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- (HJB) O+ %Au + 5IVuf2 = —f(x,m)
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(S) (K) otm+V - (mvu) = —Am

A constructive 2

Numerical . X ou o om _

scheme o Boundary conditions: g = 57 = 0o0n (0, T) x 0Q

o Terminal condition: u(T,-) = ut(-) a given payoff.
o Initial condition: m(0,-) = mg(-) > 0 a positive function in
L1(R), typically a probability distribution function.
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- o Boundary conditions: £ = 5‘,@ =0o0n(0,T) x 00
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o Terminal condition: ¢(T,-) = exp (”T( ))

o Initial condition: (0, -) = _;1(%(..))

Then (u, m) = (a2 In(9), ¢2) is a solution of (MFG).
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i o f<0

nstructive This is not a restriction since f is bounded...

fef—|flloo=u+ u—|f|loot.

schome. o ur € L>(Q)
o mp € L%(Q)
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<
g € 12(0, T,H'(Q)) and g € [2(0, T,H ()

We also define:
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Proposition (Well-posedness)

Yy € Py, there is a unique weak solution ¢ to the following
Introduction equation (E¢).’

Properties of

2
0+ TS =~ 00l (E,)

with % =0o0n(0,T) x 9Q and ¢(T,-) = exp (”;—g))
Hence ® : ¢ € Py — ¢ € P is well defined.
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| W EPo,p=0(¢) €Pe fore = exp (55 (|ulloc + [ llo T))
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Vpr < hp € Po, ®(¢1) > ®(v2)

This monotonicity result will be central in the constructive
scheme.
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with 92 =0 on (0, T) x 9Q and (0, ) = ;n%(-.)_
S Hence V : ¢ € P. +— 2 € P is well defined.
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Proposition (Positiveness)
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Nume \ Vor < ¢2 € P, w(¢1) > \U((bz)
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This monotonicity result will be central in the constructive
scheme.
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D™+ TAG™E = —f(x, gt rgn)grth
Properties of 2 o
= n+1 02 n+1 1 n—l—l n+1 n+1
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scheme 2 0'2
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: 1
Numerical .. n+5 n+1
examples o Boundary conditions: a‘%; 8‘/5” =0on (0, T) x 90N
. . 1
o Terminal condition: ¢""2(T,-) = exp (—g—)>
o Initial condition: ¥"t1(0,-) = _mo()
¢"+2(Oa’)
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| In other words, the constructive scheme is defined as:

¥ =0
¥neN, o™z = o(y")
Vn € N,¢n+1 — w(¢n+%)

A constructive
scheme
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(¢""2), is a decreasing sequence of P..
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B o ("), is an increasing sequence of Py, bounded from
Properties of aboVe in P b.y llI(E)

S 1

(A:onstmcﬁve o (¢"2,4™), converges for almost every

scheme (t,x) € (0, T) x Q, and in L?(0, T, L%(Q)) towards a
couple (¢, ).

Numerical o ((,b, /l,b) 6 P(E X PO IS a Weak SO/ution Of (8)
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It's noteworthy that there is nothing like mass conservation,
except asymptotically.
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M = Mji1,41(R)
Me={(mjij)ij €M, Vi j,mij>e}




Numerical scheme

Mean field
games
equations with
quadratic
Hamiltonian:

"Z’?JZO

a specific . .. n 1
approach Completely implicit scheme for ¢""2:
Olivier Guéant
1 1 1 1 1
~n+ ~n+ n+ n+
; 2—¢ 2422 2+d; 2 nt3 antd

i+1 , +1 J—1__ 2 2
i ’JAt J +% 1) (AX)2 ihj— __Tf(xj,qﬁ wn )¢

~n l u Xj
i hen(22)

Numerical
scheme

Completely implicit scheme for i)™
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c 1 A A A
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with QS/J = exp ( ur(x ’)) and the conventions (25,-,_1 = (13,-71,

i1 = ¢;,JA—1- X
Hence ®4 : 1) € Mo — ¢ € M is well defined.
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Olffer Eimezts vy;" & Mo,giA) = cbd(qZ) € M, for the same € as in the
Introduction continuous case.
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examples V'lz;l S 122 € M07 ¢d(1z)\1) 2 ¢d(122)
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Well-posedness |l

Proposition (Well-posedness)

Let’s fix e > 0 as above.
V¢ € M, there is a unique solution 1) € M to the following
equation:

Yit1,j — Yij
At

@Z i+1,j+1 — 2¢I+1,j + ¢/+1J 1
(Ax)?

o
2

1 ~ ~ ~
= — (X}, Git1,jPi+1,)Vit1,

with ¢0J ﬂ;i%) and the conventions 1&;,_1 = 7,@,-,1,

bi g1 = ¥, J-1- X
Hence Wq : ¢ € M, — 1) € M is well defined.
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Y € M, = Wg(d) € Mo

Proposition (Monotonicity)
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Vo1 < da € M, Wg(h1) > Vy(h2)




Mean field
games
equations with
quadratic
Hamiltonian:
a specific
approach

Olivier Guéant

nstructive

1eme

Numerical
scheme

Monotonicity of the scheme and limit behavior

Assume that mq is bounded. The numerical scheme verifies the
following properties:

N ) .
o (¢""2), is a decreasing sequence of M..

o (Y™, is an increasing sequence of Mo, bounded from
above, independently of the subdivision.

~ 1 A
o (¢""2,4"), converges towards a couple

(dl;alz;) € MG X MO-
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2
Vm = (mj;)ij € M, |||m|||* = sup Z
0<i</ j=0
ol Hypothesis
] o We suppose that f, ur and mg are bounded.
scheme
o We also suppose that f is Lipschitz with respect to &
(Lipschitz constant: K)
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Convergence of the scheme I
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1(tl'7xj)

Consistency errors

1
n+§ n+§ n+§ n+§
- )
,,’”'2 ¢I+1u ¢I,J Lo P12 At g oy +2¢n )¢"+2
ij &t T B2 0
n+1 _  nt+l n+1 o1 n+1

a2 Vi TR SR
i At (AX)2 l+l,j I+1_[

n+1
i+1,j
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If 2> 1+ K max(e® 2 |92 ), thenVn €N,

EIC,H_%, 1, Dn+%, Dp11 such that:

Al 1 ~ 1
9" — ¢" 2|l < CopalllW” = ¢"I1] + Dy llIn™ 2
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- 2 gl 1
" — ™| < Coralll@™2 — ¢™F2|| + Dagallln™ ||
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o Let’s suppose that ut, mg and f are so that
Vn e N, ¢z, ¢n e CL2([0, T] x [0,1]) and
¢, € CH2([0, T] x [0,1]) and still f a Lipschitz function with
respect to £.

Then: )
o o ",H__ . _
l;?;:cal At,lIAr)r(]—)O nll_)n;o | I |¢ 2 ¢| | | 0
lim lim [||[¢™ — ||| =0

At,Ax—0 n—o0
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R f(x,€) = —16(x — 1/2)% — 0.1 min(5, max(0, £))

ox) = 1 - 0/2'cos (77 (2x - g))z ur(x) = 0
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Numerical
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Convergence after 7 iterations for n. J
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Convergence after 28 iterations for n. J
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