Optimal control, Hamilton-Jacobi equations and singularities in euclidean and riemaniann spaces

Piermarco CANNARSA \& Carlo SINESTRARI

Università di Roma "Tor Vergata"

SADCO SUMMER SCHOOL \& WORKSHOP 2012 NEW TRENDS IN OPTIMAL CONTROL

Ravello, Italy
September 3-7, 2012

Outline

(1) Introduction to semiconcave functions, generalized differentials, and singularities

- Semiconcave functions
- Semiconcavity of value functions
- Generalized differentials
- Optimal synthesis
- Singular sets, rectifiability

Outline

(1) Introduction to semiconcave functions, generalized differentials, and singularities

- Semiconcave functions
- Semiconcavity of value functions
- Generalized differentials
- Optimal synthesis
- Singular sets, rectifiability

Historical remarks

Historical remarks

Oleinik 1957 One-sided Lipschitz estimate as a uniqueness criterion for scalar hyperbolic conservation laws

Kruzhkov 1960, Douglis 1961 Semiconcavity as a uniqueness criterion
for Hamilton- Jacohi eas ations

Historical remarks

Oleinik 1957 One-sided Lipschitz estimate as a uniqueness criterion for scalar hyperbolic conservation laws

Kruzhkov 1960, Douglis 1961 Semiconcavity as a uniqueness criterion for Hamilton-Jacobi equations

Historical remarks

Oleinik 1957 One-sided Lipschitz estimate as a uniqueness criterion for scalar hyperbolic conservation laws

Kruzhkov 1960, Douglis 1961 Semiconcavity as a uniqueness criterion for Hamilton-Jacobi equations

Hrustalev 1978 Semiconcavity of the value function in optimal control

Historical remarks (II)

Cannarsa-Soner 1987 Semiconcavity of the value function in optimal control, singularities of semiconcave functions

Historical remarks (II)

Cannarsa-Soner 1987 Semiconcavity of the value function in optimal control, singularities of semiconcave functions

Reference: Cannarsa-S.:"Semiconcave functions, Hamilton-Jacobi equations and optimal control" (Birkhäuser, 2004)

Historical remarks (II)

Cannarsa-Soner 1987 Semiconcavity of the value function in optimal control, singularities of semiconcave functions

Reference: Cannarsa-S.:"Semiconcave functions, Hamilton-Jacobi equations and optimal control" (Birkhäuser, 2004)

Semiconcave functions have been widely applied in other fields, e.g. nonlinear second order PDEs (Krylov), geometry of Alexandrov spaces (Perelman, Petrunin), etc.

Semiconcave functions

Semiconcave functions

Definition

A function $u \in C(A)$, with $A \subset \mathbb{R}^{n}$ is called semiconcave in A (with a linear modulus) if there exists $C \geq 0$ such that

$$
u(x+h)+u(x-h)-2 u(x) \leq C|h|^{2}
$$

for all $x, h \in \mathbb{R}^{n}$ such that $[x-h, x+h] \subset A$.

Semiconcave functions

Definition

A function $u \in C(A)$, with $A \subset \mathbb{R}^{n}$ is called semiconcave in A (with a linear modulus) if there exists $C \geq 0$ such that

$$
u(x+h)+u(x-h)-2 u(x) \leq C|h|^{2}
$$

for all $x, h \in \mathbb{R}^{n}$ such that $[x-h, x+h] \subset A$.
C is called a semiconcavity constant for u in A.

Semiconcave functions

Definition

A function $u \in C(A)$, with $A \subset \mathbb{R}^{n}$ is called semiconcave in A (with a linear modulus) if there exists $C \geq 0$ such that

$$
u(x+h)+u(x-h)-2 u(x) \leq C|h|^{2}
$$

for all $x, h \in \mathbb{R}^{n}$ such that $[x-h, x+h] \subset A$.
C is called a semiconcavity constant for u in A.
u semiconvex if $-u$ is semiconcave.

Equivalent formulations

Proposition

The following properties are equivalent:

- u is semiconcave with constant C;

Equivalent formulations

Proposition

The following properties are equivalent:

- u is semiconcave with constant C;
- the function $x \rightarrow u(x)-\frac{C}{2}|x|^{2}$ is concave in A;

Equivalent formulations

Proposition

The following properties are equivalent:

- u is semiconcave with constant C;
- the function $x \rightarrow u(x)-\frac{C}{2}|x|^{2}$ is concave in A;
- $u=u_{1}+u_{2}$, with u_{1} concave and $u_{2} \in C^{2}(A)$ such that $\left\|D^{2} u_{2}\right\|_{\infty} \leq C$;

Equivalent formulations

Proposition

The following properties are equivalent:

- u is semiconcave with constant C;
- the function $x \rightarrow u(x)-\frac{C}{2}|x|^{2}$ is concave in A;
- $u=u_{1}+u_{2}$, with u_{1} concave and $u_{2} \in C^{2}(A)$ such that $\left\|D^{2} u_{2}\right\|_{\infty} \leq C$;
- for any $\nu \in \mathbb{R}^{n}$ such that $|\nu|=1$ we have $\frac{\partial^{2} u}{\partial \nu^{2}} \leq C$ in A weakly;

Equivalent formulations

Proposition

The following properties are equivalent:

- u is semiconcave with constant C;
- the function $x \rightarrow u(x)-\frac{C}{2}|x|^{2}$ is concave in A;
- $u=u_{1}+u_{2}$, with u_{1} concave and $u_{2} \in C^{2}(A)$ such that $\left\|D^{2} u_{2}\right\|_{\infty} \leq C$;
- for any $\nu \in \mathbb{R}^{n}$ such that $|\nu|=1$ we have $\frac{\partial^{2} u}{\partial \nu^{2}} \leq C$ in A weakly;
- $u(x)=\inf _{i \in \mathcal{I}} u_{i}(x)$, where $\left\{u_{i}\right\}_{i \in \mathcal{I}} \subset C^{2}(A)$ such that $\left\|D^{2} u_{i}\right\|_{\infty} \leq C$ for all $i \in \mathcal{I}$.

Equivalent formulations

Proposition

The following properties are equivalent:

- u is semiconcave with constant C;
- the function $x \rightarrow u(x)-\frac{C}{2}|x|^{2}$ is concave in A;
- $u=u_{1}+u_{2}$, with u_{1} concave and $u_{2} \in C^{2}(A)$ such that $\left\|D^{2} u_{2}\right\|_{\infty} \leq C$;
- for any $\nu \in \mathbb{R}^{n}$ such that $|\nu|=1$ we have $\frac{\partial^{2} u}{\partial \nu^{2}} \leq C$ in A weakly;
- $u(x)=\inf _{i \in \mathcal{I}} u_{i}(x)$, where $\left\{u_{i}\right\}_{i \in \mathcal{I}} \subset C^{2}(A)$ such that $\left\|D^{2} u_{i}\right\|_{\infty} \leq C$ for all $i \in \mathcal{I}$.
(semiconcavity \longleftrightarrow minimization).

Generalizations

Definition

A function $u: A \rightarrow \mathbb{R}$ is called semiconcave with modulus $\omega(\cdot)$, where $\omega: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is nondecreasing and satisfies $\lim _{\rho \rightarrow 0^{+}} \omega(\rho)=0$, if

$$
\begin{aligned}
& \lambda u(x)+(1-\lambda) u(y)-u(\lambda x+(1-\lambda) y) \\
\leq & \lambda(1-\lambda)|x-y| \omega(|x-y|)
\end{aligned}
$$

for any pair $x, y \in A$, such that $[x, y] \subset S$ is contained in S and for any $\lambda \in[0,1]$.

Standard definition: linear modulus $\omega(h)=C h$.

Generalizations

Definition

A function $u: A \rightarrow \mathbb{R}$ is called semiconcave with modulus $\omega(\cdot)$, where $\omega: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$is nondecreasing and satisfies $\lim _{\rho \rightarrow 0^{+}} \omega(\rho)=0$, if

$$
\begin{aligned}
& \lambda u(x)+(1-\lambda) u(y)-u(\lambda x+(1-\lambda) y) \\
\leq & \lambda(1-\lambda)|x-y| \omega(|x-y|)
\end{aligned}
$$

for any pair $x, y \in A$, such that $[x, y] \subset S$ is contained in S and for any $\lambda \in[0,1]$.

