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Historical remarks

Oleinik 1957 One-sided Lipschitz estimate as a uniqueness criterion
for scalar hyperbolic conservation laws

Kruzhkov 1960, Douglis 1961 Semiconcavity as a uniqueness criterion
for Hamilton-Jacobi equations

Hrustalev 1978 Semiconcavity of the value function in optimal control
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Historical remarks (II)

Cannarsa-Soner 1987 Semiconcavity of the value function in optimal
control, singularities of semiconcave functions

Reference: Cannarsa–S.:“Semiconcave functions, Hamilton-Jacobi
equations and optimal control” (Birkhäuser, 2004)

Semiconcave functions have been widely applied in other fields, e.g.
nonlinear second order PDEs (Krylov), geometry of Alexandrov spaces
(Perelman, Petrunin), etc.
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Semiconcave functions

Definition
A function u ∈ C(A), with A ⊂ Rn is called semiconcave in A (with a
linear modulus) if there exists C ≥ 0 such that

u(x + h) + u(x − h)− 2u(x) ≤ C|h|2,

for all x ,h ∈ Rn such that [x − h, x + h] ⊂ A.

C is called a semiconcavity constant for u in A.

u semiconvex if −u is semiconcave.
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Equivalent formulations

Proposition
The following properties are equivalent:

u is semiconcave with constant C;

the function x → u(x)− C
2
|x |2 is concave in A;

u = u1 + u2, with u1 concave and u2 ∈ C2(A) such that
||D2u2||∞ ≤ C;

for any ν ∈ Rn such that |ν| = 1 we have ∂2u
∂ν2 ≤ C in A weakly;

u(x) = infi∈I ui(x), where {ui}i∈I ⊂ C2(A) such that
||D2ui ||∞ ≤ C for all i ∈ I.
(semiconcavity←→ minimization).
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semiconcave functions and generalized differentials Semiconcave functions

Generalizations

Definition
A function u : A→ R is called semiconcave with modulus ω(·), where
ω : R+ → R+ is nondecreasing and satisfies limρ→0+ ω(ρ) = 0, if

λu(x) + (1− λ)u(y)− u(λx + (1− λ)y)

≤ λ(1− λ)|x − y |ω(|x − y |)

for any pair x , y ∈ A, such that [x , y ] ⊂ S is contained in S and for any
λ ∈ [0,1].

Standard definition: linear modulus ω(h) = Ch.
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semiconcave functions and generalized differentials Semiconcave functions

Generalizations (II)

u semiconcave with modulus ω iff u = inf ui , with ui ∈ C1 and Dui
has a uniform modulus of continuity ω(·), for every i .
u semiconcave with modulus ω does NOT imply that u = u1 + u2
with u1 concave, u2 ∈ C1.
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The distance function

Given any S ⊂ Rn closed, define

dS(x) = min
y∈S
|y − x |, x ∈ Rn,

distance function from the set S.

It is a special case of the minimum time function, corresponding to

y ′ = a(t) ∈ A = B1 (unit ball).
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Semiconcavity of the distance function

Proposition

The squared distance function d2
S is semiconcave in Rn with

semiconcavity constant 2.
dS is locally semiconcave in Rn \ S. More precisely, given Ω such
that dist (S,Ω) > 0, dS is semiconcave in Ω with semiconcavity
constant equal to dist(S,Ω)−1.

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities September 3 – 7, 2012 12 / 52



semiconcave functions and generalized differentials Semiconcavity of value functions

Semiconcavity of the distance function

Proposition

The squared distance function d2
S is semiconcave in Rn with

semiconcavity constant 2.
dS is locally semiconcave in Rn \ S. More precisely, given Ω such
that dist (S,Ω) > 0, dS is semiconcave in Ω with semiconcavity
constant equal to dist(S,Ω)−1.

