Optimal control, Hamilton-Jacobi equations and singularities in euclidean and riemaniann spaces

Piermarco CANNARSA & Carlo SINESTRARI

Università di Roma "Tor Vergata"

SADCO SUMMER SCHOOL & WORKSHOP 2012 NEW TRENDS IN OPTIMAL CONTROL

Ravello, Italy

September 3 - 7, 2012

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

September 3 – 7, 2012 1 / 52

Outline

Introduction to semiconcave functions, generalized differentials, and singularities

- Semiconcave functions
- Semiconcavity of value functions
- Generalized differentials
- Optimal synthesis
- Singular sets, rectifiability

A (B) > A (B) > A (B) >

Outline

Introduction to semiconcave functions, generalized differentials, and singularities

- Semiconcave functions
- Semiconcavity of value functions
- Generalized differentials
- Optimal synthesis
- Singular sets, rectifiability

A (B) (A (B)) (A (B))

- Oleinik 1957 One-sided Lipschitz estimate as a uniqueness criterion for scalar hyperbolic conservation laws
- Kruzhkov 1960, Douglis 1961 Semiconcavity as a uniqueness criterion for Hamilton-Jacobi equations
- Hrustalev 1978 Semiconcavity of the value function in optimal control

Oleinik 1957 One-sided Lipschitz estimate as a uniqueness criterion for scalar hyperbolic conservation laws

Kruzhkov 1960, Douglis 1961 Semiconcavity as a uniqueness criterion for Hamilton-Jacobi equations

Hrustalev 1978 Semiconcavity of the value function in optimal control

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

September 3 – 7, 2012 4 / 52

Oleinik 1957 One-sided Lipschitz estimate as a uniqueness criterion for scalar hyperbolic conservation laws

Kruzhkov 1960, Douglis 1961 Semiconcavity as a uniqueness criterion for Hamilton-Jacobi equations

Hrustalev 1978 Semiconcavity of the value function in optimal control

(D) (A) (A) (A) (A)

Oleinik 1957 One-sided Lipschitz estimate as a uniqueness criterion for scalar hyperbolic conservation laws

Kruzhkov 1960, Douglis 1961 Semiconcavity as a uniqueness criterion for Hamilton-Jacobi equations

Hrustalev 1978 Semiconcavity of the value function in optimal control

(D) (A) (A) (A) (A) (A)

Historical remarks (II)

Cannarsa-Soner 1987 Semiconcavity of the value function in optimal control, singularities of semiconcave functions

Reference: Cannarsa–S.:"Semiconcave functions, Hamilton-Jacobi equations and optimal control" (Birkhäuser, 2004)

Semiconcave functions have been widely applied in other fields, e.g. nonlinear second order PDEs (Krylov), geometry of Alexandrov spaces (Perelman, Petrunin), etc.

(日)

Historical remarks (II)

Cannarsa-Soner 1987 Semiconcavity of the value function in optimal control, singularities of semiconcave functions

Reference: Cannarsa–S.:"Semiconcave functions, Hamilton-Jacobi equations and optimal control" (Birkhäuser, 2004)

Semiconcave functions have been widely applied in other fields, e.g. nonlinear second order PDEs (Krylov), geometry of Alexandrov spaces (Perelman, Petrunin), etc.

(日)

Historical remarks (II)

- Cannarsa-Soner 1987 Semiconcavity of the value function in optimal control, singularities of semiconcave functions
- Reference: Cannarsa–S.:"Semiconcave functions, Hamilton-Jacobi equations and optimal control" (Birkhäuser, 2004)
- Semiconcave functions have been widely applied in other fields, e.g. nonlinear second order PDEs (Krylov), geometry of Alexandrov spaces (Perelman, Petrunin), etc.

Definition

A function $u \in C(A)$, with $A \subset \mathbb{R}^n$ is called semiconcave in A (with a linear modulus) if there exists $C \ge 0$ such that

 $u(x+h) + u(x-h) - 2u(x) \le C|h|^2$,

for all $x, h \in \mathbb{R}^n$ such that $[x - h, x + h] \subset A$.

C is called a semiconcavity constant for u in A.

u semiconvex *if* –*u is semiconcave*.

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

Definition

A function $u \in C(A)$, with $A \subset \mathbb{R}^n$ is called semiconcave in A (with a linear modulus) if there exists $C \ge 0$ such that

 $u(x+h) + u(x-h) - 2u(x) \le C|h|^2$

for all $x, h \in \mathbb{R}^n$ such that $[x - h, x + h] \subset A$.

C is called a semiconcavity constant for u in A.

u semiconvex *if* – *u is semiconcave*.

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

September 3 – 7, 2012 6 / 52

(D) (A) (A) (A) (A)

Definition

A function $u \in C(A)$, with $A \subset \mathbb{R}^n$ is called semiconcave in A (with a linear modulus) if there exists $C \ge 0$ such that

$$u(x+h) + u(x-h) - 2u(x) \le C|h|^2$$

for all $x, h \in \mathbb{R}^n$ such that $[x - h, x + h] \subset A$.

C is called a semiconcavity constant for u in A.

u semiconvex *if – u is semiconcave*.

Definition

A function $u \in C(A)$, with $A \subset \mathbb{R}^n$ is called semiconcave in A (with a linear modulus) if there exists $C \ge 0$ such that

$$u(x+h) + u(x-h) - 2u(x) \le C|h|^2$$
,

for all $x, h \in \mathbb{R}^n$ such that $[x - h, x + h] \subset A$.

C is called a semiconcavity constant for u in A.

u semiconvex if -u is semiconcave.

(4月) イヨン イヨン - ヨ

Proposition

The following properties are equivalent:

- u is semiconcave with constant C;
- the function $x \to u(x) \frac{C}{2}|x|^2$ is concave in A;
- $u = u_1 + u_2$, with u_1 concave and $u_2 \in C^2(A)$ such that $||D^2u_2||_{\infty} \leq C$;
- for any $\nu \in \mathbb{R}^n$ such that $|\nu| = 1$ we have $\frac{\partial^2 u}{\partial \nu^2} \leq C$ in A weakly;
- u(x) = inf_{i∈I} u_i(x), where {u_i}_{i∈I} ⊂ C²(A) such that ||D²u_i||_∞ ≤ C for all i ∈ I. (semiconcavity ↔ minimization).

< 回 > < 回 > < 回 >

Proposition

The following properties are equivalent:

- u is semiconcave with constant C:
- the function $x \to u(x) \frac{C}{2}|x|^2$ is concave in A;

Proposition

The following properties are equivalent:

- u is semiconcave with constant C;
- the function $x \to u(x) \frac{C}{2}|x|^2$ is concave in A;
- $u = u_1 + u_2$, with u_1 concave and $u_2 \in C^2(A)$ such that $||D^2u_2||_{\infty} \leq C$;
- for any $\nu \in \mathbb{R}^n$ such that $|\nu| = 1$ we have $\frac{\partial^2 u}{\partial \nu^2} \leq C$ in A weakly;
- u(x) = inf_{i∈I} u_i(x), where {u_i}_{i∈I} ⊂ C²(A) such that ||D²u_i||_∞ ≤ C for all i ∈ I. (semiconcavity ↔ minimization).

(日)

Proposition

The following properties are equivalent:

- u is semiconcave with constant C;
- the function $x \to u(x) \frac{C}{2}|x|^2$ is concave in A;
- $u = u_1 + u_2$, with u_1 concave and $u_2 \in C^2(A)$ such that $||D^2u_2||_{\infty} \leq C$;
- for any $\nu \in \mathbb{R}^n$ such that $|\nu| = 1$ we have $\frac{\partial^2 u}{\partial \nu^2} \leq C$ in A weakly;
- u(x) = inf_{i∈I} u_i(x), where {u_i}_{i∈I} ⊂ C²(A) such that ||D²u_i||_∞ ≤ C for all i ∈ I. (semiconcavity ↔ minimization).

Proposition

The following properties are equivalent:

- u is semiconcave with constant C;
- the function $x \to u(x) \frac{C}{2}|x|^2$ is concave in A;
- $u = u_1 + u_2$, with u_1 concave and $u_2 \in C^2(A)$ such that $||D^2u_2||_{\infty} \leq C$;
- for any $\nu \in \mathbb{R}^n$ such that $|\nu| = 1$ we have $\frac{\partial^2 u}{\partial \nu^2} \leq C$ in A weakly;
- $u(x) = \inf_{i \in \mathcal{I}} u_i(x)$, where $\{u_i\}_{i \in \mathcal{I}} \subset C^2(A)$ such that $||D^2 u_i||_{\infty} \leq C$ for all $i \in \mathcal{I}$. (semiconcavity \longleftrightarrow minimization).