Standard definition: linear modulus $\omega(h)=C h$.

Generalizations (II)

- u semiconcave with modulus $\omega \operatorname{iff} u=\inf u_{i}$, with $u_{i} \in C^{1}$ and $D u_{i}$ has a uniform modulus of continuity $\omega(\cdot)$, for every i.

Generalizations (II)

- u semiconcave with modulus ω iff $u=\inf u_{i}$, with $u_{i} \in C^{1}$ and $D u_{i}$ has a uniform modulus of continuity $\omega(\cdot)$, for every i.
- u semiconcave with modulus ω does NOT imply that $u=u_{1}+u_{2}$ with u_{1} concave, $u_{2} \in C^{1}$.

Outline

(1) Introduction to semiconcave functions, generalized differentials, and singularities

- Semiconcave functions
- Semiconcavity of value functions
- Generalized differentials
- Optimal synthesis
- Singular sets, rectifiability

The distance function

Given any $S \subset \mathbb{R}^{n}$ closed, define

$$
d_{S}(x)=\min _{y \in S}|y-x|, \quad x \in \mathbb{R}^{n},
$$

distance function from the set S.
It is a special case of the minimum time function, corresponding to

The distance function

Given any $S \subset \mathbb{R}^{n}$ closed, define

$$
d_{S}(x)=\min _{y \in S}|y-x|, \quad x \in \mathbb{R}^{n},
$$

distance function from the set S.
It is a special case of the minimum time function, corresponding to

$$
y^{\prime}=a(t) \in A=B_{1} \text { (unit ball). }
$$

Semiconcavity of the distance function

Proposition

- The squared distance function d_{S}^{2} is semiconcave in \mathbb{R}^{n} with semiconcavity constant 2.

Semiconcavity of the distance function

Proposition

- The squared distance function d_{S}^{2} is semiconcave in \mathbb{R}^{n} with semiconcavity constant 2.
- d_{S} is locally semiconcave in $\mathbb{R}^{n} \backslash$. More precisely, given Ω such that dist $(S, \Omega)>0, d_{S}$ is semiconcave in Ω with semiconcavity constant equal to $\operatorname{dist}(S, \Omega)^{-1}$.

Semiconcavity of the distance function (II)

Proof of the semiconcavity of d_{S}^{2}

Semiconcavity of the distance function (II)

Proof of the semiconcavity of d_{S}^{2}
For any $x \in \mathbb{R}^{n}$ we have

$$
d_{S}^{2}(x)-|x|^{2}=\min _{y \in S}|x-y|^{2}-|x|^{2}=\min _{y \in S}\left(|y|^{2}-2\langle x, y\rangle\right) .
$$

Semiconcavity of the distance function (II)

Proof of the semiconcavity of d_{S}^{2}
For any $x \in \mathbb{R}^{n}$ we have

$$
d_{S}^{2}(x)-|x|^{2}=\min _{y \in S}|x-y|^{2}-|x|^{2}=\min _{y \in S}\left(|y|^{2}-2\langle x, y\rangle\right) .
$$

$\Longrightarrow d_{S}^{2}(x)-|x|^{2}$ is concave (infimum of linear functions)

Semiconcavity of the distance function (II)

Proof of the semiconcavity of d_{S}^{2}
For any $x \in \mathbb{R}^{n}$ we have

$$
d_{S}^{2}(x)-|x|^{2}=\min _{y \in S}|x-y|^{2}-|x|^{2}=\min _{y \in S}\left(|y|^{2}-2\langle x, y\rangle\right) .
$$

$\Longrightarrow d_{S}^{2}(x)-|x|^{2}$ is concave (infimum of linear functions)
$\Longrightarrow d_{S}^{2}(\cdot)$ semiconcave with constant 2. \square

Semiconcavity of the distance function (III)

Proof of the local semiconcavity of d_{S}

Take $z, h \in \mathbb{R}^{n}, z \neq 0$. By a direct computation

Semiconcavity of the distance function (III)

Proof of the local semiconcavity of d_{S}

Take $z, h \in \mathbb{R}^{n}, z \neq 0$. By a direct computation

$$
|z+h|+|z-h|-2|z| \leq \frac{|h|^{2}}{|z|} .
$$

Semiconcavity of the distance function (III)

Proof of the local semiconcavity of d_{S}
Take $z, h \in \mathbb{R}^{n}, z \neq 0$. By a direct computation

$$
|z+h|+|z-h|-2|z| \leq \frac{|h|^{2}}{|z|} .
$$

Let now Ω be a set with positive distance from S. For any x, h such that $[x-h, x+h] \subset \Omega$, let $\bar{x} \in S$ be a projection of x onto S. Then

Semiconcavity of the distance function (III)

Proof of the local semiconcavity of d_{S}
Take $z, h \in \mathbb{R}^{n}, z \neq 0$. By a direct computation

$$
|z+h|+|z-h|-2|z| \leq \frac{|h|^{2}}{|z|} .
$$

Let now Ω be a set with positive distance from S. For any x, h such that $[x-h, x+h] \subset \Omega$, let $\bar{x} \in S$ be a projection of x onto S. Then

$$
\begin{aligned}
& d_{S}(x+h)+d_{S}(x-h)-2 d_{S}(x) \\
& \quad \leq|x+h-\bar{x}|+|x-h-\bar{x}|-2|x-\bar{x}| \\
& \quad \leq \frac{|h|^{2}}{|x-\bar{x}|} \leq \frac{|h|^{2}}{\operatorname{dist}(S, \Omega)} .
\end{aligned}
$$

Interior sphere property

We say that $S \subset \mathbb{R}^{n}$ satisfies the interior sphere property for some $r>0$ if, for any $x \in S$ there exists y such that $x \in B_{r}(y) \subset S$.

Interior sphere property

We say that $S \subset \mathbb{R}^{n}$ satisfies the interior sphere property for some $r>0$ if, for any $x \in S$ there exists y such that $x \in \overline{B_{r}(y)} \subset S$.

Proposition

If S satisfies the interior sphere property for some $r>0$, then d_{S} is semiconcave in $\overline{\mathbb{R}^{n} \backslash S}$ with constant equal to r^{-1}.

The Mayer problem with fixed horizon

The Mayer problem with fixed horizon

- (f, A) control process in $\mathbb{R}^{n}, \quad T>0$
- given (t, x) and a control $\alpha:[t, T] \rightarrow A$
$y(\cdot ; t, x, \alpha)$ solution of $\left\{\begin{array}{l}\dot{y}(s)=f(y(s), \alpha(s)) \quad s \in[t, T] \\ y(t)=x\end{array}\right.$
- $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ final cost

The Mayer problem with fixed horizon

- (f, A) control process in $\mathbb{R}^{n}, \quad T>0$
- given (t, x) and a control $\alpha:[t, T] \rightarrow A$

$$
y(\cdot ; t, x, \alpha) \text { solution of }\left\{\begin{array}{l}
\dot{y}(s)=f(y(s), \alpha(s)) \quad s \in[t, T] \\
y(t)=x
\end{array}\right.
$$

- $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ final cost

Problem (Mayer with fixed horizon)
minimize $\psi(y(T ; t, x, \alpha)) \quad$ over all $\quad \alpha \in L^{1}(t, T ; A)$

Semiconcavity of the value function

Value function

$$
V(t, x)=\min _{\alpha} \psi(y(T ; t, x, \alpha)), \quad(t, x) \in[0, T] \times \mathbb{R}^{n} .
$$

Semiconcavity of the value function

Value function

$$
V(t, x)=\min _{\alpha} \psi(y(T ; t, x, \alpha)), \quad(t, x) \in[0, T] \times \mathbb{R}^{n} .
$$

Theorem
(Cannarsa-Frankowska, 1991) Suppose that

Semiconcavity of the value function

Value function

$$
V(t, x)=\min _{\alpha} \psi(y(T ; t, x, \alpha)), \quad(t, x) \in[0, T] \times \mathbb{R}^{n} .
$$

Theorem
(Cannarsa-Frankowska, 1991) Suppose that

- The control set A is compact.