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities September 3 – 7, 2012 12 / 52



semiconcave functions and generalized differentials Semiconcavity of value functions

Semiconcavity of the distance function (II)

Proof of the semiconcavity of d2
S

For any x ∈ Rn we have

d2
S(x)− |x |2 = min

y∈S
|x − y |2 − |x |2 = min

y∈S

(
|y |2 − 2〈x , y〉

)
.

=⇒ d2
S(x)− |x |2 is concave (infimum of linear functions)

=⇒ d2
S(·) semiconcave with constant 2. �
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Semiconcavity of the distance function (III)

Proof of the local semiconcavity of dS

Take z,h ∈ Rn, z 6= 0. By a direct computation

|z + h|+ |z − h| − 2|z| ≤ |h|
2

|z|
.

Let now Ω be a set with positive distance from S. For any x ,h such
that [x − h, x + h] ⊂ Ω, let x̄ ∈ S be a projection of x onto S. Then

dS(x + h) + dS(x − h)− 2dS(x)

≤ |x + h − x̄ |+ |x − h − x̄ | − 2|x − x̄ |

≤ |h|2

|x − x̄ |
≤ |h|2

dist (S,Ω)
. �
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Interior sphere property

We say that S ⊂ Rn satisfies the interior sphere property for some
r > 0 if, for any x ∈ S there exists y such that x ∈ Br (y) ⊂ S.

Proposition
If S satisfies the interior sphere property for some r > 0, then dS is
semiconcave in Rn \ S with constant equal to r−1.
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The Mayer problem with fixed horizon

(f ,A) control process in Rn, T > 0
given (t , x) and a control α : [t ,T ]→ A

y(·; t , x , α) solution of

{
ẏ(s) = f

(
y(s), α(s)

)
s ∈ [t ,T ]

y(t) = x

ψ : Rn → R final cost

Problem (Mayer with fixed horizon)

minimize ψ
(
y(T ; t , x , α)

)
over all α ∈ L1(t ,T ; A)
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Semiconcavity of the value function

Value function

V (t , x) = min
α
ψ(y(T ; t , x , α)), (t , x) ∈ [0,T ]× Rn.

Theorem
(Cannarsa-Frankowska, 1991) Suppose that

– The control set A is compact.
– f (x ,a) is differentiable w.r.t. x.
– f (x ,a) and fx (x ,a) are Lipschitz continuous w.r.t. x, uniformly in a.
– ψ is semiconcave in Rn.

Then the value function V is semiconcave in [0,T ]× Rn (jointly in
(t , x)).
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semiconcave functions and generalized differentials Semiconcavity of value functions

Proof of the semiconcavity (I)

Estimates on trajectories starting at different points but following the
same control.

Lemma
There exists c > 0 such that

|y(T ; t , x0, α)− y(T ; t , x1, α)| ≤ c|x0 − x1|,

∣∣∣∣y(T ; t , x0, α) + y(T ; t , x1, α)− 2y
(

T ; t ,
x0 + x1

2
, α

)∣∣∣∣ ≤ c|x0 − x1|2

for all α : [t ,T ]→ U and x0, x1 ∈ Rn.

Regularity of f , Gronwall Lemma.
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semiconcave functions and generalized differentials Semiconcavity of value functions

Proof of the semiconcavity (II)

For simplicity, we only prove semiconcavity w.r.t. x .

Consider x − h, x , x + h ∈ Rn and t ∈ [0,T ). Let α : [t ,T ]→ A be an
optimal control for the middle point (t , x).

Let us set for simplicity

y(·) = y(·; t , x , α), y−(·) = y(·; t , x − h, α), y+(·) = y(·; t , x + h, α).