Proposition

The following properties are equivalent:

- u is semiconcave with constant C;
- the function $x \to u(x) \frac{C}{2}|x|^2$ is concave in A;
- $u = u_1 + u_2$, with u_1 concave and $u_2 \in C^2(A)$ such that $||D^2u_2||_{\infty} \leq C$;
- for any $\nu \in \mathbb{R}^n$ such that $|\nu| = 1$ we have $\frac{\partial^2 u}{\partial \nu^2} \leq C$ in A weakly;
- $u(x) = \inf_{i \in \mathcal{I}} u_i(x)$, where $\{u_i\}_{i \in \mathcal{I}} \subset C^2(A)$ such that $||D^2 u_i||_{\infty} \leq C$ for all $i \in \mathcal{I}$. (semiconcavity \longleftrightarrow minimization).

Generalizations

Definition

A function $u : A \to \mathbb{R}$ is called semiconcave with modulus $\omega(\cdot)$, where $\omega : \mathbb{R}_+ \to \mathbb{R}_+$ is nondecreasing and satisfies $\lim_{\rho \to 0^+} \omega(\rho) = 0$, if

$$\lambda u(x) + (1 - \lambda)u(y) - u(\lambda x + (1 - \lambda)y)$$

$$\leq \lambda (1 - \lambda)|x - y|\omega(|x - y|)$$

for any pair $x, y \in A$, such that $[x, y] \subset S$ is contained in S and for any $\lambda \in [0, 1]$.

Standard definition: linear modulus $\omega(h) = Ch$.

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 8 / 52

Generalizations

Definition

A function $u : A \to \mathbb{R}$ is called semiconcave with modulus $\omega(\cdot)$, where $\omega : \mathbb{R}_+ \to \mathbb{R}_+$ is nondecreasing and satisfies $\lim_{\rho \to 0^+} \omega(\rho) = 0$, if

$$\lambda u(x) + (1 - \lambda)u(y) - u(\lambda x + (1 - \lambda)y)$$

$$\leq \lambda (1 - \lambda)|x - y|\omega(|x - y|)$$

for any pair $x, y \in A$, such that $[x, y] \subset S$ is contained in S and for any $\lambda \in [0, 1]$.

Standard definition: linear modulus $\omega(h) = Ch$.

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

Generalizations (II)

- *u* semiconcave with modulus ω iff *u* = inf *u_i*, with *u_i* ∈ C¹ and D*u_i* has a uniform modulus of continuity ω(·), for every *i*.
- *u* semiconcave with modulus ω does NOT imply that $u = u_1 + u_2$ with u_1 concave, $u_2 \in C^1$.

(D) (A) (A) (A) (A)

Generalizations (II)

- *u* semiconcave with modulus ω iff *u* = inf *u_i*, with *u_i* ∈ C¹ and D*u_i* has a uniform modulus of continuity ω(·), for every *i*.
- *u* semiconcave with modulus ω does NOT imply that $u = u_1 + u_2$ with u_1 concave, $u_2 \in C^1$.

(D) (A) (A) (A) (A) (A)

Outline

Introduction to semiconcave functions, generalized differentials, and singularities

Semiconcave functions

Semiconcavity of value functions ۲

- Singular sets, rectifiability

The distance function

Given any $S \subset \mathbb{R}^n$ closed, define

$$d_{\mathcal{S}}(x) = \min_{y \in \mathcal{S}} |y - x|, \qquad x \in \mathbb{R}^n,$$

distance function from the set S.

It is a special case of the *minimum time function*, corresponding to

 $y' = a(t) \in A = B_1$ (unit ball).

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities Se

September 3 – 7, 2012 11 / 52

11/52

The distance function

Given any $S \subset \mathbb{R}^n$ closed, define

$$d_{\mathcal{S}}(x) = \min_{y \in \mathcal{S}} |y - x|, \qquad x \in \mathbb{R}^n,$$

distance function from the set S.

It is a special case of the *minimum time function*, corresponding to

 $y' = a(t) \in A = B_1$ (unit ball).

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities September 3 – 7, 2012

Semiconcavity of the distance function

Proposition

- The squared distance function d²_S is semiconcave in ℝⁿ with semiconcavity constant 2.
- d_S is locally semiconcave in $\mathbb{R}^n \setminus S$. More precisely, given Ω such that dist $(S, \Omega) > 0$, d_S is semiconcave in Ω with semiconcavity constant equal to dist $(S, \Omega)^{-1}$.

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 12 / 52

• □ ▶ • □ ▶ • □ ▶ • □ ▶

Semiconcavity of the distance function

Proposition

- The squared distance function d²_S is semiconcave in ℝⁿ with semiconcavity constant 2.
- *d*_S is locally semiconcave in ℝⁿ \ S. More precisely, given Ω such that dist (S, Ω) > 0, d_S is semiconcave in Ω with semiconcavity constant equal to dist(S, Ω)⁻¹.

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

Semiconcavity of the distance function (II)

Proof of the semiconcavity of d_S^2

For any $x \in \mathbb{R}^n$ we have

$$d_S^2(x) - |x|^2 = \min_{y \in S} |x - y|^2 - |x|^2 = \min_{y \in S} (|y|^2 - 2\langle x, y \rangle).$$

 \implies $d_S^2(x) - |x|^2$ is concave (infimum of linear functions)

\Longrightarrow $d_S^2(\cdot)$ semiconcave with constant 2.

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

September 3 - 7, 2012 13 / 52

13/52

September 3 - 7, 2012

Semiconcavity of the distance function (II)

- Proof of the semiconcavity of d_S^2
- For any $x \in \mathbb{R}^n$ we have

$$d_S^2(x) - |x|^2 = \min_{y \in S} |x - y|^2 - |x|^2 = \min_{y \in S} (|y|^2 - 2\langle x, y \rangle).$$

- $\implies d_S^2(x) |x|^2$ is concave (infimum of linear functions)
- $\Longrightarrow d_S^2(\cdot)$ semiconcave with constant 2.

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

Semiconcavity of the distance function (II)

Proof of the semiconcavity of d_S^2

For any $x \in \mathbb{R}^n$ we have

$$d_S^2(x) - |x|^2 = \min_{y \in S} |x - y|^2 - |x|^2 = \min_{y \in S} (|y|^2 - 2\langle x, y \rangle).$$

 \implies $d_S^2(x) - |x|^2$ is concave (infimum of linear functions)

 \implies $d_S^2(\cdot)$ semiconcave with constant 2.

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities S

Semiconcavity of the distance function (II)

- Proof of the semiconcavity of d_S^2
- For any $x \in \mathbb{R}^n$ we have

$$d_{S}^{2}(x) - |x|^{2} = \min_{y \in S} |x - y|^{2} - |x|^{2} = \min_{y \in S} (|y|^{2} - 2\langle x, y \rangle).$$

 \implies $d_S^2(x) - |x|^2$ is concave (infimum of linear functions)

 \implies $d_S^2(\cdot)$ semiconcave with constant 2.

Semiconcavity of the distance function (III)

Proof of the local semiconcavity of ds

Take $z, h \in \mathbb{R}^n$, $z \neq 0$. By a direct computation

$$|z+h|+|z-h|-2|z| \le \frac{|h|^2}{|z|}.$$

Let now Ω be a set with positive distance from *S*. For any *x*, *h* such that $[x - h, x + h] \subset \Omega$, let $\bar{x} \in S$ be a projection of *x* onto *S*. Then

$$egin{aligned} &d_S(x+h)+d_S(x-h)-2d_S(x)\ &\leq &|x+h-ar{x}|+|x-h-ar{x}|-2|x-ar{x}\ &\leq &rac{|h|^2}{|x-ar{x}|}\leq rac{|h|^2}{{
m dist}\,(S,\Omega)}. \end{aligned}$$

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 14 / 52

Semiconcavity of the distance function (III)

Proof of the local semiconcavity of ds

Take $z, h \in \mathbb{R}^n$, $z \neq 0$. By a direct computation

$$|z+h|+|z-h|-2|z|\leq rac{|h|^2}{|z|}.$$

Let now Ω be a set with positive distance from *S*. For any *x*, *h* such that $[x - h, x + h] \subset \Omega$, let $\bar{x} \in S$ be a projection of *x* onto *S*. Then

$$egin{aligned} & d_S(x+h) + d_S(x-h) - 2d_S(x) \ & \leq & |x+h-ar{x}| + |x-h-ar{x}| - 2|x-ar{x} \ & \leq & rac{|h|^2}{|x-ar{x}|} \leq rac{|h|^2}{ ext{dist}\,(S,\Omega)}. \end{aligned}$$

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 14 / 52

Semiconcavity of the distance function (III)