Semiconcavity of the value function

Value function

$$
V(t, x)=\min _{\alpha} \psi(y(T ; t, x, \alpha)), \quad(t, x) \in[0, T] \times \mathbb{R}^{n}
$$

Theorem
(Cannarsa-Frankowska, 1991) Suppose that

- The control set A is compact.
$-f(x, a)$ is differentiable w.r.t. x.

Semiconcavity of the value function

Value function

$$
V(t, x)=\min _{\alpha} \psi(y(T ; t, x, \alpha)), \quad(t, x) \in[0, T] \times \mathbb{R}^{n} .
$$

Theorem

(Cannarsa-Frankowska, 1991) Suppose that

- The control set A is compact.
$-f(x, a)$ is differentiable w.r.t. x.
$-f(x, a)$ and $f_{x}(x, a)$ are Lipschitz continuous w.r.t. x, uniformly in a.

Semiconcavity of the value function

Value function

$$
V(t, x)=\min _{\alpha} \psi(y(T ; t, x, \alpha)), \quad(t, x) \in[0, T] \times \mathbb{R}^{n}
$$

Theorem

(Cannarsa-Frankowska, 1991) Suppose that

- The control set A is compact.
$-f(x, a)$ is differentiable w.r.t. x.
$-f(x, a)$ and $f_{x}(x, a)$ are Lipschitz continuous w.r.t. x, uniformly in a.
$-\psi$ is semiconcave in \mathbb{R}^{n}.

Semiconcavity of the value function

Value function

$$
V(t, x)=\min _{\alpha} \psi(y(T ; t, x, \alpha)), \quad(t, x) \in[0, T] \times \mathbb{R}^{n} .
$$

Theorem

(Cannarsa-Frankowska, 1991) Suppose that

- The control set A is compact.
$-f(x, a)$ is differentiable w.r.t. x.
$-f(x, a)$ and $f_{x}(x, a)$ are Lipschitz continuous w.r.t. x, uniformly in a.
$-\psi$ is semiconcave in \mathbb{R}^{n}.
Then the value function V is semiconcave in $[0, T] \times \mathbb{R}^{n}$ (jointly in (t, x)).

Proof of the semiconcavity (I)

Estimates on trajectories starting at different points but following the same control.

There exists $c>0$ such that

Regularity of f, Gronwall Lemma.

Proof of the semiconcavity (I)

Estimates on trajectories starting at different points but following the same control.

Lemma
There exists $c>0$ such that

$$
\left|y\left(T ; t, x_{0}, \alpha\right)-y\left(T ; t, x_{1}, \alpha\right)\right| \leq c\left|x_{0}-x_{1}\right|,
$$

$$
\left|y\left(T ; t, x_{0}, \alpha\right)+y\left(T ; t, x_{1}, \alpha\right)-2 y\left(T ; t, \frac{x_{0}+x_{1}}{2}, \alpha\right)\right| \leq c\left|x_{0}-x_{1}\right|^{2}
$$

for all $\alpha:[t, T] \rightarrow U$ and $x_{0}, x_{1} \in \mathbb{R}^{n}$.
Regularity of f, Gronwall Lemma.

Proof of the semiconcavity (I)

Estimates on trajectories starting at different points but following the same control.

Lemma
There exists $c>0$ such that

$$
\left|y\left(T ; t, x_{0}, \alpha\right)-y\left(T ; t, x_{1}, \alpha\right)\right| \leq c\left|x_{0}-x_{1}\right|,
$$

$$
\left|y\left(T ; t, x_{0}, \alpha\right)+y\left(T ; t, x_{1}, \alpha\right)-2 y\left(T ; t, \frac{x_{0}+x_{1}}{2}, \alpha\right)\right| \leq c\left|x_{0}-x_{1}\right|^{2}
$$

for all $\alpha:[t, T] \rightarrow U$ and $x_{0}, x_{1} \in \mathbb{R}^{n}$.
Regularity of f, Gronwall Lemma.

Proof of the semiconcavity (II)

For simplicity, we only prove semiconcavity w.r.t. x.

\square

Proof of the semiconcavity (II)

For simplicity, we only prove semiconcavity w.r.t. x.
Consider $x-h, x, x+h \in \mathbb{R}^{n}$ and $t \in[0, T)$. Let $\alpha:[t, T] \rightarrow A$ be an optimal control for the middle point (t, x).

By the previous lemma

Proof of the semiconcavity (II)

For simplicity, we only prove semiconcavity w.r.t. x.
Consider $x-h, x, x+h \in \mathbb{R}^{n}$ and $t \in[0, T)$. Let $\alpha:[t, T] \rightarrow A$ be an optimal control for the middle point (t, x).

Let us set for simplicity

$$
y(\cdot)=y(\cdot ; t, x, \alpha), \quad y_{-}(\cdot)=y(\cdot ; t, x-h, \alpha), \quad y_{+}(\cdot)=y(\cdot ; t, x+h, \alpha) .
$$

By the previous lemma

Proof of the semiconcavity (II)

For simplicity, we only prove semiconcavity w.r.t. x.
Consider $x-h, x, x+h \in \mathbb{R}^{n}$ and $t \in[0, T)$. Let $\alpha:[t, T] \rightarrow A$ be an optimal control for the middle point (t, x).

Let us set for simplicity

$$
y(\cdot)=y(\cdot ; t, x, \alpha), \quad y_{-}(\cdot)=y(\cdot ; t, x-h, \alpha), \quad y_{+}(\cdot)=y(\cdot ; t, x+h, \alpha) .
$$

By the previous lemma

$$
\left|y_{+}(T)-y_{-}(T)\right| \leq c|h|, \quad\left|y_{+}(T)+y_{-}(T)-2 y(T)\right| \leq c|h|^{2} .
$$

Proof of the semiconcavity (III)

It follows,

$$
\begin{aligned}
& V(t, x+h)+V(t, x-h)-2 V(t, x) \\
& \quad \leq \quad \psi\left(y_{+}(T)\right)+\psi\left(y_{-}(T)\right)-2 \psi(y(T)) \\
& =\quad \psi\left(y_{+}(T)\right)+\psi\left(y_{-}(T)\right)-2 \psi\left(\frac{y_{+}(T)+y_{-}(T)}{2}\right) \\
& \quad+2 \psi\left(\frac{y_{+}(T)+y_{-}(T)}{2}\right)-2 \psi(y(T)) \\
& \leq \quad C_{\psi}\left|y_{+}(T)-y_{-}(T)\right|^{2}+L_{\psi}\left|y_{+}(T)+y_{-}(T)-2 y(T)\right| \\
& \leq \quad\left(C_{\psi} c^{2}+L_{\psi} c\right)|h|^{2},
\end{aligned}
$$

which proves the semiconcavity w.r.t. x.

Minimum time function

Minimum time function

- (f, A) control process in \mathbb{R}^{n},
- $f(x, a)$ Lipschitz w.r.t. x, A compact;

Minimum time function

- (f, A) control process in \mathbb{R}^{n},
- $f(x, a)$ Lipschitz w.r.t. x, A compact;
- given $\alpha:[0, \infty) \rightarrow A$ control,

$$
y(\cdot ; x, \alpha) \text { solution of }\left\{\begin{array}{l}
\dot{y}(t)=f(y(t), \alpha(t)) \quad(t \geqslant 0) \\
y(0)=x
\end{array}\right.
$$

- target $S \subset \mathbb{R}^{n}$ nonempty closed set

Minimum time function

- (f, A) control process in \mathbb{R}^{n},
- $f(x, a)$ Lipschitz w.r.t. x, A compact;
- given $\alpha:[0, \infty) \rightarrow A$ control,

$$
y(\cdot ; x, \alpha) \text { solution of }\left\{\begin{array}{l}
\dot{y}(t)=f(y(t), \alpha(t)) \quad(t \geqslant 0) \\
y(0)=x
\end{array}\right.
$$

- target $S \subset \mathbb{R}^{n}$ nonempty closed set
- transition time $\tau(x, \alpha)=\inf \{t \geqslant 0 \mid y(t ; x, \alpha) \in S\}$
- minimum time function