By the previous lemma

|y+(T )− y−(T )| ≤ c|h|, |y+(T ) + y−(T )− 2y(T )| ≤ c|h|2.
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semiconcave functions and generalized differentials Semiconcavity of value functions

Proof of the semiconcavity (III)

It follows,

V (t , x + h) + V (t , x − h)− 2V (t , x)

≤ ψ(y+(T )) + ψ(y−(T ))− 2ψ(y(T ))

= ψ(y+(T )) + ψ(y−(T ))− 2ψ
(

y+(T ) + y−(T )

2

)
+2ψ

(
y+(T ) + y−(T )

2

)
− 2ψ(y(T ))

≤ Cψ|y+(T )− y−(T )|2 + Lψ|y+(T ) + y−(T )− 2y(T )|
≤ (Cψc2 + Lψc)|h|2,

which proves the semiconcavity w.r.t. x . �
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semiconcave functions and generalized differentials Semiconcavity of value functions

Minimum time function

(f ,A) control process in Rn,
f (x ,a) Lipschitz w.r.t. x , A compact;
given α : [0,∞)→ A control,

y(·; x , α) solution of

{
ẏ(t) = f

(
y(t), α(t)

)
(t > 0)

y(0) = x

target S ⊂ Rn nonempty closed set
transition time τ(x , α) = inf

{
t > 0 | y(t ; x , α) ∈ S

}
controllable set C =

{
x ∈ Rn | ∃α : τ(x , α) <∞

}
minimum time function T (x) = infα τ(x , α) x ∈ C
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semiconcave functions and generalized differentials Semiconcavity of value functions

Petrov condition

Definition
Given y ∈ ∂S, a vector ν ∈ Rn is called a proximal normal to S at y if

projS(y + εν) = {y}

for ε > 0 small enough.

Definition
We say that (f ,A) satisfies the Petrov condition on S if there exists
µ > 0 such that

min
a∈A

f (x ,a) · ν ≤ −µ|ν|

for any x ∈ ∂S, ν proximal normal to S at x.
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semiconcave functions and generalized differentials Semiconcavity of value functions

Local controllability

Theorem
(Petrov 1970, Bardi-Falcone 1990, . . . ) Let the Petrov condition hold.
Then
C is an open neighbourhood of S;
there exist k , δ > 0 such that

T (x) ≤ kdS(x), ∀x s.t. dS(x) ≤ δ

T is locally Lipschitz continuous on C.
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semiconcave functions and generalized differentials Semiconcavity of value functions

Semiconcavity of T

Theorem

Let the Petrov condition hold and let f (x ,a) be C1,1 w.r.t. x.
If S satisfies an interior sphere property, then T is locally
semiconcave in C \ S. (Cannarsa-S., 1995)
If f (x ,A) is convex and satisfies an interior sphere property for x
near S, then T is locally semiconcave in C \ S.
(Cannarsa-Frankowska, S., 2004)
If f (x ,a) = Ax + a for some matrix A and S is convex, then T is
locally semiconvex in C \ S. (Cannarsa-S., 1995)
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semiconcave functions and generalized differentials Generalized differentials

Outline

1 Introduction to semiconcave functions, generalized differentials,
and singularities

Semiconcave functions
Semiconcavity of value functions
Generalized differentials
Optimal synthesis
Singular sets, rectifiability
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semiconcave functions and generalized differentials Generalized differentials

Lipschitz continuity

Proposition
If u : A→ R is semiconcave (with a general modulus), it is locally
Lipschitz continuous in the interior of A.

Corollary
Semiconcave functions are differentiable almost everywhere
(Rademacher’s theorem).

Theorem
(Alexandroff) Semiconcave functions with linear modulus is twice
differentiable almost everywhere.
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semiconcave functions and generalized differentials Generalized differentials

Fréchet differentials

Let u : A→ R, with A ⊂ Rn open.

Definition
Given x ∈ A, the sets

D−u(x) =

{
p ∈ Rn : lim inf

y→x

u(y)− u(x)− 〈p, y − x〉
|y − x |

≥ 0
}
,

D+u(x) =

{
p ∈ Rn : lim sup

y→x

u(y)− u(x)− 〈p, y − x〉
|y − x |

≤ 0
}

are called, respectively, the (Fréchet) subdifferential and
superdifferential of u at x.
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semiconcave functions and generalized differentials Generalized differentials

Reachable gradients

Definition
Given u : A→ R and x ∈ A, we say that p is a reachable gradient of u
at x if there exists {xn} ⊂ A such that u is differentiable at xn and

x = lim
n→∞

xn p = lim
n→∞

Du(xn).