Proof of the local semiconcavity of ds

Take $z, h \in \mathbb{R}^n$, $z \neq 0$. By a direct computation

$$|z+h|+|z-h|-2|z|\leq rac{|h|^2}{|z|}.$$

Let now Ω be a set with positive distance from *S*. For any *x*, *h* such that $[x - h, x + h] \subset \Omega$, let $\bar{x} \in S$ be a projection of *x* onto *S*. Then

$$egin{aligned} & d_S(x+h) + d_S(x-h) - 2d_S(x) \ & \leq & |x+h-ar{x}| + |x-h-ar{x}| - 2|x-ar{x}| \ & \leq & rac{|h|^2}{|x-ar{x}|} \leq rac{|h|^2}{\mathrm{dist}\,(S,\Omega)}. \end{aligned}$$

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 14 / 52
Semiconcavity of the distance function (III)

Proof of the local semiconcavity of $d_{\rm S}$

Take $z, h \in \mathbb{R}^n, z \neq 0$. By a direct computation

$$|z+h|+|z-h|-2|z|\leq rac{|h|^2}{|z|}.$$

Let now Ω be a set with positive distance from S. For any x, h such that $[x - h, x + h] \subset \Omega$, let $\bar{x} \in S$ be a projection of x onto S. Then

$$egin{aligned} & d_{S}(x+h) + d_{S}(x-h) - 2d_{S}(x) \ & \leq & |x+h-ar{x}| + |x-h-ar{x}| - 2|x-ar{x} \ & \leq & rac{|h|^2}{|x-ar{x}|} \leq rac{|h|^2}{ ext{dist}\,(S,\Omega)}. \end{aligned}$$

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 14/52

Interior sphere property

We say that $S \subset \mathbb{R}^n$ satisfies the *interior sphere property* for some r > 0 if, for any $x \in S$ there exists y such that $x \in \overline{B_r(y)} \subset S$.

Proposition

If *S* satisfies the interior sphere property for some r > 0, then d_S is semiconcave in $\mathbb{R}^n \setminus S$ with constant equal to r^{-1} .

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 15 / 52

Interior sphere property

We say that $S \subset \mathbb{R}^n$ satisfies the *interior sphere property* for some r > 0 if, for any $x \in S$ there exists y such that $x \in \overline{B_r(y)} \subset S$.

Proposition

If *S* satisfies the interior sphere property for some r > 0, then d_S is semiconcave in $\mathbb{R}^n \setminus S$ with constant equal to r^{-1} .

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities Sep

(0) (A) (A) (A)

The Mayer problem with fixed horizon

- (f, A) control process in \mathbb{R}^n , T > 0
- given (t, x) and a control $\alpha : [t, T] \rightarrow A$

 $y(\cdot; t, x, \alpha)$ solution of

$$\begin{cases} \dot{y}(s) = f(y(s), \alpha(s)) & s \in [t, T] \\ y(t) = x \end{cases}$$

• $\psi: \mathbb{R}^n \to \mathbb{R}$ final cost

Problem (Mayer with fixed horizon) minimize $\psi(y(T; t, x, \alpha))$ over all $\alpha \in L^1(t, T; A)$

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 16 / 52

The Mayer problem with fixed horizon

- (f, A) control process in \mathbb{R}^n , T > 0
- given (t, x) and a control $\alpha : [t, T] \rightarrow A$

 $y(\cdot; t, x, \alpha)$ solution of $\begin{cases} \dot{y}(s) = f(y(s), \alpha(s)) & s \in [t, T] \\ y(t) = x \end{cases}$

• $\psi : \mathbb{R}^n \to \mathbb{R}$ final cost

Problem (Mayer with fixed horizon) minimize $\psi(y(T; t, x, \alpha))$ over all $\alpha \in L^1(t, T; A)$

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

The Mayer problem with fixed horizon

- (f, A) control process in \mathbb{R}^n , T > 0
- given (t, x) and a control $\alpha : [t, T] \rightarrow A$

$$y(\cdot; t, x, \alpha)$$
 solution of $\begin{cases} \dot{y}(s) = f(y(s), \alpha(s)) & s \in [t, T] \\ y(t) = x \end{cases}$

• $\psi : \mathbb{R}^n \to \mathbb{R}$ final cost

Problem (Mayer with fixed horizon) minimize $\psi(y(T; t, x, \alpha))$ over all $\alpha \in L^1(t, T; A)$

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

◆□ → < 部 → < 王 → < 王 → < 王 → < 2 → < ○ へ ○</p>
September 3 – 7. 2012 16 / 52

Value function

 $V(t, x) = \min \psi(y(T; t, x, \alpha)),$ $(t,x) \in [0,T] \times \mathbb{R}^n$.

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 - 7, 2012

17/52

Value function

 $V(t,x) = \min_{\alpha} \psi(y(T;t,x,\alpha)), \qquad (t,x) \in [0,T] \times \mathbb{R}^{n}.$

Theorem

(Cannarsa-Frankowska, 1991) Suppose that

- The control set A is compact.
- -f(x, a) is differentiable w.r.t. x.
- -f(x, a) and $f_x(x, a)$ are Lipschitz continuous w.r.t. x, uniformly in a.
- Then the value function V is semiconcave in $[0, T] \times \mathbb{R}^n$ (jointly in (t, x)).

< 口 > < 同 > < 三 > < 三 >

Value function

 $V(t,x) = \min_{\alpha} \psi(y(T;t,x,\alpha)), \qquad (t,x) \in [0,T] \times \mathbb{R}^{n}.$

Theorem

(Cannarsa-Frankowska, 1991) Suppose that

- The control set A is compact.
- -f(x, a) is differentiable w.r.t. x.
- -f(x, a) and $f_x(x, a)$ are Lipschitz continuous w.r.t. x, uniformly in a. $-\psi$ is semiconcave in \mathbb{R}^n .

Then the value function V is semiconcave in $[0, T] \times \mathbb{R}^n$ (jointly in (t, x)).

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 17 / 52

Value function

 $V(t,x) = \min_{\alpha} \psi(y(T;t,x,\alpha)), \qquad (t,x) \in [0,T] \times \mathbb{R}^{n}.$

Theorem

(Cannarsa-Frankowska, 1991) Suppose that

- The control set A is compact.
- -f(x, a) is differentiable w.r.t. x.

-f(x, a) and $f_x(x, a)$ are Lipschitz continuous w.r.t. x, uniformly in a. $-\psi$ is semiconcave in \mathbb{R}^n .

Then the value function V is semiconcave in $[0, T] \times \mathbb{R}^n$ (jointly in (t, x)).

Value function

 $V(t,x) = \min_{\alpha} \psi(y(T;t,x,\alpha)), \qquad (t,x) \in [0,T] \times \mathbb{R}^{n}.$

Theorem

(Cannarsa-Frankowska, 1991) Suppose that

- The control set A is compact.
- -f(x, a) is differentiable w.r.t. x.
- -f(x, a) and $f_x(x, a)$ are Lipschitz continuous w.r.t. x, uniformly in a.

 $-\psi$ is semiconcave in \mathbb{R}^n

Then the value function V is semiconcave in $[0, T] \times \mathbb{R}^n$ (jointly in (t, x)).

Value function

 $V(t,x) = \min_{\alpha} \psi(y(T;t,x,\alpha)), \qquad (t,x) \in [0,T] \times \mathbb{R}^{n}.$

Theorem

(Cannarsa-Frankowska, 1991) Suppose that

- The control set A is compact.

-f(x, a) is differentiable w.r.t. x.

- -f(x, a) and $f_x(x, a)$ are Lipschitz continuous w.r.t. x, uniformly in a.
- $-\psi$ is semiconcave in \mathbb{R}^n .

Then the value function V is semiconcave in $[0, T] \times \mathbb{R}^n$ (jointly in (t, x)).

September 3 – 7, 2012

17 / 52

Semiconcavity of the value function

Value function

 $V(t,x) = \min_{\alpha} \psi(y(T;t,x,\alpha)), \qquad (t,x) \in [0,T] \times \mathbb{R}^{n}.$

Theorem

(Cannarsa-Frankowska, 1991) Suppose that

- The control set A is compact.

-f(x, a) is differentiable w.r.t. x.

- -f(x, a) and $f_x(x, a)$ are Lipschitz continuous w.r.t. x, uniformly in a.
- $-\psi$ is semiconcave in \mathbb{R}^n .

Then the value function V is semiconcave in $[0, T] \times \mathbb{R}^n$ (jointly in (t, x)).

Estimates on trajectories starting at different points but following the same control.

Lemma

There exists c > 0 such that

 $|\mathbf{y}(\mathbf{T}; t, \mathbf{x}_0, \alpha) - \mathbf{y}(\mathbf{T}; t, \mathbf{x}_1, \alpha)| \leq \mathbf{C}|\mathbf{x}_0 - \mathbf{x}_1|,$

$$\left| y(T; t, x_0, \alpha) + y(T; t, x_1, \alpha) - 2y\left(T; t, \frac{x_0 + x_1}{2}, \alpha\right) \right| \le c |x_0 - x_1|^2$$

for all $\alpha : [t, T] \rightarrow U$ and $x_0, x_1 \in \mathbb{R}^n$.