Minimum time function

- (f, A) control process in \mathbb{R}^{n},
- $f(x, a)$ Lipschitz w.r.t. x, A compact;
- given $\alpha:[0, \infty) \rightarrow A$ control,

$$
y(\cdot ; x, \alpha) \text { solution of }\left\{\begin{array}{l}
\dot{y}(t)=f(y(t), \alpha(t)) \quad(t \geqslant 0) \\
y(0)=x
\end{array}\right.
$$

- target $S \subset \mathbb{R}^{n}$ nonempty closed set
- transition time $\tau(x, \alpha)=\inf \{t \geqslant 0 \mid y(t ; x, \alpha) \in S\}$
- controllable set $\mathcal{C}=\left\{x \in \mathbb{R}^{n} \mid \exists \alpha: \tau(x, \alpha)<\infty\right\}$

Minimum time function

- (f, A) control process in \mathbb{R}^{n},
- $f(x, a)$ Lipschitz w.r.t. x, A compact;
- given $\alpha:[0, \infty) \rightarrow A$ control,

$$
y(\cdot ; x, \alpha) \text { solution of }\left\{\begin{array}{l}
\dot{y}(t)=f(y(t), \alpha(t)) \quad(t \geqslant 0) \\
y(0)=x
\end{array}\right.
$$

- target $S \subset \mathbb{R}^{n}$ nonempty closed set
- transition time $\tau(x, \alpha)=\inf \{t \geqslant 0 \mid y(t ; x, \alpha) \in S\}$
- controllable set $\mathcal{C}=\left\{x \in \mathbb{R}^{n} \mid \exists \alpha: \tau(x, \alpha)<\infty\right\}$
- minimum time function $T(x)=\inf _{\alpha} \tau(x, \alpha) \quad x \in \mathcal{C}$

Petrov condition

Definition

Given $y \in \partial S$, a vector $\nu \in \mathbb{R}^{n}$ is called a proximal normal to S at y if

$$
\operatorname{proj}_{S}(y+\varepsilon \nu)=\{y\}
$$

for $\varepsilon>0$ small enough.
Definition
We say that (f, A) satisfies the Petrov condition on S if there exists $\mu>0$ such that

$$
\min _{a \in A} f(x, a) \cdot \nu \leq-\mu|\nu|
$$

for any $x \in \partial S, \nu$ proximal normal to S at x.

Local controllability

Theorem
(Petrov 1970, Bardi-Falcone 1990, ...) Let the Petrov condition hold. Then

- \mathcal{C} is an open neighbourhood of S;

Local controllability

Theorem
(Petrov 1970, Bardi-Falcone 1990, . .) Let the Petrov condition hold. Then

- \mathcal{C} is an open neighbourhood of S;
- there exist $k, \delta>0$ such that

$$
T(x) \leq k d_{S}(x), \quad \forall x \text { s.t. } d_{S}(x) \leq \delta
$$

Local controllability

Theorem
(Petrov 1970, Bardi-Falcone 1990, . .) Let the Petrov condition hold. Then

- \mathcal{C} is an open neighbourhood of S;
- there exist $k, \delta>0$ such that

$$
T(x) \leq k d_{S}(x), \quad \forall x \text { s.t. } d_{S}(x) \leq \delta
$$

- T is locally Lipschitz continuous on \mathcal{C}.

Semiconcavity of T

Theorem
Let the Petrov condition hold and let $f(x, a)$ be $C^{1,1}$ w.r.t. x.

- If S satisfies an interior sphere property, then T is locally

Semiconcavity of T

Theorem
Let the Petrov condition hold and let $f(x, a)$ be $C^{1,1}$ w.r.t. x.

- If S satisfies an interior sphere property, then T is locally semiconcave in $\overline{\mathcal{C} \backslash S}$. (Cannarsa-S., 1995)

Semiconcavity of T

Theorem
Let the Petrov condition hold and let $f(x, a)$ be $C^{1,1}$ w.r.t. x.

- If S satisfies an interior sphere property, then T is locally semiconcave in $\overline{\mathcal{C} \backslash S}$. (Cannarsa-S., 1995)
- If $f(x, A)$ is convex and satisfies an interior sphere property for x near S, then T is locally semiconcave in $\mathcal{C} \backslash S$.
(Cannarsa-Frankowska, S., 2004)

Semiconcavity of T

Theorem

Let the Petrov condition hold and let $f(x, a)$ be $C^{1,1}$ w.r.t. x.

- If S satisfies an interior sphere property, then T is locally semiconcave in $\overline{\mathcal{C} \backslash S}$. (Cannarsa-S., 1995)
- If $f(x, A)$ is convex and satisfies an interior sphere property for x near S, then T is locally semiconcave in $\mathcal{C} \backslash S$.
(Cannarsa-Frankowska, S., 2004)
- If $f(x, a)=A x+a$ for some matrix A and S is convex, then T is locally semiconvex in $\overline{\mathcal{C} \backslash S}$. (Cannarsa-S., 1995)

Outline

(1) Introduction to semiconcave functions, generalized differentials, and singularities

- Semiconcave functions
- Semiconcavity of value functions
- Generalized differentials
- Optimal synthesis
- Singular sets, rectifiability

Lipschitz continuity

Proposition

If $u: A \rightarrow \mathbb{R}$ is semiconcave (with a general modulus), it is locally Lipschitz continuous in the interior of A.

Semiconcave functions are differentiable almost everywhere (Rademacher's theorem).

Lipschitz continuity

Proposition

If $u: A \rightarrow \mathbb{R}$ is semiconcave (with a general modulus), it is locally Lipschitz continuous in the interior of A.

Corollary
Semiconcave functions are differentiable almost everywhere (Rademacher's theorem).

Lipschitz continuity

Proposition

If $u: A \rightarrow \mathbb{R}$ is semiconcave (with a general modulus), it is locally Lipschitz continuous in the interior of A.

Corollary
Semiconcave functions are differentiable almost everywhere (Rademacher's theorem).

Theorem
(Alexandroff) Semiconcave functions with linear modulus is twice differentiable almost everywhere.

Fréchet differentials

Let $u: A \rightarrow \mathbb{R}$, with $A \subset \mathbb{R}^{n}$ open.
Definition
Given $x \in A$, the sets

$$
\begin{aligned}
& D^{-} u(x)=\left\{p \in \mathbb{R}^{n}: \liminf _{y \rightarrow x} \frac{u(y)-u(x)-\langle p, y-x\rangle}{|y-x|} \geq 0\right\}, \\
& D^{+} u(x)=\left\{p \in \mathbb{R}^{n}: \limsup _{y \rightarrow x} \frac{u(y)-u(x)-\langle p, y-x\rangle}{|y-x|} \leq 0\right\}
\end{aligned}
$$

are called, respectively, the (Fréchet) subdifferential and superdifferential of u at x.

Reachable gradients

Definition

Given $u: A \rightarrow \mathbb{R}$ and $x \in A$, we say that p is a reachable gradient of u at x if there exists $\left\{x_{n}\right\} \subset A$ such that u is differentiable at x_{n} and

$$
x=\lim _{n \rightarrow \infty} x_{n} \quad p=\lim _{n \rightarrow \infty} D u\left(x_{n}\right)
$$

We denote by $D^{*} u(x)$ the set of reachable gradients.

Reachable gradients

Definition

Given $u: A \rightarrow \mathbb{R}$ and $x \in A$, we say that p is a reachable gradient of u at x if there exists $\left\{x_{n}\right\} \subset A$ such that u is differentiable at x_{n} and

$$
x=\lim _{n \rightarrow \infty} x_{n} \quad p=\lim _{n \rightarrow \infty} D u\left(x_{n}\right)
$$

We denote by $D^{*} u(x)$ the set of reachable gradients.

Reachable gradients

Definition

Given $u: A \rightarrow \mathbb{R}$ and $x \in A$, we say that p is a reachable gradient of u at x if there exists $\left\{x_{n}\right\} \subset A$ such that u is differentiable at x_{n} and

$$
x=\lim _{n \rightarrow \infty} x_{n} \quad p=\lim _{n \rightarrow \infty} D u\left(x_{n}\right)
$$

We denote by $D^{*} u(x)$ the set of reachable gradients.