We denote by D∗u(x) the set of reachable gradients.

If u ∈ Liploc(A), then D∗u(x) 6= ∅ for any x ∈ A.

If u ∈ Liploc(A), the convex hull of D∗u(x) coincides with Clarke’s
generalized gradient.
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semiconcave functions and generalized differentials Generalized differentials

Differential properties

Proposition
Let u : A→ R be semiconcave (with general modulus). Then

D+u(x) =co(D∗u(x)).
D+u(x) 6= ∅.
D∗u(x) ⊂ ∂D+u(x).
If xk → x and if pk ∈ D+u(xk ) satisfy pk → p, then p ∈ D+u(x)
(upper semicontinuity of D+u).
If D+u(x) is a singleton, then u is differentiable at x.
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semiconcave functions and generalized differentials Generalized differentials

Differential properties

For simplicity, linear modulus of semiconcavity, A open convex.

Proposition
Let u : A→ R be semiconcave with constant C. Then

p ∈ D+u(x) if and only if

u(y) ≤ u(x) + 〈p, y − x〉+
C
2
|x − y |2

for all y ∈ A;
given x , y and p ∈ D+u(x),q ∈ D+u(y), we have

〈q − p, y − x〉 ≤ C|x − y |2 (monotonicity of D+u).
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semiconcave functions and generalized differentials Generalized differentials

An approximation lemma

Proposition
Let u : A→ R be semiconcave, x0 ∈ A and V an open set such that
x0 ∈ V ⊂ V ⊂ A. Then, for any p ∈ D+u(x0) there is a sequence
uk ∈ C∞(V ) such that

uk → u uniformly in V
Duk (x0)→ p
||uk ||∞ ≤ M, ||Duk ||∞ ≤ L, ||D2uk ||∞ ≤ C, for all k,
where M, L and C are respectively the supremum, the Lipschitz
constant and the semiconcavity constant of u on A.
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semiconcave functions and generalized differentials Generalized differentials

Semiconcavity and viscosity

Consider the Hamilton-Jacobi equation

(HJ) H(x ,u,Du) = 0, x ∈ Ω ⊂ Rn.

with H a continuous function.

u ∈ C(Ω) is a viscosity solution of (HJ) if it satisfies, for any x ∈ Ω,

H(x ,u(x),p) ≤ 0 ∀p ∈ D+u(x),

H(x ,u(x),q) ≥ 0 ∀q ∈ D−u(x).
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semiconcave functions and generalized differentials Generalized differentials

Semiconcavity and viscosity (II)

Proposition

Suppose that H(x ,u,p) is convex w.r.t. p. Let u : Ω→ R be a
semiconcave function which satisfies (HJ) at all points of
differentiability. Then u is a viscosity solution of (HJ).

Proof — At the points x where u is differentiable — trivial.

If u is not differentiable at x , then D−u(x) = ∅, while
D+u(x) =co(D∗u(x)).

By continuity, H(x ,u(x),p) = 0 for all p ∈ D∗u(x).

By convexity, H(x ,u(x),p) ≤ 0 for all p ∈ D+u(x). �
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semiconcave functions and generalized differentials Generalized differentials

Marginal functions

Marginal functions: infimum of smooth functions

(←→ semiconcave functions.)

A ⊂ Rn open, S ⊂ Rm compact.
F = F (s, x) continuous in S × A together with DxF .

Define u(x) = mins∈S F (s, x). Then u is semiconcave.
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semiconcave functions and generalized differentials Generalized differentials

Marginal functions (II)

Theorem
Let u(x) = mins∈S F (s, x) as above. Given x ∈ A, define

M(x) = {s ∈ S : u(x) = F (s, x)},

Y (x) = {DxF (s, x) : s ∈ M(x)}.