Regularity of f, Gronwall Lemma.

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 18 / 52

Estimates on trajectories starting at different points but following the same control.

Lemma

There exists c > 0 such that

$$|\mathbf{y}(\mathbf{T}; \mathbf{t}, \mathbf{x}_0, \alpha) - \mathbf{y}(\mathbf{T}; \mathbf{t}, \mathbf{x}_1, \alpha)| \leq \mathbf{c} |\mathbf{x}_0 - \mathbf{x}_1|,$$

$$\left| y(T;t,x_0,\alpha) + y(T;t,x_1,\alpha) - 2y\left(T;t,\frac{x_0+x_1}{2},\alpha\right) \right| \leq c|x_0-x_1|^2$$

for all $\alpha : [t, T] \rightarrow U$ and $x_0, x_1 \in \mathbb{R}^n$.

Regularity of f, Gronwall Lemma.

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 18 / 52

- コン (雪) (ヨ) (ヨ)

Estimates on trajectories starting at different points but following the same control.

Lemma

There exists c > 0 such that

$$|\mathbf{y}(\mathbf{T}; \mathbf{t}, \mathbf{x}_0, \alpha) - \mathbf{y}(\mathbf{T}; \mathbf{t}, \mathbf{x}_1, \alpha)| \leq \mathbf{c} |\mathbf{x}_0 - \mathbf{x}_1|,$$

$$\left| y(T; t, x_0, \alpha) + y(T; t, x_1, \alpha) - 2y\left(T; t, \frac{x_0 + x_1}{2}, \alpha\right) \right| \le c |x_0 - x_1|^2$$

for all $\alpha : [t, T] \rightarrow U$ and $x_0, x_1 \in \mathbb{R}^n$.

Regularity of *f*, Gronwall Lemma.

arities September 3 – 7, 2012

18 / 52

For simplicity, we only prove semiconcavity w.r.t. x.

- Consider $x h, x, x + h \in \mathbb{R}^n$ and $t \in [0, T)$. Let $\alpha : [t, T] \to A$ be an optimal control for the middle point (t, x).
- Let us set for simplicity

 $y(\cdot) = y(\cdot; t, x, \alpha), \quad y_{-}(\cdot) = y(\cdot; t, x - h, \alpha), \quad y_{+}(\cdot) = y(\cdot; t, x + h, \alpha).$

By the previous lemma

 $|y_+(T) - y_-(T)| \le c|h|, \qquad |y_+(T) + y_-(T) - 2y(T)| \le c|h|^2.$

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

September 3 – 7, 2012 19 / 52

For simplicity, we only prove semiconcavity w.r.t. x.

Consider $x - h, x, x + h \in \mathbb{R}^n$ and $t \in [0, T)$. Let $\alpha : [t, T] \to A$ be an optimal control for the middle point (t, x).

Let us set for simplicity

 $y(\cdot) = y(\cdot; t, x, \alpha), \quad y_{-}(\cdot) = y(\cdot; t, x - h, \alpha), \quad y_{+}(\cdot) = y(\cdot; t, x + h, \alpha).$

By the previous lemma

 $|y_+(T) - y_-(T)| \le c|h|, \qquad |y_+(T) + y_-(T) - 2y(T)| \le c|h|^2.$

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

September 3 - 7, 2012 19 / 52

For simplicity, we only prove semiconcavity w.r.t. x.

Consider $x - h, x, x + h \in \mathbb{R}^n$ and $t \in [0, T)$. Let $\alpha : [t, T] \to A$ be an optimal control for the middle point (t, x).

Let us set for simplicity

 $y(\cdot) = y(\cdot; t, x, \alpha), \quad y_{-}(\cdot) = y(\cdot; t, x - h, \alpha), \quad y_{+}(\cdot) = y(\cdot; t, x + h, \alpha).$

By the previous lemma

 $|y_+(T) - y_-(T)| \le c|h|, \qquad |y_+(T) + y_-(T) - 2y(T)| \le c|h|^2.$

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities Se

September 3 – 7, 2012 19 / 52

For simplicity, we only prove semiconcavity w.r.t. x.

Consider $x - h, x, x + h \in \mathbb{R}^n$ and $t \in [0, T)$. Let $\alpha : [t, T] \to A$ be an optimal control for the middle point (t, x).

Let us set for simplicity

 $\mathbf{y}(\cdot) = \mathbf{y}(\cdot; t, \mathbf{x}, \alpha), \quad \mathbf{y}_{-}(\cdot) = \mathbf{y}(\cdot; t, \mathbf{x} - \mathbf{h}, \alpha), \quad \mathbf{y}_{+}(\cdot) = \mathbf{y}(\cdot; t, \mathbf{x} + \mathbf{h}, \alpha).$

By the previous lemma

 $|y_+(T) - y_-(T)| \le c|h|, \qquad |y_+(T) + y_-(T) - 2y(T)| \le c|h|^2.$

September 3 - 7, 2012

20 / 52

Proof of the semiconcavity (III)

It follows,

$$\begin{split} & \mathcal{V}(t, x+h) + \mathcal{V}(t, x-h) - 2\mathcal{V}(t, x) \\ & \leq \quad \psi(y_{+}(T)) + \psi(y_{-}(T)) - 2\psi(y(T)) \\ & = \quad \psi(y_{+}(T)) + \psi(y_{-}(T)) - 2\psi\left(\frac{y_{+}(T) + y_{-}(T)}{2}\right) \\ & \quad + 2\psi\left(\frac{y_{+}(T) + y_{-}(T)}{2}\right) - 2\psi(y(T)) \\ & \leq \quad C_{\psi}|y_{+}(T) - y_{-}(T)|^{2} + L_{\psi}|y_{+}(T) + y_{-}(T) - 2y(T)| \\ & \leq \quad (C_{\psi}c^{2} + L_{\psi}c)|h|^{2}, \end{split}$$

which proves the semiconcavity w.r.t. x.

(f, A) control process in ℝⁿ,
f(x, a) Lipschitz w.r.t. x, A compact;
given α : [0,∞) → A control,

 $y(\cdot; x, \alpha)$ solution of

$$\begin{cases} \dot{y}(t) = f(y(t), \alpha(t)) & (t \ge 0) \\ y(0) = x \end{cases}$$

- target $S \subset \mathbb{R}^n$ nonempty closed set
- transition time $au(x, lpha) = \inf \{t \ge 0 \mid y(t; x, lpha) \in S\}$
- controllable set $\mathcal{C} = \{x \in \mathbb{R}^n \mid \exists \alpha : \tau(x, \alpha) < \infty\}$
- minimum time function $T(x) = \inf_{\alpha} \tau(x, \alpha)$ $x \in C$

A D N A D N A D N A D N

- (f, A) control process in \mathbb{R}^n ,
- *f*(*x*, *a*) Lipschitz w.r.t. *x*, *A* compact;

• given $\alpha : [0, \infty) \rightarrow A$ control,

 $y(\cdot; x, \alpha)$ solution of

 $\begin{cases} \dot{y}(t) = f(y(t), \alpha(t)) & (t \ge 0) \\ y(0) = x \end{cases}$

• target $S \subset \mathbb{R}^n$ nonempty closed set

- transition time $au(x, lpha) = \inf \{t \ge 0 \mid y(t; x, lpha) \in S\}$
- controllable set $\mathcal{C} = \{x \in \mathbb{R}^n \mid \exists lpha \ : \ au(x, lpha) < \infty\}$
- minimum time function $T(x) = \inf_{\alpha} \tau(x, \alpha)$ $x \in C$

- (f, A) control process in \mathbb{R}^n ,
- *f*(*x*, *a*) Lipschitz w.r.t. *x*, *A* compact;
- given $\alpha : [0, \infty) \to A$ control,

$$y(\cdot; x, \alpha)$$
 solution of $\begin{cases} \dot{y}(t) = f(y(t), \alpha(t)) & (t \ge 0) \\ y(0) = x \end{cases}$

- target $S \subset \mathbb{R}^n$ nonempty closed set
- transition time $au(x, lpha) = \inf \{t \ge \mathbf{0} \mid y(t; x, lpha) \in S\}$
- controllable set $\mathcal{C} = \{ x \in \mathbb{R}^n \mid \exists \alpha : \tau(x, \alpha) < \infty \}$
- minimum time function $T(x) = \inf_{\alpha} \tau(x, \alpha)$ $x \in C$

- (f, A) control process in \mathbb{R}^n ,
- *f*(*x*, *a*) Lipschitz w.r.t. *x*, *A* compact;
- given $\alpha : [0, \infty) \to A$ control,

$$y(\cdot; x, \alpha)$$
 solution of $\begin{cases} \dot{y}(t) = f(y(t), \alpha(t)) & (t \ge 0) \\ y(0) = x \end{cases}$

