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The issues: 

How to solve the limit optimal control problem? 

 

How to relate the solution of the limit problem to 

the perturbed problem? 

 

Are conditions (necessary, sufficient, …) for the 

limit problem, related to the perturbed problem? 
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Recall: An issue: 

How to relate trajectories (say optimal solutions) 

of the limit problem to the perturbed problem? 

 

 

     

The answer: 

If         is designed such that             

approximates the limit Young Measure           (in 

the space of Young Measures), the outcome of the 

perturbed equation will be a good approximation 

of the limit (hence of the optimal solution to the 

perturbed equation. Under the conditions of the 

theorem his can be done !     
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How to solve the limit optimal control problem? 

 

How to relate the solution of the limit problem to 

the perturbed problem? 
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Recall the limit optimal control problem: 

a optimal solution has the form: 
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Remark: 

Under controllability and boundedness of the fast 

dynamics the fast initial and terminal conditions 

do not play a role, thus: 
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The optimal control problem of the equivalent 

differential inclusion: 

where 
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Ponryagin (et al.) necessary condition: 

 

Lev Semenovich Pontryagin  
1908-1988  
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Pontryagin maximum principle for: 

   (notice the lack of a terminal condition) 
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Pontryagin maximum principle: 

   If the trajectory          is optimal then there exists a  

function           satisfying  

where 

   plus a transversality condition at 

the end point  
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How to identify the optimal invariant measure? 

   The key is  

   where  

   Hence: the optimal          in the limit occupational 

measure of                   that solves the infinite 

horizon problem:  
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How to solve an infinite horizon optimal 

control problems? 

    There is a vast literature. Of interest works by 

Vladimir Gaitsgory et al., utilizing the linearity 

of the problem in the invariant measure, thus 

reducing the problem to linear programming.  
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the perturbed problem? 
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limit problem related to the perturbed problem? 

 

 

     



17 

The Pontryagin principle for the limit system in a 

special case  

  Consider the limit system: 

   Notice the assumption: 
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The Pontryagin principle   

  There exists “support” function         satisfying 

   and for every fixed  

 Given an optimal solution  

 

   whenever  

   and a transversality condition at the end point  
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The Pontryagin principle for the perturbed system:   

  There exists “adjoint” function                 satisfying: 

   and for every fixed      the control           maximizes  

 Given an optimal solution  
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Results:  

  There is no reason to expect  that           converges  

   An example where                                       converge 

weakly to zero is when    

    If                                       converge weakly to zero,  

    and                   then          converges uniformly to 

the adjoint            of the limit equation  
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A modified “cat” example 



22 

The modified example - augmented 
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The Pontryagin equations   

  The support vector is                  where 

   and         is generated by a solution to   

 Given an optimal solution  

 

subject to the fast equation.  
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The solution (simplified a bit): 

When                        : 

When                        : 

can be found from the Pontryagin equations 
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Hamilton-Jacobi-Bellman (HJB) sufficient condition 

 
Richard E. Bellman  

1920-1984  1805-1865  

William Rowan Hamilton Carl Gustav Jacobi  

1801-1851  
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Hamilton-Jacobi-Bellman equation for: 

   
    Let              be the value function (when starting at        )         

Then it solves the partial differential equation 

  where 
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Two approaches: 

1. Use the general theory to be sure that the HJB 

equation for the limit captures the limit of 

solutions. Solve it to get this limit.  

 

2. Show that the HJB for the limit is the limit for 

the HJB of the perturbed systems, and via that 

verify the continuity of the solutions (and get 

error estimates for the value in some cases). 

Theory by Olivier Alvarez, Martino Bardi et al.     
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Recall: Singularly perturbed control systems: 

Where:   in     the slow and    in     the fast, variables 

Of interest: The behavior of the system as    
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The order reduction method  (Petar Kokotovic et al.) 

The limit as            is depicted by         namely, by: 

We spent a lot of time showing that the order 

reduction method is not adequate 
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But: The order reduction method may be good: 

Case 1: The problem is convex 

Case 2: The “fast variable”     is one dimensional  

        Arie 

Leizarowirz 
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Arie Leizarowitz proved: 

Once the dimension of the fast variable is greater or 

equal to two, the Order reduction is invalid  

In fact: in “most” of the systems with a two 

dimensional fast flow, the order reduction is not 

valid. 
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   Can be solved explicitly (was carried out 

by Z.A. and Vladimir Gaitsgory) 

 

     

 

 

Linear quadratic tracking of periodic target: 
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   Numerical examples in two dimensional 

problems seem to produce periodic 

solutions. 

 

     

 

 

An observation: 

   Question: Is it true that in general, 

when the state is two dimensional, 

there exists a periodic solution? 
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A Theorem 

    When the state variable is two-dimensional 

It is enough to consider periodic trajectories 

(rest points, possibly) using, possibly, relaxed 

controls.  

 

The analog of the Poicare-Bendixson theorem holds:  

 Ido Bright 
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Recall: The Poincare-Bendixson Theorem: 

A bounded solution of an ordinary differential 
equation in the plane either comes close to a rest 
point, or converges to a limit cycle. 
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This argument does not apply in the control setting 

No notion of a transversal to a vector field! 
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Steps toward a solution: 1 

Consider a sequence of periodic trajectories on longer 
and longer intervals that approximate, in the limit, 
the optimal cost. 