If $u \in \operatorname{Lip}_{\text {loc }}(A)$, then $D^{*} u(x) \neq \emptyset$ for any $x \in A$.

Reachable gradients

Definition

Given $u: A \rightarrow \mathbb{R}$ and $x \in A$, we say that p is a reachable gradient of u at x if there exists $\left\{x_{n}\right\} \subset A$ such that u is differentiable at x_{n} and

$$
x=\lim _{n \rightarrow \infty} x_{n} \quad p=\lim _{n \rightarrow \infty} D u\left(x_{n}\right)
$$

We denote by $D^{*} u(x)$ the set of reachable gradients.

If $u \in \operatorname{Lip}_{\text {loc }}(A)$, then $D^{*} u(x) \neq \emptyset$ for any $x \in A$.
If $u \in \operatorname{Lip}_{\text {loc }}(A)$, the convex hull of $D^{*} u(x)$ coincides with Clarke's generalized gradient.

Differential properties

Proposition

Let $u: A \rightarrow \mathbb{R}$ be semiconcave (with general modulus). Then

- $D^{+} u(x)=\operatorname{co}\left(D^{*} u(x)\right)$.

Differential properties

Proposition

Let $u: A \rightarrow \mathbb{R}$ be semiconcave (with general modulus). Then

- $D^{+} u(x)=\operatorname{co}\left(D^{*} u(x)\right)$.
- $D^{+} u(x) \neq \emptyset$.

Differential properties

Proposition

Let $u: A \rightarrow \mathbb{R}$ be semiconcave (with general modulus). Then

- $D^{+} u(x)=\operatorname{co}\left(D^{*} u(x)\right)$.
- $D^{+} u(x) \neq \emptyset$.
- $D^{*} u(x) \subset \partial D^{+} u(x)$.

Differential properties

Proposition

Let $u: A \rightarrow \mathbb{R}$ be semiconcave (with general modulus). Then

- $D^{+} u(x)=\operatorname{co}\left(D^{*} u(x)\right)$.
- $D^{+} u(x) \neq \emptyset$.
- $D^{*} u(x) \subset \partial D^{+} u(x)$.
- If $x_{k} \rightarrow x$ and if $p_{k} \in D^{+} u\left(x_{k}\right)$ satisfy $p_{k} \rightarrow p$, then $p \in D^{+} u(x)$ (upper semicontinuity of $D^{+} u$).

Differential properties

Proposition

Let $u: A \rightarrow \mathbb{R}$ be semiconcave (with general modulus). Then

- $D^{+} u(x)=\operatorname{co}\left(D^{*} u(x)\right)$.
- $D^{+} u(x) \neq \emptyset$.
- $D^{*} u(x) \subset \partial D^{+} u(x)$.
- If $x_{k} \rightarrow x$ and if $p_{k} \in D^{+} u\left(x_{k}\right)$ satisfy $p_{k} \rightarrow p$, then $p \in D^{+} u(x)$ (upper semicontinuity of $D^{+} u$).
- If $D^{+} u(x)$ is a singleton, then u is differentiable at x.

Differential properties

For simplicity, linear modulus of semiconcavity, A open convex.

Proposition

Let $u: A \rightarrow \mathbb{R}$ be semiconcave with constant C. Then

- $p \in D^{+} u(x)$ if and only if

$$
u(y) \leq u(x)+\langle p, y-x\rangle+\frac{C}{2}|x-y|^{2}
$$

for all $y \in A$;

Differential properties

For simplicity, linear modulus of semiconcavity, A open convex.

Proposition

Let $u: A \rightarrow \mathbb{R}$ be semiconcave with constant C. Then

- $p \in D^{+} u(x)$ if and only if

$$
u(y) \leq u(x)+\langle p, y-x\rangle+\frac{C}{2}|x-y|^{2}
$$

for all $y \in A$;

- given x, y and $p \in D^{+} u(x), q \in D^{+} u(y)$, we have

$$
\langle q-p, y-x\rangle \leq C|x-y|^{2} \quad \text { (monotonicity of } D^{+} u \text {). }
$$

An approximation lemma

Proposition

Let $u: A \rightarrow \mathbb{R}$ be semiconcave, $x_{0} \in A$ and V an open set such that $x_{0} \in V \subset \bar{V} \subset A$. Then, for any $p \in D^{+} u\left(x_{0}\right)$ there is a sequence $u_{k} \in C^{\infty}(V)$ such that

An approximation lemma

Proposition

Let $u: A \rightarrow \mathbb{R}$ be semiconcave, $x_{0} \in A$ and V an open set such that $x_{0} \in V \subset \bar{V} \subset A$. Then, for any $p \in D^{+} u\left(x_{0}\right)$ there is a sequence $u_{k} \in C^{\infty}(V)$ such that

- $u_{k} \rightarrow u$ uniformly in V

An approximation lemma

Proposition

Let $u: A \rightarrow \mathbb{R}$ be semiconcave, $x_{0} \in A$ and V an open set such that $x_{0} \in V \subset \bar{V} \subset A$. Then, for any $p \in D^{+} u\left(x_{0}\right)$ there is a sequence $u_{k} \in C^{\infty}(V)$ such that

- $u_{k} \rightarrow u$ uniformly in V
- $D u_{k}\left(x_{0}\right) \rightarrow p$

An approximation lemma

Proposition

Let $u: A \rightarrow \mathbb{R}$ be semiconcave, $x_{0} \in A$ and V an open set such that $x_{0} \in V \subset \bar{V} \subset A$. Then, for any $p \in D^{+} u\left(x_{0}\right)$ there is a sequence $u_{k} \in C^{\infty}(V)$ such that

- $u_{k} \rightarrow u$ uniformly in V
- $D u_{k}\left(x_{0}\right) \rightarrow p$
- $\left\|u_{k}\right\|_{\infty} \leq M,\left\|D u_{k}\right\|_{\infty} \leq L,\left\|D^{2} u_{k}\right\|_{\infty} \leq C$, for all k, where M, L and C are respectively the supremum, the Lipschitz constant and the semiconcavity constant of u on A.

Semiconcavity and viscosity

Consider the Hamilton-Jacobi equation

$$
(H J) \quad H(x, u, D u)=0, \quad x \in \Omega \subset \mathbb{R}^{n}
$$

with H a continuous function.

Semiconcavity and viscosity

Consider the Hamilton-Jacobi equation

$$
(H J) \quad H(x, u, D u)=0, \quad x \in \Omega \subset \mathbb{R}^{n}
$$

with H a continuous function.
$u \in C(\Omega)$ is a viscosity solution of $(H J)$ if it satisfies, for any $x \in \Omega$,

$$
\begin{aligned}
& H(x, u(x), p) \leq 0 \quad \forall p \in D^{+} u(x), \\
& H(x, u(x), q) \geq 0 \quad \forall q \in D^{-} u(x)
\end{aligned}
$$

Semiconcavity and viscosity (II)

Proposition

Suppose that $H(x, u, p)$ is convex w.r.t. p. Let $u: \Omega \rightarrow \mathbb{R}$ be a semiconcave function which satisfies (HJ) at all points of differentiability. Then u is a viscosity solution of (HJ).

Semiconcavity and viscosity (II)

Proposition

Suppose that $H(x, u, p)$ is convex w.r.t. p. Let $u: \Omega \rightarrow \mathbb{R}$ be a semiconcave function which satisfies (HJ) at all points of differentiability. Then u is a viscosity solution of (HJ).

Proof - At the points x where u is differentiable - trivial.

Semiconcavity and viscosity (II)

Proposition

Suppose that $H(x, u, p)$ is convex w.r.t. p. Let $u: \Omega \rightarrow \mathbb{R}$ be a semiconcave function which satisfies (HJ) at all points of differentiability. Then u is a viscosity solution of (HJ).

Proof - At the points x where u is differentiable - trivial. If u is not differentiable at x, then $D^{-} u(x)=\emptyset$, while $D^{+} u(x)=\operatorname{co}\left(D^{*} u(x)\right)$.