- target $S \subset \mathbb{R}^n$ nonempty closed set
- transition time $\tau(\mathbf{x}, \alpha) = \inf \{ t \ge \mathbf{0} \mid \mathbf{y}(t; \mathbf{x}, \alpha) \in S \}$
- controllable set $\mathcal{C} = \{ x \in \mathbb{R}^n \mid \exists lpha \ : \ au(x, lpha) < \infty \}$
- minimum time function $T(x) = \inf_{\alpha} \tau(x, \alpha)$ $x \in C$

- (f, A) control process in \mathbb{R}^n ,
- *f*(*x*, *a*) Lipschitz w.r.t. *x*, *A* compact;
- given $\alpha : [0, \infty) \to A$ control,

$$y(\cdot; x, \alpha)$$
 solution of $\begin{cases} \dot{y}(t) = f(y(t), \alpha(t)) & (t \ge 0) \\ y(0) = x \end{cases}$

- target $S \subset \mathbb{R}^n$ nonempty closed set
- transition time $\tau(\mathbf{x}, \alpha) = \inf \{ t \ge \mathbf{0} \mid \mathbf{y}(t; \mathbf{x}, \alpha) \in S \}$
- controllable set $C = \{ x \in \mathbb{R}^n \mid \exists \alpha : \tau(x, \alpha) < \infty \}$

• minimum time function $T(x) = \inf_{\alpha} \tau(x, \alpha)$ $x \in C$

- (f, A) control process in \mathbb{R}^n ,
- *f*(*x*, *a*) Lipschitz w.r.t. *x*, *A* compact;
- given $\alpha : [0, \infty) \to A$ control,

$$y(\cdot; x, \alpha)$$
 solution of $\begin{cases} \dot{y}(t) = f(y(t), \alpha(t)) & (t \ge 0) \\ y(0) = x \end{cases}$

- target $S \subset \mathbb{R}^n$ nonempty closed set
- transition time $\tau(\mathbf{x}, \alpha) = \inf \{ t \ge \mathbf{0} \mid \mathbf{y}(t; \mathbf{x}, \alpha) \in S \}$
- controllable set $C = \{ x \in \mathbb{R}^n \mid \exists \alpha : \tau(x, \alpha) < \infty \}$
- minimum time function $T(x) = \inf_{\alpha} \tau(x, \alpha)$ $x \in C$

Petrov condition

Definition

Given $y \in \partial S$, a vector $\nu \in \mathbb{R}^n$ is called a proximal normal to S at y if

 $\operatorname{proj}_{\mathcal{S}}(\boldsymbol{y} + \varepsilon \boldsymbol{\nu}) = \{\boldsymbol{y}\}$

for $\varepsilon > 0$ small enough.

Definition

We say that (f, A) satisfies the Petrov condition on *S* if there exists $\mu > 0$ such that

 $\min_{\boldsymbol{a}\in \boldsymbol{A}}f(\boldsymbol{x},\boldsymbol{a})\cdot\boldsymbol{\nu}\leq-\boldsymbol{\mu}|\boldsymbol{\nu}|$

for any $x \in \partial S$, ν proximal normal to S at x.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Local controllability

Theorem

(*Petrov 1970, Bardi-Falcone 1990, ...*) Let the Petrov condition hold. Then

• C is an open neighbourhood of S;

• there exist $k, \delta > 0$ such that

 $\mathcal{T}(x) \leq \mathsf{kd}_{\mathcal{S}}(x), \qquad orall x \; \mathsf{s.t.} \; \mathsf{d}_{\mathcal{S}}(x) \leq \delta$

• T is locally Lipschitz continuous on C.

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 23 / 52

Local controllability

Theorem

(*Petrov 1970, Bardi-Falcone 1990, ...*) Let the Petrov condition hold. Then

- C is an open neighbourhood of S;
- there exist $k, \delta > 0$ such that

 $T(x) \leq kd_S(x), \quad \forall x \ s.t. \ d_S(x) \leq \delta$

T is locally Lipschitz continuous on C.

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 23 / 52

September 3 – 7, 2012

23 / 52

Local controllability

Theorem

(*Petrov 1970, Bardi-Falcone 1990, ...*) Let the Petrov condition hold. Then

- C is an open neighbourhood of S;
- there exist $k, \delta > 0$ such that

 $T(x) \leq kd_S(x), \quad \forall x \text{ s.t. } d_S(x) \leq \delta$

• T is locally Lipschitz continuous on C.

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, H

Optimal control, HJ eqns, singularities

Semiconcavity of T

Theorem

Let the Petrov condition hold and let f(x, a) be $C^{1,1}$ w.r.t. x.

- If S satisfies an interior sphere property, then T is locally semiconcave in C \ S. (Cannarsa-S., 1995)
- If f(x, A) is convex and satisfies an interior sphere property for x near S, then T is locally semiconcave in C \ S. (Cannarsa-Frankowska, S., 2004)
- If f(x, a) = Ax + a for some matrix A and S is convex, then T is locally semiconvex in C \ S. (Cannarsa-S., 1995)

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

September 3 – 7, 2012 2

24 / 52

Semiconcavity of T

Theorem

Let the Petrov condition hold and let f(x, a) be $C^{1,1}$ w.r.t. x.

- If S satisfies an interior sphere property, then T is locally semiconcave in C \ S. (Cannarsa-S., 1995)
- If f(x, A) is convex and satisfies an interior sphere property for x near S, then T is locally semiconcave in C \ S. (Cannarsa-Frankowska, S., 2004)
- If f(x, a) = Ax + a for some matrix A and S is convex, then T is locally semiconvex in C \ S. (Cannarsa-S., 1995)

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

September 3 – 7, 2012 24 / 52

- コン (雪) (ヨ) (ヨ)

September 3 – 7, 2012

24 / 52

Semiconcavity of T

Theorem

Let the Petrov condition hold and let f(x, a) be $C^{1,1}$ w.r.t. x.

- If S satisfies an interior sphere property, then T is locally semiconcave in C \ S. (Cannarsa-S., 1995)
- If f(x, A) is convex and satisfies an interior sphere property for x near S, then T is locally semiconcave in C \ S. (Cannarsa-Frankowska, S., 2004)
- If f(x, a) = Ax + a for some matrix A and S is convex, then T is locally semiconvex in $\overline{C \setminus S}$. (Cannarsa-S., 1995)

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

September 3 – 7, 2012

24 / 52

Semiconcavity of T

Theorem

Let the Petrov condition hold and let f(x, a) be $C^{1,1}$ w.r.t. x.

- If S satisfies an interior sphere property, then T is locally semiconcave in C \ S. (Cannarsa-S., 1995)
- If f(x, A) is convex and satisfies an interior sphere property for x near S, then T is locally semiconcave in C \ S. (Cannarsa-Frankowska, S., 2004)
- If f(x, a) = Ax + a for some matrix A and S is convex, then T is locally semiconvex in C \ S. (Cannarsa-S., 1995)

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

Outline

Introduction to semiconcave functions, generalized differentials, and singularities

- Semiconcave functions
- Semiconcavity of value functions
- Generalized differentials
- Optimal synthesis
- Singular sets, rectifiability

P. Cannarsa & C. Sinestrari (Rome 2) Optimal con

Optimal control, HJ eqns, singularities

September 3 – 7, 2012

25 / 52
Lipschitz continuity

Proposition

If $u : A \to \mathbb{R}$ is semiconcave (with a general modulus), it is locally Lipschitz continuous in the interior of A.

Corollary

Semiconcave functions are differentiable almost everywhere (Rademacher's theorem).

Theorem

(Alexandroff) Semiconcave functions with linear modulus is twice differentiable almost everywhere.

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7. 2012 26 / 52

Lipschitz continuity

Proposition

If $u : A \to \mathbb{R}$ is semiconcave (with a general modulus), it is locally Lipschitz continuous in the interior of A.

Corollary

Semiconcave functions are differentiable almost everywhere (Rademacher's theorem).

Theorem

(Alexandroff) Semiconcave functions with linear modulus is twice differentiable almost everywhere.

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7. 2012 26 / 52

Lipschitz continuity

Proposition

If $u : A \to \mathbb{R}$ is semiconcave (with a general modulus), it is locally Lipschitz continuous in the interior of A.

Corollary

Semiconcave functions are differentiable almost everywhere (Rademacher's theorem).

Theorem

(Alexandroff) Semiconcave functions with linear modulus is twice differentiable almost everywhere.

-

- コン (雪) (ヨ) (ヨ)

Fréchet differentials

Let $u : A \to \mathbb{R}$, with $A \subset \mathbb{R}^n$ open.

