#j<N
—00

(Gaussian Initial Density): the continuum (left) and individual
(right) models of a scalar MF consensus model (¢ = 0 and the noise intensity
o is 0.05)

nsus with N=500, 0=0.05 and zero initial mean
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Part 6 — Mean Field Synthesis of Flocking Behaviour

he(v,t) = hoo(v) + € h(v,t),
fé(vvt) - fOO(U)(l +e€ f(l),t)),
¢:C(U>t) - (7500(“) +e (;(U?t)'

: The linearized MF equation system
in the uniform weights case 8 = 0:

Orh(v,t) = Loh(v,t) — ¢(v,t),

B (= 7%@;}(@,@ Lo fw,1),
3(0.0) = =20 = w)( | vFw.0 o)),

where the operator £, := (v — )0, — %Qifv has the countable family of

Hermite polynomials {H, : n € Ng} as eigenfunctions.
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Part 6 — Mean Field Synthesis of Flocking Behaviour

: Non-Gaussian Initial Densities

: In case f(v,0) € span(Hn(v) : n > 2) which gives rise
to the non-Gaussian initial conditions:

JACKE 1+eZk:7, Hn(v)) € L*(R, foo (v)dv),
=2
we have he(v,t), fe(v,t) € L*(R, foo(v)dv), vt > 0,
and the , that is to

say,

Jim [|he(v,8)][z2 = Jim [|fe(v,8)] 2 = 0
— 00 t—o0
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Summary

NCE Theory solves a class of
with many competing agents.

Asymptotic Nash Equilibria are generated by
the
Key intuition:

Single agent’s control = feedback of
+ feedback of

NCE Theory extends to (i) problems, (ii) stochastic
control, (iii)

systems, (iv) systems, (V) and
behaviour.
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Future Directions

Further development of Minyi Huang's players
extension of NCE Theory

Further development of version of NCE
Theory

Mean Field stochastic control of (McKean-Vlasov,

YMMS) systems

Extension of NCE (MF) SAC Theory to richer
contexts

Development of MF Theory towards
applications

Development of Systems and control
theory for and
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