By continuity, $H(x, u(x), p)$
By convexity, $H(x, u(x), p)$

Semiconcavity and viscosity (II)

Proposition

Suppose that $H(x, u, p)$ is convex w.r.t. p. Let $u: \Omega \rightarrow \mathbb{R}$ be a semiconcave function which satisfies (HJ) at all points of differentiability. Then u is a viscosity solution of (HJ).

Proof - At the points x where u is differentiable - trivial. If u is not differentiable at x, then $D^{-} u(x)=\emptyset$, while $D^{+} u(x)=\operatorname{co}\left(D^{*} u(x)\right)$.
By continuity, $H(x, u(x), p)=0$ for all $p \in D^{*} u(x)$.

Semiconcavity and viscosity (II)

Proposition

Suppose that $H(x, u, p)$ is convex w.r.t. p. Let $u: \Omega \rightarrow \mathbb{R}$ be a semiconcave function which satisfies (HJ) at all points of differentiability. Then u is a viscosity solution of (HJ).

Proof - At the points x where u is differentiable - trivial.
If u is not differentiable at x, then $D^{-} u(x)=\emptyset$, while $D^{+} u(x)=\operatorname{co}\left(D^{*} u(x)\right)$.

By continuity, $H(x, u(x), p)=0$ for all $p \in D^{*} u(x)$.
By convexity, $H(x, u(x), p) \leq 0$ for all $p \in D^{+} u(x)$.

Marginal functions

Marginal functions: infimum of smooth functions

$(\longleftrightarrow$ semiconcave functions.)

Marginal functions

Marginal functions: infimum of smooth functions (\longleftrightarrow semiconcave functions.)

\square

Marginal functions

Marginal functions: infimum of smooth functions
(\longleftrightarrow semiconcave functions.)
$A \subset \mathbb{R}^{n}$ open, $S \subset \mathbb{R}^{m}$ compact.
$F=F(s, x)$ continuous in $S \times A$ together with $D_{x} F$.
Define $u(x)=\min _{s \in S} F(s, x)$. Then u is semiconcave.

Marginal functions

Marginal functions: infimum of smooth functions
(\longleftrightarrow semiconcave functions.)
$A \subset \mathbb{R}^{n}$ open, $S \subset \mathbb{R}^{m}$ compact.
$F=F(s, x)$ continuous in $S \times A$ together with $D_{x} F$.
Define $u(x)=\min _{s \in S} F(s, x)$. Then u is semiconcave.

Marginal functions (II)

Theorem

Let $u(x)=\min _{s \in S} F(s, x)$ as above. Given $x \in A$, define

$$
\begin{aligned}
& M(x)=\{s \in S: u(x)=F(s, x)\} \\
& Y(x)=\left\{D_{x} F(s, x): s \in M(x)\right\}
\end{aligned}
$$

Marginal functions (II)

Theorem

Let $u(x)=\min _{s \in S} F(s, x)$ as above. Given $x \in A$, define

$$
\begin{aligned}
& M(x)=\{s \in S: u(x)=F(s, x)\} \\
& Y(x)=\left\{D_{x} F(s, x): s \in M(x)\right\}
\end{aligned}
$$

Then, for any $x \in A$

$$
D^{+} u(x)=\operatorname{co} Y(x)
$$

Marginal functions (II)

Theorem

Let $u(x)=\min _{s \in S} F(s, x)$ as above. Given $x \in A$, define

$$
\begin{aligned}
& M(x)=\{s \in S: u(x)=F(s, x)\} \\
& Y(x)=\left\{D_{x} F(s, x): s \in M(x)\right\}
\end{aligned}
$$

Then, for any $x \in A$

$$
D^{+} u(x)=\operatorname{co} Y(x)
$$

In particular, u is differentiable at x if and only if $Y(x)$ is a singleton.

Generalized gradients of the distance

Corollary
Let S be a nonempty closed subset of \mathbb{R}^{n}. Then

- d_{S} is differentiable at $x \notin S$ if and only if $\operatorname{proj}_{S}(x)$ is a singleton and in this case

$$
D d_{S}(x)=\frac{x-y}{|x-y|}
$$

where y is the unique element of $\operatorname{proj}_{s}(x)$.

Generalized gradients of the distance

Corollary
Let S be a nonempty closed subset of \mathbb{R}^{n}. Then

- d_{S} is differentiable at $x \notin S$ if and only if $\operatorname{proj}_{S}(x)$ is a singleton and in this case

$$
D d_{S}(x)=\frac{x-y}{|x-y|}
$$

where y is the unique element of $\operatorname{proj}_{s}(x)$.

- If $\operatorname{proj}_{s}(x)$ is not a singleton then we have

$$
D^{+} d_{S}(x)=\operatorname{co}\left\{\frac{x-y}{|x-y|}: y \in \operatorname{proj}_{s}(x)\right\},
$$

while $D^{-} d_{S}(x)=\emptyset$.

Outline

(1) Introduction to semiconcave functions, generalized differentials, and singularities

- Semiconcave functions
- Semiconcavity of value functions
- Generalized differentials
- Optimal synthesis
- Singular sets, rectifiability

Back to the Mayer problem

(f, A) control process in $\mathbb{R}^{n}, \quad T>0$
final cost

Back to the Mayer problem

- (f, A) control process in $\mathbb{R}^{n}, \quad T>0$
- given (t, x) and a control $\alpha:[t, T] \rightarrow A$

$$
y(\cdot ; t, x, \alpha) \text { solution of }\left\{\begin{array}{l}
\dot{y}(s)=f(y(s), \alpha(s)) \quad s \in[t, T] \\
y(t)=x
\end{array}\right.
$$

- $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ final cost

Back to the Mayer problem

- (f, A) control process in $\mathbb{R}^{n}, \quad T>0$
- given (t, x) and a control $\alpha:[t, T] \rightarrow A$

$$
y(\cdot ; t, x, \alpha) \text { solution of }\left\{\begin{array}{l}
\dot{y}(s)=f(y(s), \alpha(s)) \quad s \in[t, T] \\
y(t)=x
\end{array}\right.
$$

- $\quad \psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ final cost

Mayer problem: minimize $\quad \psi(y(T ; t, x, \alpha))$ over all $\alpha \in L^{1}(t, T ; A)$

Back to the Mayer problem

- (f, A) control process in $\mathbb{R}^{n}, \quad T>0$
- given (t, x) and a control $\alpha:[t, T] \rightarrow A$

$$
y(\cdot ; t, x, \alpha) \text { solution of }\left\{\begin{array}{l}
\dot{y}(s)=f(y(s), \alpha(s)) \quad s \in[t, T] \\
y(t)=x
\end{array}\right.
$$

- $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R} \quad$ final cost

Mayer problem: minimize $\quad \psi(y(T ; t, x, \alpha))$ over all $\alpha \in L^{1}(t, T ; A)$
Value function $V(t, x)=\min _{\alpha} \psi(y(T ; t, x, \alpha))$.

We assume in the following

- A compact
- $f(x, a)$ of class $C^{1,1}$ w.r.t. x
- $\psi: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of class C^{1} and semiconcave

Pontryagin's maximum principle

Theorem

- $\quad \alpha^{*} \in L^{1}(0, T ; A)$ and $y^{*}(\cdot):=y\left(\cdot ; x, \alpha^{*}\right) \quad$ optimal pair

$$
\psi\left(y^{*}(T)\right)=\min _{\alpha \in L^{\prime}(0, T ; A)} \psi(y(T ; x, \alpha))
$$

- let p^{*} be the solution of the adjoint problem

$$
\left\{\begin{array}{l}
\dot{p}(s)=-f_{x}\left(y^{*}(s), \alpha^{*}(s)\right)^{t r} p(s) \quad(s \in[0, T]) \\
p(T)=D \psi\left(y^{*}(T)\right)
\end{array}\right.
$$

Pontryagin's maximum principle

Theorem

- $\alpha^{*} \in L^{1}(0, T ; A)$ and $y^{*}(\cdot):=y\left(\cdot ; x, \alpha^{*}\right)$ optimal pair

$$
\psi\left(y^{*}(T)\right)=\min _{\alpha \in L^{\prime}(0, T ; A)} \psi(y(T ; x, \alpha))
$$

- let p^{*} be the solution of the adjoint problem

$$
\left\{\begin{array}{l}
\dot{p}(s)=-f_{x}\left(y^{*}(s), \alpha^{*}(s)\right)^{t r} p(s) \quad(s \in[0, T]) \\
p(T)=D \psi\left(y^{*}(T)\right)
\end{array}\right.
$$

then

$$
p^{*}(s) \cdot f\left(y^{*}(s), \alpha^{*}(s)\right)=\min _{a \in A} p^{*}(s) \cdot f\left(y^{*}(s), a\right) \quad(s \in[0, T] \text { a.e. })
$$

Dual arc inclusion for the Mayer problem

Dual arc inclusion for the Mayer problem

Denote by $\nabla^{+} V(t, x), \nabla^{-} V(t, x)$ the super- and subdifferential of V at (t, x) with respect to the x variable alone.
assumptions, we have that

If in addition $p(t) \in \nabla^{-} V(t, y(t))$, then we also have

Dual arc inclusion for the Mayer problem

Denote by $\nabla^{+} V(t, x), \nabla^{-} V(t, x)$ the super- and subdifferential of V at (t, x) with respect to the x variable alone.