Definition

Given $x \in A$, the sets

$$D^{-}u(x) = \left\{ p \in \mathbb{R}^{n} : \liminf_{y \to x} \frac{u(y) - u(x) - \langle p, y - x \rangle}{|y - x|} \ge 0 \right\},$$
$$D^{+}u(x) = \left\{ p \in \mathbb{R}^{n} : \limsup_{y \to x} \frac{u(y) - u(x) - \langle p, y - x \rangle}{|y - x|} \le 0 \right\}$$

are called, respectively, the (Fréchet) subdifferential and superdifferential of u at x.

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

Definition

Given $u: A \to \mathbb{R}$ and $x \in A$, we say that p is a reachable gradient of u at x if there exists $\{x_n\} \subset A$ such that u is differentiable at x_n and

$$x = \lim_{n \to \infty} x_n$$
 $p = \lim_{n \to \infty} Du(x_n).$

We denote by $D^*u(x)$ the set of reachable gradients.

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012

・ () ・ (口) ・ (口) ・ (口) ・ (口) ・ (口)

28 / 52

Definition

Given $u : A \to \mathbb{R}$ and $x \in A$, we say that p is a reachable gradient of u at x if there exists $\{x_n\} \subset A$ such that u is differentiable at x_n and

$$x = \lim_{n \to \infty} x_n$$
 $p = \lim_{n \to \infty} Du(x_n).$

We denote by $D^*u(x)$ the set of reachable gradients.

If $u \in Lip_{loc}(A)$, then $D^*u(x) \neq \emptyset$ for any $x \in A$.

If $u \in Lip_{loc}(A)$, the convex hull of $D^*u(x)$ coincides with *Clarke's* generalized gradient.

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

September 3 – 7, 2012 2

28 / 52

Definition

Given $u : A \to \mathbb{R}$ and $x \in A$, we say that p is a reachable gradient of u at x if there exists $\{x_n\} \subset A$ such that u is differentiable at x_n and

$$x = \lim_{n \to \infty} x_n$$
 $p = \lim_{n \to \infty} Du(x_n).$

We denote by $D^*u(x)$ the set of reachable gradients.

If $u \in Lip_{loc}(A)$, then $D^*u(x) \neq \emptyset$ for any $x \in A$.

If $u \in Lip_{loc}(A)$, the convex hull of $D^*u(x)$ coincides with *Clarke's* generalized gradient.

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

September 3 – 7, 2012 28 / 52

Definition

Given $u : A \to \mathbb{R}$ and $x \in A$, we say that p is a reachable gradient of u at x if there exists $\{x_n\} \subset A$ such that u is differentiable at x_n and

$$x = \lim_{n \to \infty} x_n$$
 $p = \lim_{n \to \infty} Du(x_n).$

We denote by $D^*u(x)$ the set of reachable gradients.

If $u \in Lip_{loc}(A)$, then $D^*u(x) \neq \emptyset$ for any $x \in A$.

If $u \in Lip_{loc}(A)$, the convex hull of $D^*u(x)$ coincides with *Clarke's* generalized gradient.

Proposition

Let $u : A \to \mathbb{R}$ be semiconcave (with general modulus). Then

- $D^+u(x) = co(D^*u(x)).$
- $D^+u(x) \neq \emptyset$.
- $D^*u(x) \subset \partial D^+u(x)$.
- If x_k → x and if p_k ∈ D⁺u(x_k) satisfy p_k → p, then p ∈ D⁺u(x) (upper semicontinuity of D⁺u).
- If $D^+u(x)$ is a singleton, then u is differentiable at x.

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

September 3 – 7, 2012 2

29 / 52

Proposition

Let $u: \textbf{A} \rightarrow \mathbb{R}$ be semiconcave (with general modulus). Then

- $D^+u(x) = co(D^*u(x)).$
- $D^+u(x) \neq \emptyset$.
- $D^*u(x) \subset \partial D^+u(x)$.
- If $x_k \to x$ and if $p_k \in D^+u(x_k)$ satisfy $p_k \to p$, then $p \in D^+u(x)$ (upper semicontinuity of D^+u).
- If $D^+u(x)$ is a singleton, then u is differentiable at x.

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

September 3 – 7, 2012 2

29 / 52

September 3 – 7, 2012

29 / 52

Differential properties

Proposition

Let $u : A \to \mathbb{R}$ be semiconcave (with general modulus). Then

- $D^+u(x) = co(D^*u(x)).$
- $D^+u(x) \neq \emptyset$.
- $D^*u(x) \subset \partial D^+u(x)$.
- If $x_k \to x$ and if $p_k \in D^+u(x_k)$ satisfy $p_k \to p$, then $p \in D^+u(x)$ (upper semicontinuity of D^+u).
- If $D^+u(x)$ is a singleton, then u is differentiable at x.

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

September 3 – 7, 2012

29 / 52

Differential properties

Proposition

Let $u : A \to \mathbb{R}$ be semiconcave (with general modulus). Then

- $D^+u(x) = co(D^*u(x)).$
- $D^+u(x) \neq \emptyset$.
- $D^*u(x) \subset \partial D^+u(x)$.
- If $x_k \to x$ and if $p_k \in D^+u(x_k)$ satisfy $p_k \to p$, then $p \in D^+u(x)$ (upper semicontinuity of D^+u).
- If $D^+u(x)$ is a singleton, then u is differentiable at x.

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

Proposition

Let $u : A \to \mathbb{R}$ be semiconcave (with general modulus). Then

- $D^+u(x) = co(D^*u(x)).$
- $D^+u(x) \neq \emptyset$.
- $D^*u(x) \subset \partial D^+u(x)$.
- If $x_k \to x$ and if $p_k \in D^+u(x_k)$ satisfy $p_k \to p$, then $p \in D^+u(x)$ (upper semicontinuity of D^+u).
- If $D^+u(x)$ is a singleton, then u is differentiable at x.

For simplicity, linear modulus of semiconcavity, A open convex.

Proposition

Let $u : A \to \mathbb{R}$ be semiconcave with constant *C*. Then • $p \in D^+u(x)$ if and only if

$$u(y) \leq u(x) + \langle p, y - x \rangle + \frac{C}{2}|x - y|^2$$

for all $y \in A$;

• given x, y and $p \in D^+u(x)$, $q \in D^+u(y)$, we have

 $\langle q-p, y-x \rangle \leq C|x-y|^2$ (monotonicity of D^+u).

P. Cannarsa & C. Sinestrari (Rome 2)

ъ.

- コン (雪) (ヨ) (ヨ)

For simplicity, linear modulus of semiconcavity, A open convex.

Proposition

Let $u : A \to \mathbb{R}$ be semiconcave with constant *C*. Then • $p \in D^+u(x)$ if and only if

$$u(y) \leq u(x) + \langle p, y - x \rangle + \frac{C}{2}|x - y|^2$$

for all $y \in A$;

• given x, y and $p \in D^+u(x), q \in D^+u(y)$, we have

 $\langle q-p, y-x \rangle \leq C |x-y|^2$ (monotonicity of D^+u).

Proposition

Let $u : A \to \mathbb{R}$ be semiconcave, $x_0 \in A$ and V an open set such that $x_0 \in V \subset \overline{V} \subset A$. Then, for any $p \in D^+u(x_0)$ there is a sequence $u_k \in C^{\infty}(V)$ such that

- $u_k \rightarrow u$ uniformly in V
- $Du_k(x_0) \rightarrow p$
- ||u_k||_∞ ≤ M, ||Du_k||_∞ ≤ L, ||D²u_k||_∞ ≤ C, for all k, where M, L and C are respectively the supremum, the Lipschitz constant and the semiconcavity constant of u on A.

- コン (雪) (ヨ) (ヨ)

Proposition

Let $u : A \to \mathbb{R}$ be semiconcave, $x_0 \in A$ and V an open set such that $x_0 \in V \subset \overline{V} \subset A$. Then, for any $p \in D^+u(x_0)$ there is a sequence $u_k \in C^{\infty}(V)$ such that

- $u_k \rightarrow u$ uniformly in V
- $Du_k(x_0) \rightarrow p$
- ||u_k||_∞ ≤ M, ||Du_k||_∞ ≤ L, ||D²u_k||_∞ ≤ C, for all k, where M, L and C are respectively the supremum, the Lipschitz constant and the semiconcavity constant of u on A.

Proposition

Let $u : A \to \mathbb{R}$ be semiconcave, $x_0 \in A$ and V an open set such that $x_0 \in V \subset \overline{V} \subset A$. Then, for any $p \in D^+u(x_0)$ there is a sequence $u_k \in C^{\infty}(V)$ such that

- $u_k \rightarrow u$ uniformly in V
- $Du_k(x_0) \rightarrow p$
- ||u_k||_∞ ≤ M, ||Du_k||_∞ ≤ L, ||D²u_k||_∞ ≤ C, for all k, where M, L and C are respectively the supremum, the Lipschitz constant and the semiconcavity constant of u on A.