Then, for any x ∈ A

D+u(x) = coY (x).

In particular, u is differentiable at x if and only if Y (x) is a singleton.
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semiconcave functions and generalized differentials Generalized differentials

Generalized gradients of the distance

Corollary

Let S be a nonempty closed subset of Rn. Then
dS is differentiable at x /∈ S if and only if projS(x) is a singleton
and in this case

DdS(x) =
x − y
|x − y |

where y is the unique element of projS(x).
If projS(x) is not a singleton then we have

D+dS(x) = co
{

x − y
|x − y |

: y ∈ projS(x)

}
,

while D−dS(x) = ∅.
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semiconcave functions and generalized differentials Optimal synthesis

Outline

1 Introduction to semiconcave functions, generalized differentials,
and singularities

Semiconcave functions
Semiconcavity of value functions
Generalized differentials
Optimal synthesis
Singular sets, rectifiability
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semiconcave functions and generalized differentials Optimal synthesis

Back to the Mayer problem

(f ,A) control process in Rn, T > 0

given (t , x) and a control α : [t ,T ]→ A

y(·; t , x , α) solution of

{
ẏ(s) = f

(
y(s), α(s)

)
s ∈ [t ,T ]

y(t) = x

ψ : Rn → R final cost

Mayer problem: minimize ψ
(
y(T ; t , x , α)

)
over all α ∈ L1(t ,T ; A)

Value function V (t , x) = minα ψ(y(T ; t , x , α)).
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semiconcave functions and generalized differentials Optimal synthesis

We assume in the following
A compact
f (x ,a) of class C1,1 w.r.t. x
ψ : Rn → R of class C1 and semiconcave
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semiconcave functions and generalized differentials Optimal synthesis

Pontryagin’s maximum principle

Theorem

α∗ ∈ L1(0,T ; A) and y∗(·) := y(·; x , α∗) optimal pair

ψ
(
y∗(T )

)
= min

α∈L1(0,T ;A)
ψ
(
y(T ; x , α)

)
let p∗ be the solution of the adjoint problem{

ṗ(s) = −fx
(
y∗(s), α∗(s)

)tr p(s)
(
s ∈ [0,T ]

)
p(T ) = Dψ

(
y∗(T )

)
then

p∗(s) · f
(
y∗(s), α∗(s)

)
= min

a∈A
p∗(s) · f

(
y∗(s),a

) (
s ∈ [0,T ] a.e.

)
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semiconcave functions and generalized differentials Optimal synthesis

Dual arc inclusion for the Mayer problem

Denote by ∇+V (t , x), ∇−V (t , x) the super- and subdifferential of V at
(t , x) with respect to the x variable alone.

Theorem
(Clarke-Vinter 1987, Cannarsa-Frankowska, 1991) Under the previous
assumptions, we have that

p(s) ∈ ∇+V (s, y(s)), ∀s ∈ [t ,T ].

If in addition p(t) ∈ ∇−V (t , y(t)), then we also have

p(s) ∈ ∇−V (s, y(s)), ∀s ∈ [t ,T ].
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Hamiltonian form of PMP

Assume that f (x ,A) is a (n-dimensional) uniformly convex set for all x .

This implies that H(x ,p) = maxa∈A−p · f (x ,a) is smooth for p 6= 0.

Theorem
Let (α, y) be an optimal pair for the point (t , x) ∈ [0,T ]× Rn and let
p : [t ,T ]→ Rn be a dual arc associated with (α, y) such that p(s̄) 6= 0
for some s̄ ∈ [t ,T ]. Then p(s) 6= 0 for all s ∈ [t ,T ] and (y ,p) solves the
system {

y ′(s) = −Hp(y(s),p(s))

p′(s) = Hx (y(s),p(s))
s ∈ [t ,T ].
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optimal synthesis

Theorem
Given a point (t , x) ∈ [0,T [×Rn and a vector p̄ = (p̄t , p̄x ) ∈ D∗V (t , x)
such that p̄ 6= 0, let us associate with p̄ the pair (y(·),p(·)) which solves
the hamiltonian system with initial conditions y(t) = x, p(t) = p̄x .