Theorem
(Clarke-Vinter 1987, Cannarsa-Frankowska, 1991) Under the previous assumptions, we have that

$$
p(s) \in \nabla^{+} V(s, y(s)), \quad \forall s \in[t, T] .
$$

If in addition $p(t) \in \nabla^{-} V(t, y(t))$, then we also have

$$
p(s) \in \nabla^{-} V(s, y(s)), \quad \forall s \in[t, T]
$$

Dual arc inclusion for the Mayer problem

Denote by $\nabla^{+} V(t, x), \nabla^{-} V(t, x)$ the super- and subdifferential of V at (t, x) with respect to the x variable alone.

Theorem
(Clarke-Vinter 1987, Cannarsa-Frankowska, 1991) Under the previous assumptions, we have that

$$
p(s) \in \nabla^{+} V(s, y(s)), \quad \forall s \in[t, T] .
$$

If in addition $p(t) \in \nabla^{-} V(t, y(t))$, then we also have

$$
p(s) \in \nabla^{-} V(s, y(s)), \quad \forall s \in[t, T]
$$

Hamiltonian form of PMP

Hamiltonian form of PMP

Assume that $f(x, A)$ is a (n-dimensional) uniformly convex set for all x.
 system

Hamiltonian form of PMP

Assume that $f(x, A)$ is a (n-dimensional) uniformly convex set for all x.
This implies that $H(x, p)=\max _{a \in A}-p \cdot f(x, a)$ is smooth for $p \neq 0$.

Hamiltonian form of PMP

Assume that $f(x, A)$ is a (n-dimensional) uniformly convex set for all x.
This implies that $H(x, p)=\max _{a \in A}-p \cdot f(x, a)$ is smooth for $p \neq 0$.
Theorem
Let (α, y) be an optimal pair for the point $(t, x) \in[0, T] \times \mathbb{R}^{n}$ and let $p:[t, T] \rightarrow \mathbb{R}^{n}$ be a dual arc associated with (α, y) such that $p(\bar{s}) \neq 0$ for some $\bar{s} \in[t, T]$. Then $p(s) \neq 0$ for all $s \in[t, T]$ and (y, p) solves the system

$$
\left\{\begin{array}{l}
y^{\prime}(s)=-H_{p}(y(s), p(s)) \\
p^{\prime}(s)=H_{x}(y(s), p(s))
\end{array} \quad s \in[t, T] .\right.
$$

optimal synthesis

optimal synthesis

Theorem

Given a point $(t, x) \in\left[0, T\left[\times \mathbb{R}^{n}\right.\right.$ and a vector $\bar{p}=\left(\bar{p}_{t}, \bar{p}_{x}\right) \in D^{*} V(t, x)$ such that $\bar{p} \neq 0$, let us associate with \bar{p} the pair $(y(\cdot), p(\cdot))$ which solves the hamiltonian system with initial conditions $y(t)=x, p(t)=\bar{p}_{x}$.

Then $y(\cdot)$ is an optimal trajectory for (t, x) and $p(\cdot)$ is a dual arc

optimal synthesis

Theorem

Given a point $(t, x) \in\left[0, T\left[\times \mathbb{R}^{n}\right.\right.$ and a vector $\bar{p}=\left(\bar{p}_{t}, \bar{p}_{x}\right) \in D^{*} V(t, x)$ such that $\bar{p} \neq 0$, let us associate with \bar{p} the pair $(y(\cdot), p(\cdot))$ which solves the hamiltonian system with initial conditions $y(t)=x, p(t)=\bar{p}_{x}$.
Then $y(\cdot)$ is an optimal trajectory for (t, x) and $p(\cdot)$ is a dual arc associated with $y(\cdot)$.

optimal synthesis

Theorem

Given a point $(t, x) \in\left[0, T\left[\times \mathbb{R}^{n}\right.\right.$ and a vector $\bar{p}=\left(\bar{p}_{t}, \bar{p}_{x}\right) \in D^{*} V(t, x)$ such that $\bar{p} \neq 0$, let us associate with \bar{p} the pair $(y(\cdot), p(\cdot))$ which solves the hamiltonian system with initial conditions $y(t)=x, p(t)=\bar{p}_{x}$.
Then $y(\cdot)$ is an optimal trajectory for (t, x) and $p(\cdot)$ is a dual arc associated with $y(\cdot)$.

The map from $D^{*} V(t, x)$ to the set of optimal trajectories from (t, x) defined in this way is injective, and it is one-to-one if $0 \notin D^{*} V(t, x)$.

optimal synthesis

Theorem

Given a point $(t, x) \in\left[0, T\left[\times \mathbb{R}^{n}\right.\right.$ and a vector $\bar{p}=\left(\bar{p}_{t}, \bar{x}_{x}\right) \in D^{*} V(t, x)$ such that $\bar{p} \neq 0$, let us associate with \bar{p} the pair $(y(\cdot), p(\cdot))$ which solves the hamiltonian system with initial conditions $y(t)=x, p(t)=\bar{p}_{x}$.
Then $y(\cdot)$ is an optimal trajectory for (t, x) and $p(\cdot)$ is a dual arc associated with $y(\cdot)$.

The map from $D^{*} V(t, x)$ to the set of optimal trajectories from (t, x) defined in this way is injective, and it is one-to-one if $0 \notin D^{*} V(t, x)$.

Corollary

If $0 \notin D^{*} V(t, x)$, then the optimal trajectory at (t, x) is unique if and only if V is differentiable at (t, x).

Outline

(1) Introduction to semiconcave functions, generalized differentials, and singularities

- Semiconcave functions
- Semiconcavity of value functions
- Generalized differentials
- Optimal synthesis
- Singular sets, rectifiability

The singular set

Given $u: A \rightarrow \mathbb{R}$ semiconcave, the singular set of u is

$$
\begin{aligned}
\Sigma(u) & =\{x \in A: u \text { is not differentiable at } x\} \\
& =\left\{x \in A: D^{+} u(x) \text { is not a singleton }\right\} .
\end{aligned}
$$

We know: Σ has measure zero.
Much sharper results can be given in terms of rectifiability properties.

The singular set

Given $u: A \rightarrow \mathbb{R}$ semiconcave, the singular set of u is

$$
\begin{aligned}
\Sigma(u) & =\{x \in A: u \text { is not differentiable at } x\} \\
& =\left\{x \in A: D^{+} u(x) \text { is not a singleton }\right\} .
\end{aligned}
$$

We know: Σ has measure zero.
Much sharper results can be given in terms of rectifiability properties.

The singular set

Given $u: A \rightarrow \mathbb{R}$ semiconcave, the singular set of u is

$$
\begin{aligned}
\Sigma(u) & =\{x \in A: u \text { is not differentiable at } x\} \\
& =\left\{x \in A: D^{+} u(x) \text { is not a singleton }\right\} .
\end{aligned}
$$

We know: Σ has measure zero.
Much sharper results can be given in terms of rectifiability properties.

rectifiable sets

Let $k \in\{0,1, \ldots, n\}$ and let $C \subset \mathbb{R}^{n}$.