Proposition

Let $u : A \to \mathbb{R}$ be semiconcave, $x_0 \in A$ and V an open set such that $x_0 \in V \subset \overline{V} \subset A$. Then, for any $p \in D^+u(x_0)$ there is a sequence $u_k \in C^{\infty}(V)$ such that

- $u_k \rightarrow u$ uniformly in V
- $Du_k(x_0) \rightarrow p$
- $||u_k||_{\infty} \leq M$, $||Du_k||_{\infty} \leq L$, $||D^2u_k||_{\infty} \leq C$, for all k, where M, L and C are respectively the supremum, the Lipschitz constant and the semiconcavity constant of u on A.

Consider the Hamilton-Jacobi equation

(HJ) $H(x, u, Du) = 0, \quad x \in \Omega \subset \mathbb{R}^n.$

with H a continuous function.

 $u \in C(\Omega)$ is a *viscosity solution* of (*HJ*) if it satisfies, for any $x \in \Omega$, $H(x, u(x), p) \leq 0 \quad \forall p \in D^+u(x),$

 $H(x, u(x), q) \ge 0 \qquad \forall q \in D^- u(x).$

P. Cannarsa & C. Sinestrari (Rome 2) Optim

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 32 / 52

Consider the Hamilton-Jacobi equation

(HJ) $H(x, u, Du) = 0, \quad x \in \Omega \subset \mathbb{R}^n.$

with H a continuous function.

 $u \in C(\Omega)$ is a viscosity solution of (HJ) if it satisfies, for any $x \in \Omega$,

 $H(x, u(x), p) \leq 0 \qquad \forall p \in D^+ u(x),$

 $H(x, u(x), q) \ge 0 \qquad \forall q \in D^-u(x).$

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

◆□ → < 部 → < 臣 → < 臣 → < 臣 → < 臣 → ○ </p>
September 3 – 7, 2012 32 / 52

Proposition

Suppose that H(x, u, p) is convex w.r.t. p. Let $u : \Omega \to \mathbb{R}$ be a semiconcave function which satisfies (HJ) at all points of differentiability. Then u is a viscosity solution of (HJ).

Proof — At the points *x* where *u* is differentiable — trivial.

If *u* is not differentiable at *x*, then $D^-u(x) = \emptyset$, while $D^+u(x) = \operatorname{co}(D^*u(x))$.

By continuity, H(x, u(x), p) = 0 for all $p \in D^*u(x)$.

By convexity, $H(x, u(x), p) \le 0$ for all $p \in D^+u(x)$.

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

September 3 - 7, 2012 33 / 52

Proposition

Suppose that H(x, u, p) is convex w.r.t. p. Let $u : \Omega \to \mathbb{R}$ be a semiconcave function which satisfies (HJ) at all points of differentiability. Then u is a viscosity solution of (HJ).

Proof — At the points *x* where *u* is differentiable — trivial.

If *u* is not differentiable at *x*, then $D^-u(x) = \emptyset$, while $D^+u(x) = \operatorname{co}(D^*u(x))$.

By continuity, H(x, u(x), p) = 0 for all $p \in D^*u(x)$.

By convexity, $H(x, u(x), p) \le 0$ for all $p \in D^+u(x)$.

Proposition

Suppose that H(x, u, p) is convex w.r.t. p. Let $u : \Omega \to \mathbb{R}$ be a semiconcave function which satisfies (HJ) at all points of differentiability. Then u is a viscosity solution of (HJ).

Proof — At the points *x* where *u* is differentiable — trivial.

If *u* is not differentiable at *x*, then $D^-u(x) = \emptyset$, while $D^+u(x) = \operatorname{co}(D^*u(x))$.

By continuity, H(x, u(x), p) = 0 for all $p \in D^*u(x)$.

By convexity, $H(x, u(x), p) \leq 0$ for all $p \in D^+u(x)$.

Proposition

Suppose that H(x, u, p) is convex w.r.t. p. Let $u : \Omega \to \mathbb{R}$ be a semiconcave function which satisfies (HJ) at all points of differentiability. Then u is a viscosity solution of (HJ).

Proof — At the points *x* where *u* is differentiable — trivial.

If *u* is not differentiable at *x*, then $D^-u(x) = \emptyset$, while $D^+u(x) = \operatorname{co}(D^*u(x))$.

By continuity, H(x, u(x), p) = 0 for all $p \in D^*u(x)$.

By convexity, $H(x, u(x), p) \le 0$ for all $p \in D^+u(x)$.

Proposition

Suppose that H(x, u, p) is convex w.r.t. p. Let $u : \Omega \to \mathbb{R}$ be a semiconcave function which satisfies (HJ) at all points of differentiability. Then u is a viscosity solution of (HJ).

Proof — At the points *x* where *u* is differentiable — trivial.

If *u* is not differentiable at *x*, then $D^-u(x) = \emptyset$, while $D^+u(x) = \operatorname{co}(D^*u(x))$.

By continuity, H(x, u(x), p) = 0 for all $p \in D^*u(x)$.

By convexity, $H(x, u(x), p) \leq 0$ for all $p \in D^+u(x)$.

September 3 - 7, 2012

34 / 52

Marginal functions

Marginal functions: infimum of smooth functions

 $(\longleftrightarrow$ semiconcave functions.)

 $A \subset \mathbb{R}^n$ open, $S \subset \mathbb{R}^m$ compact. F = F(s, x) continuous in $S \times A$ together with $D_x F$. Define $\mu(x) = \min_{x \in S} F(s, x)$. Then μ is semiconcave

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

Marginal functions

Marginal functions: infimum of smooth functions

 $(\longleftrightarrow$ semiconcave functions.)

 $A \subset \mathbb{R}^n$ open, $S \subset \mathbb{R}^m$ compact. F = F(s, x) continuous in $S \times A$ together with $D_x F$. Define $u(x) = \min_{x \in S} F(s, x)$. Then u is semiconcave

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

September 3 – 7, 2012 34 / 52

Marginal functions

Marginal functions: infimum of smooth functions

 $(\longleftrightarrow$ semiconcave functions.)

 $A \subset \mathbb{R}^n$ open, $S \subset \mathbb{R}^m$ compact. F = F(s, x) continuous in $S \times A$ together with $D_x F$.

Define $u(x) = \min_{s \in S} F(s, x)$. Then *u* is semiconcave.

Marginal functions

Marginal functions: infimum of smooth functions

 $(\longleftrightarrow$ semiconcave functions.)

 $A \subset \mathbb{R}^n$ open, $S \subset \mathbb{R}^m$ compact. F = F(s, x) continuous in $S \times A$ together with $D_x F$.

Define $u(x) = \min_{s \in S} F(s, x)$. Then *u* is semiconcave.

Marginal functions (II)

Theorem

Let $u(x) = \min_{s \in S} F(s, x)$ as above. Given $x \in A$, define

 $M(x) = \{s \in S : u(x) = F(s, x)\},\$

 $Y(x) = \{ D_x F(s, x) : s \in M(x) \}.$

Then, for any $x \in A$

 $D^+u(x)=\operatorname{co} Y(x).$

In particular, **u** is differentiable at x if and only if Y(x) is a singleton.

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 35 / 52

Marginal functions (II)

Theorem

Let $u(x) = \min_{s \in S} F(s, x)$ as above. Given $x \in A$, define

 $M(x) = \{s \in S : u(x) = F(s, x)\},\$

$$Y(x) = \{ D_x F(s, x) : s \in M(x) \}.$$

Then, for any $x \in A$

 $D^+u(x)=\operatorname{co} Y(x).$

In particular, **u** is differentiable at x if and only if Y(x) is a singleton.

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7. 2012 35 / 52

Marginal functions (II)

Theorem

Let $u(x) = \min_{s \in S} F(s, x)$ as above. Given $x \in A$, define

 $M(x) = \{s \in S : u(x) = F(s, x)\},\$

$$Y(x) = \{D_x F(s, x) : s \in M(x)\}.$$

Then, for any $x \in A$

 $D^+u(x)=\operatorname{co} Y(x).$

In particular, u is differentiable at x if and only if Y(x) is a singleton.

Generalized gradients of the distance

Corollary

Let S be a nonempty closed subset of \mathbb{R}^n . Then

d_S is differentiable at *x* ∉ *S* if and only if proj_S(*x*) is a singleton and in this case

 $Dd_S(x) = \frac{x-y}{|x-y|}$

where y is the unique element of $\operatorname{proj}_{S}(x)$.

If proj_S(x) is not a singleton then we have

$$D^+d_S(x) = \operatorname{co}\left\{rac{x-y}{|x-y|} : y \in \operatorname{proj}_S(x)
ight\}$$

while $D^-d_S(x) = \emptyset$.