Then y(·) is an optimal trajectory for (t , x) and p(·) is a dual arc
associated with y(·).

The map from D∗V (t , x) to the set of optimal trajectories from (t , x)
defined in this way is injective, and it is one-to-one if 0 /∈ D∗V (t , x).

Corollary

If 0 /∈ D∗V (t , x), then the optimal trajectory at (t , x) is unique if and
only if V is differentiable at (t , x).
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Outline

1 Introduction to semiconcave functions, generalized differentials,
and singularities

Semiconcave functions
Semiconcavity of value functions
Generalized differentials
Optimal synthesis
Singular sets, rectifiability
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The singular set

Given u : A→ R semiconcave, the singular set of u is

Σ(u) = {x ∈ A : u is not differentiable at x}
= {x ∈ A : D+u(x) is not a singleton}.

We know: Σ has measure zero.

Much sharper results can be given in terms of rectifiability properties.
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rectifiable sets

Let k ∈ {0,1, . . . ,n} and let C ⊂ Rn.
C is called a k–rectifiable set if there exists a Lipschitz continuous
function f : Rk → Rn such that C ⊂ f (Rk ).
C is called a countably k–rectifiable set if it is the union of a
countable family of k–rectifiable sets.
C is called a countably Hk–rectifiable set if there exists a
countably k–rectifiable set E ⊂ Rn such that Hk (C \ E) = 0.
Here Hk denotes the k -dimensional Hausdorff measure.
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rectifiability results

It is easy to see that, if u is semiconcave with a linear modulus, then
Du is a function of bounded variation.

The singular set Σ(u) coincides with the jump set of Du in the theory of
BV functions.

Standard results about BV functions then imply that Σ(u) is countably
Hn−1–rectifiable.

More precise results can be obtained by a direct approach.
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rectifiability results (II)

D+u(x) is a convex set =⇒ it has an integer dimension.

For k = 1, . . . ,n, we define

Σk (u) = {x ∈ Σ : dim(D+u(x)) = k}.

Theorem
If u : Ω→ R is semiconcave (with a general modulus) then the set
Σk (u) is countably (n − k)-rectifiable for any k = 1, . . . ,n.

Zajı́ček (1978), Veselý (1986), Alberti-Ambrosio-Cannarsa (1992).
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example

Let u(x , y) = −|x | − |y |, concave on R2.

Then Σ(u) = {(x , y) : x = 0 or y = 0}.

If x = 0 and y > 0, then D+u(x , y) = [−1,1]× {−1}. Similarly, any
point with x = 0, y 6= 0, or with x 6= 0, y = 0 belongs to Σ1(u).

Finally, D+u(0,0) = [−1,1]× [−1,1], and Σ2(u) = {(0,0)}.
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sketch of the proof

Definition

Let S ⊂ Rn and x ∈ S be given. The contingent cone (or Bouligand’s
tangent cone) to S at x is the set

T (x ,S) =

{
lim

i→∞

xi − x
ti

: xi ∈ S, xi → x , ti ∈ R+, ti ↓ 0
}
.

The vector space generated by T (x ,S) is called tangent space to S at
x and is denoted by Tan(x ,S).
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sketch of the proof (II)

Theorem
Let S ⊂ Rn be a set such that dim Tan(x ,S) ≤ k , for all x ∈ S, for a
given integer k ∈ [0,n]. Then S is countably k–rectifiable.

Given ρ > 0, we denote by Σk
ρ(u) the set of all x ∈ Σk (u) such that

D+u(x) contains a k–dimensional sphere of radius ρ.

Theorem
If u is semiconcave in Ω, then

Tan(x ,Σk
ρ(u)) ⊂ [D+u(x)]⊥, ∀ x ∈ Σk

ρ(u).

The rectifiability theorem follows. �
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Thank you for your attention!
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