    Make sure each trajectory does not cross itself, by 
erasing loops (it can be done without decreasing 
the approximation property   

    If the resulting sequence has a uniformly bounded 
period, take a limit periodic trajectory: It is an 
optimal solution (with, possibly, relaxed controls)  
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A Step toward the proof 2 

    An estimate. Let         be an absolutely 
continuous function with bound on the 
derivative, from an interval into      with image 
forming a Jordan curve. Then for any Jordan 
curve      in      with length           

where     is the part of the interval where the values 
of       are in  
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Steps toward a solution: 3 

    If the resulting sequence has periods tending to 
infinity, employ the estimate to show that 
almost every point in the support of the limit 
measure is a stationary optimal solution. 
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Some remarks on computations and error estimates: 

    Solving first the limit problem and using the 
solution in the perturbed one is efficient for 
small  

 

    But then it is uniformly efficient !!   
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Recall: A mathematical example capturing reality: 

An elastic structure in a rapidly flowing nearly invicid 

fluid (with Marshall Slemrod) 
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Numerical results: 

The slow dynamics              The fast dynamics  



    Typical result:  

    For periodic systems the error is of order 

    For almost periodic systems the error is of order     
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Exact error estimates: 

    Are available for averaging problem:    

 

 

    

    These results extend to averaging of control 
systems.    
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Exact error estimates: 

    Are available for approximation of relaxed 
controls  
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The question: 

What is an appropriate distance between a point 

valued control function 

and a measure-valued relaxed control 
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A distance for quantitative estimates: 

Prohorov metric                   between measures 

       and      is the smallest     such that  for every Borel 
set     
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Exercise: 

The Prohorov distance between 

and its Young measure limit on the unit 

interval  

is between        and   
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A result: 

Consider 

Suppose that rather than the optimal relaxed 

control       , an approximation       is used. 

The resulting error? (when data are Lipschitz) is of 

the order of the Prohorov distance                        . 
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Exact error estimates: 

    Are available for some very particular cases of 
singularly perturbed ordinary differential 
equations 
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The generic case of two dimensional bounded dynamics: 

Convergence to a 

hyperbolic fixed point or 

to a hyperbolic cycle: 

Convergence to a 

heteroclinic cycle:  

The equation: 
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The setting: 

We consider the equation  

With fixed initial condition       and on a time  

interval           we consider the distributional 

distance of the solution  from the Young measure 

limit 



Where         denotes strictly smaller in the little oh sense     
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Rates of convergence: 

The cases of hyperbolic fixed point or an hyperbolic 

limit cycle: The rate of convergence is 



Denote     and    the eigenvalues of the incoming and 

outgoing trajectories at the fixed points and 

 

Then 

is a sufficient condition for the existence 

of a converging trajectory while  

                      

is a necessary condition for the existence 
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The heteroclinc cycle cases: 
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Rates of convergence: 

The case of heteroclinic cycle with              and a 
contractive Poincare map: The rate of convergence is 

The case of heteroclinic cycle with          : The rate 

of convergence is  

For some natural number   . In this case the 

convergence is to a family of Young measures. 
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The hierarchy: 

Where          is the rate of convergence to a limit 

cycle,         is the rate of convergence to a 

heteroclinic cycle with           and          is the 

rate of convergence to a heteroclinic cycle with  
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Convergence rates for the slow dynamics: 

The rates are maintained by the slow dynamics 
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Exact error estimates in general: 

    Except for some very particular cases exact 
error estimates  are not available for the for 
approximation of singularly perturbed 
differential equations and optimal control 
problems  
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Other coupled slow and fast dynamics 

Again, we are interested in the limit behavior of 

the system as   
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Singular perturbations without   

split to slow and fast coordinates: 

C. William Gear 

Yannis Kevrekidis 

Marshall Slemrod 

Edriss Titi 

http://www.siam.org/images/news/898.gif
http://www.math.wisc.edu/~apache/gallery/foto/slemrod.jpg
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The perturbed system: 
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The general situation: 

    The Young measure is defined on the time interval 
with values being probability measures on the x-space  
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Identifying slow and fast contributions :  

The complete system: 

Fast equation: 

Equivalently: 
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The limit solution:  

is an invariant measure of the fast equation: 

    As          the limit (in the sense of Young measures) 

of the solution of the perturbed system: 

drifted by the slow component. 
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How to track the evolution of the invariant measure? 

The idea:  

 A probability measure is determined by its 

(generalized) moments, that is, integrals with respect 

to the measure of continuous real-valued functions 
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The trajectory of invariant measures:  

The dynamics of the observables satisfies: 

    The drift (change in time) of the measures          is 

determined by generalized moments, or observables, 

preferably first integrals of the fast equation: 

   The novelty: The observables are not part of 

the state space. 
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The limit solution: 

And         solves the “equation” 

where                     is an invariant measure of the 

equation  

This is the slow progress of fast dynamics 
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Research issues: 

• Examples 

• Singular cases: When is the differential relation 

a closed differential equation? 

 

 
• When are there enough first integrals? 

 

 • How to determine (to characterize) the invariant 

measures? 

 

 • Numerical procedures 
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An example:  

with periodic boundary conditions 

    With periodic boundary conditions. This is the 

Lax-Goodman discretization of the KdV-Burgers  
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The first integrals of the fast equation:  

   Computing the dynamics of these time-varying 

polynomial enables the construction of the drift 

of the invariant measures 

   are the traces of the so called Lax pairs – these are 

computable even polynomials 
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Computational results for an invariant measure:  

   for the limit as     
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Computational results for the drifted measure:  

   for the limit as     
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Very little has been done for control case 

What is lacking: 

• Examples !!! 

• Singular cases: When is the differential relation 

a closed differential equation? 

 

 

• When are there enough first integrals? 

 

 

• Is the dynamics regular enough for a necessary 

conditions? 

 

 
• In general: How to treat dynamics in the space 

of probability measures? 
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The End 

of the series of letures 

Thanks for the attention 

And all the best 