- C is called a k-rectifiable set if there exists a Lipschitz continuous function $f: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ such that $C \subset f\left(\mathbb{R}^{k}\right)$.
countable family of k-rectifiable sets.
- C is called a countablv \mathcal{H}^{k}-rectifiable $s \in$ if there exists a Here \mathcal{H}^{k} denotes the k-dimensional Hausdorff measure.

rectifiable sets

Let $k \in\{0,1, \ldots, n\}$ and let $C \subset \mathbb{R}^{n}$.

- C is called a k-rectifiable set if there exists a Lipschitz continuous function $f: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ such that $C \subset f\left(\mathbb{R}^{k}\right)$.
- C is called a countably k-rectifiable set if it is the union of a countable family of k-rectifiable sets.

Here \mathcal{H}^{k} denotes the k-dimensional Hausdorff measure.

rectifiable sets

Let $k \in\{0,1, \ldots, n\}$ and let $C \subset \mathbb{R}^{n}$.

- C is called a k-rectifiable set if there exists a Lipschitz continuous function $f: \mathbb{R}^{k} \rightarrow \mathbb{R}^{n}$ such that $C \subset f\left(\mathbb{R}^{k}\right)$.
- C is called a countably k-rectifiable set if it is the union of a countable family of k-rectifiable sets.
- C is called a countably \mathcal{H}^{k}-rectifiable set if there exists a countably k-rectifiable set $E \subset \mathbb{R}^{n}$ such that $\mathcal{H}^{k}(C \backslash E)=0$. Here \mathcal{H}^{k} denotes the k-dimensional Hausdorff measure.

rectifiability results

It is easy to see that, if u is semiconcave with a linear modulus, then $D u$ is a function of bounded variation.

rectifiability results

It is easy to see that, if u is semiconcave with a linear modulus, then $D u$ is a function of bounded variation.

The singular set $\Sigma(u)$ coincides with the jump set of Du in the theory of $B V$ functions.

rectifiability results

It is easy to see that, if u is semiconcave with a linear modulus, then $D u$ is a function of bounded variation.

The singular set $\Sigma(u)$ coincides with the jump set of Du in the theory of $B V$ functions.

Standard results about $B V$ functions then imply that $\Sigma(u)$ is countably \mathcal{H}^{n-1}-rectifiable.

rectifiability results

It is easy to see that, if u is semiconcave with a linear modulus, then $D u$ is a function of bounded variation.

The singular set $\Sigma(u)$ coincides with the jump set of Du in the theory of $B V$ functions.

Standard results about $B V$ functions then imply that $\Sigma(u)$ is countably \mathcal{H}^{n-1}-rectifiable.

More precise results can be obtained by a direct approach.

rectifiability results (II)

$D^{+} u(x)$ is a convex set \Longrightarrow it has an integer dimension.
For $k=1, \ldots, n$, we define

rectifiability results (II)

$D^{+} u(x)$ is a convex set \Longrightarrow it has an integer dimension.
For $k=1, \ldots, n$, we define

$$
\Sigma^{k}(u)=\left\{x \in \Sigma: \operatorname{dim}\left(D^{+} u(x)\right)=k\right\} .
$$

rectifiability results (II)

$D^{+} u(x)$ is a convex set \Longrightarrow it has an integer dimension.
For $k=1, \ldots, n$, we define

$$
\Sigma^{k}(u)=\left\{x \in \Sigma: \operatorname{dim}\left(D^{+} u(x)\right)=k\right\} .
$$

Theorem

If $u: \Omega \rightarrow \mathbb{R}$ is semiconcave (with a general modulus) then the set $\Sigma^{k}(u)$ is countably $(n-k)$-rectifiable for any $k=1, \ldots, n$.

rectifiability results (II)

$D^{+} u(x)$ is a convex set \Longrightarrow it has an integer dimension.
For $k=1, \ldots, n$, we define

$$
\Sigma^{k}(u)=\left\{x \in \Sigma: \operatorname{dim}\left(D^{+} u(x)\right)=k\right\} .
$$

Theorem

If $u: \Omega \rightarrow \mathbb{R}$ is semiconcave (with a general modulus) then the set $\Sigma^{k}(u)$ is countably $(n-k)$-rectifiable for any $k=1, \ldots, n$.

Zajíček (1978), Veselý (1986), Alberti-Ambrosio-Cannarsa (1992).

example

Let $u(x, y)=-|x|-|y|$, concave on \mathbb{R}^{2}.

example

Let $u(x, y)=-|x|-|y|$, concave on \mathbb{R}^{2}.
Then $\Sigma(u)=\{(x, y): x=0$ or $y=0\}$.

example

Let $u(x, y)=-|x|-|y|$, concave on \mathbb{R}^{2}.
Then $\Sigma(u)=\{(x, y): x=0$ or $y=0\}$.
If $x=0$ and $y>0$, then $D^{+} u(x, y)=[-1,1] \times\{-1\}$.

example

Let $u(x, y)=-|x|-|y|$, concave on \mathbb{R}^{2}.
Then $\Sigma(u)=\{(x, y): x=0$ or $y=0\}$.
If $x=0$ and $y>0$, then $D^{+} u(x, y)=[-1,1] \times\{-1\}$. Similarly, any point with $x=0, y \neq 0$, or with $x \neq 0, y=0$ belongs to $\Sigma^{1}(u)$.

example

Let $u(x, y)=-|x|-|y|$, concave on \mathbb{R}^{2}.
Then $\Sigma(u)=\{(x, y): x=0$ or $y=0\}$.
If $x=0$ and $y>0$, then $D^{+} u(x, y)=[-1,1] \times\{-1\}$. Similarly, any point with $x=0, y \neq 0$, or with $x \neq 0, y=0$ belongs to $\Sigma^{1}(u)$.
Finally, $D^{+} u(0,0)=[-1,1] \times[-1,1]$, and $\Sigma^{2}(u)=\{(0,0)\}$.

sketch of the proof

Definition

Let $S \subset \mathbb{R}^{n}$ and $x \in \bar{S}$ be given. The contingent cone (or Bouligand's tangent cone) to S at x is the set

$$
T(x, S)=\left\{\lim _{i \rightarrow \infty} \frac{x_{i}-x}{t_{i}}: x_{i} \in S, x_{i} \rightarrow x, t_{i} \in \mathbb{R}_{+}, t_{i} \downarrow 0\right\} .
$$

The vector space generated by $T(x, S)$ is called tangent space to S at x and is denoted by $\operatorname{Tan}(x, S)$.

sketch of the proof (II)

Theorem

Let $S \subset \mathbb{R}^{n}$ be a set such that $\operatorname{dim} \operatorname{Tan}(x, S) \leq k$, for all $x \in S$, for a given integer $k \in[0, n]$. Then S is countably k-rectifiable.

If u is semiconcave in Ω, then
\square

sketch of the proof (II)

Theorem

Let $S \subset \mathbb{R}^{n}$ be a set such that dim $\operatorname{Tan}(x, S) \leq k$, for all $x \in S$, for a given integer $k \in[0, n]$. Then S is countably k-rectifiable.

Given $\rho>0$, we denote by $\Sigma_{\rho}^{k}(u)$ the set of all $x \in \Sigma^{k}(u)$ such that $D^{+} u(x)$ contains a k-dimensional sphere of radius ρ.

[^0]
sketch of the proof (II)

Theorem

Let $S \subset \mathbb{R}^{n}$ be a set such that dim $\operatorname{Tan}(x, S) \leq k$, for all $x \in S$, for a given integer $k \in[0, n]$. Then S is countably k-rectifiable.

Given $\rho>0$, we denote by $\Sigma_{\rho}^{k}(u)$ the set of all $x \in \Sigma^{k}(u)$ such that $D^{+} u(x)$ contains a k-dimensional sphere of radius ρ.

Theorem
If u is semiconcave in Ω, then

$$
\operatorname{Tan}\left(x, \Sigma_{\rho}^{k}(u)\right) \subset\left[D^{+} u(x)\right]^{\perp}, \quad \forall x \in \Sigma_{\rho}^{k}(u) .
$$

The rectifiability theorem follows.

Thank you for your attention!

[^0]: The rectifiability theorem follows