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 36 / 52

-

< 口 > < 同 > < 三 > < 三 > -

Generalized gradients of the distance

Corollary

Let S be a nonempty closed subset of \mathbb{R}^n . Then

d_S is differentiable at *x* ∉ *S* if and only if proj_S(*x*) is a singleton and in this case

$$Dd_S(x) = rac{x-y}{|x-y|}$$

where y is the unique element of $\operatorname{proj}_{S}(x)$.

• If $\operatorname{proj}_{S}(x)$ is not a singleton then we have

$$D^+ d_{\mathcal{S}}(x) = \operatorname{co} \left\{ rac{x-y}{|x-y|} : y \in \operatorname{proj}_{\mathcal{S}}(x)
ight\},$$

while $D^-d_S(x) = \emptyset$.

September 3 – 7, 2012 36 / 52

-

< 口 > < 同 > < 三 > < 三 > -

Outline

Introduction to semiconcave functions, generalized differentials, and singularities

- Semiconcave functions
- Semiconcavity of value functions
- Generalized differentials
- Optimal synthesis
- Singular sets, rectifiability
• (f, A) control process in \mathbb{R}^n , T > 0

• given (t, x) and a control $\alpha : [t, T] \rightarrow A$

 $y(\cdot; t, x, \alpha)$ solution of $\begin{cases} \dot{y}(s) = f(y(s), \alpha(s)) & s \in [t, T] \\ y(t) = x \end{cases}$

• $\psi : \mathbb{R}^n \to \mathbb{R}$ final cost Mayer problem: minimize $\psi(y(T; t, x, \alpha))$ over all $\alpha \in L^1(t, T; A)$ Value function $V(t, x) = \min_{\alpha} \psi(y(T; t, x, \alpha))$.

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 38 / 52

- (f, A) control process in \mathbb{R}^n , T > 0
- given (t, x) and a control $\alpha : [t, T] \rightarrow A$

$$y(\cdot; t, x, \alpha)$$
 solution of $\begin{cases} \dot{y}(s) = f(y(s), \alpha(s)) & s \in [t, T] \\ y(t) = x \end{cases}$

• $\psi : \mathbb{R}^n \to \mathbb{R}$ final cost

Mayer problem: minimize $\psi(y(T; t, x, \alpha))$ over all $\alpha \in L^1(t, T; A)$ Value function $V(t, x) = \min_{\alpha} \psi(y(T; t, x, \alpha))$.

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 3

38 / 52

- (f, A) control process in \mathbb{R}^n , T > 0
- given (t, x) and a control $\alpha : [t, T] \rightarrow A$

$$y(\cdot; t, x, \alpha)$$
 solution of $\begin{cases} \dot{y}(s) = f(y(s), \alpha(s)) & s \in [t, T] \\ y(t) = x \end{cases}$

• $\psi : \mathbb{R}^n \to \mathbb{R}$ final cost Mayer problem: minimize $\psi(y(T; t, x, \alpha))$ over all $\alpha \in L^1(t, T; A)$

Value function $V(t, x) = \min_{\alpha} \psi(y(T; t, x, \alpha))$.

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

・ ロ ト イ 日 ト イ ヨ ト イ ヨ ト ヨ ク Q ペ
September 3 - 7, 2012 38 / 52

- (f, A) control process in \mathbb{R}^n , T > 0
- given (t, x) and a control $\alpha : [t, T] \rightarrow A$

$$y(\cdot; t, x, \alpha)$$
 solution of $\begin{cases} \dot{y}(s) = f(y(s), \alpha(s)) & s \in [t, T] \\ y(t) = x \end{cases}$

• $\psi : \mathbb{R}^n \to \mathbb{R}$ final cost

Mayer problem: minimize $\psi(y(T; t, x, \alpha))$ over all $\alpha \in L^1(t, T; A)$ Value function $V(t, x) = \min_{\alpha} \psi(y(T; t, x, \alpha))$.

We assume in the following

- A compact
- f(x, a) of class $C^{1,1}$ w.r.t. x
- $\psi : \mathbb{R}^n \to \mathbb{R}$ of class C^1 and semiconcave

・ ((() (一) (一) (一) (一)

Pontryagin's maximum principle

Theorem

•
$$\alpha^* \in L^1(0, T; A)$$
 and $y^*(\cdot) := y(\cdot; x, \alpha^*)$ optimal pair
 $\psi(y^*(T)) = \min_{\alpha \in L^1(0, T; A)} \psi(y(T; x, \alpha))$

• let p^* be the solution of the adjoint problem $\begin{cases} \dot{p}(s) = -f_x(y^*(s), \alpha^*(s))^{tr} p(s) & (s \in [0, T]) \\ p(T) = D\psi(y^*(T)) \end{cases}$

then

$p^*(s) \cdot f(y^*(s), \alpha^*(s)) = \min_{x \in A} p^*(s) \cdot f(y^*(s), a) \quad (s \in [0, T] a.e.)$

P. Cannarsa & C. Sinestrari (Rome 2) Optimal co

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 40 / 52

Pontryagin's maximum principle

Theorem

•
$$\alpha^* \in L^1(0, T; A)$$
 and $y^*(\cdot) := y(\cdot; x, \alpha^*)$ optimal pair
 $\psi(y^*(T)) = \min_{\alpha \in L^1(0, T; A)} \psi(y(T; x, \alpha))$

• let
$$p^*$$
 be the solution of the adjoint problem

$$\begin{cases} \dot{p}(s) = -f_x(y^*(s), \alpha^*(s))^{tr} p(s) & (s \in [0, T]) \\ p(T) = D\psi(y^*(T)) \end{cases}$$

then

$$p^*(s) \cdot f(y^*(s), \alpha^*(s)) = \min_{a \in \mathcal{A}} p^*(s) \cdot f(y^*(s), a) \quad (s \in [0, T] a.e.)$$

Denote by $\nabla^+ V(t, x)$, $\nabla^- V(t, x)$ the super- and subdifferential of V at (t, x) with respect to the x variable alone.

Theorem

(Clarke-Vinter 1987, Cannarsa-Frankowska, 1991) Under the previous assumptions, we have that

 $p(s) \in \nabla^+ V(s, y(s)), \quad \forall s \in [t, T].$

If in addition $p(t) \in \nabla^{-} V(t, y(t))$, then we also have

 $\mathcal{D}(s) \in \nabla^{-} V(s, y(s)), \quad \forall s \in [t, T].$

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 41 / 52

Denote by $\nabla^+ V(t, x)$, $\nabla^- V(t, x)$ the super- and subdifferential of V at (t, x) with respect to the x variable alone.

Theorem

(Clarke-Vinter 1987, Cannarsa-Frankowska, 1991) Under the previous assumptions, we have that

 $p(s) \in \nabla^+ V(s, y(s)), \quad \forall s \in [t, T].$

If in addition $p(t) \in \nabla^{-} V(t, y(t))$, then we also have

 $\mathcal{D}(s) \in \nabla^{-} V(s, y(s)), \quad \forall s \in [t, T].$

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 41 / 52

Denote by $\nabla^+ V(t, x)$, $\nabla^- V(t, x)$ the super- and subdifferential of *V* at (t, x) with respect to the *x* variable alone.

Theorem

(Clarke-Vinter 1987, Cannarsa-Frankowska, 1991) Under the previous assumptions, we have that

 $p(s) \in \nabla^+ V(s, y(s)), \quad \forall s \in [t, T].$

If in addition $p(t) \in \nabla^{-} V(t, y(t))$, then we also have

 $p(s) \in \nabla^{-} V(s, y(s)), \quad \forall s \in [t, T].$

September 3 – 7, 2012

41 / 52

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

Denote by $\nabla^+ V(t, x)$, $\nabla^- V(t, x)$ the super- and subdifferential of *V* at (t, x) with respect to the *x* variable alone.

Theorem

(Clarke-Vinter 1987, Cannarsa-Frankowska, 1991) Under the previous assumptions, we have that

 $p(s) \in \nabla^+ V(s, y(s)), \quad \forall s \in [t, T].$

If in addition $p(t) \in \nabla^{-} V(t, y(t))$, then we also have

 $p(s) \in \nabla^{-} V(s, y(s)), \quad \forall s \in [t, T].$

September 3 – 7, 2012

41 / 52

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

Assume that f(x, A) is a (*n*-dimensional) uniformly convex set for all x.

This implies that $H(x, p) = \max_{a \in A} - p \cdot f(x, a)$ is smooth for $p \neq 0$.

Theorem

Let (α, y) be an optimal pair for the point $(t, x) \in [0, T] \times \mathbb{R}^n$ and let $p : [t, T] \to \mathbb{R}^n$ be a dual arc associated with (α, y) such that $p(\overline{s}) \neq 0$ for some $\overline{s} \in [t, T]$. Then $p(s) \neq 0$ for all $s \in [t, T]$ and (y, p) solves the system

 $\begin{bmatrix} y'(s) = -H_p(y(s), p(s)) \\ p'(s) = H_x(y(s), p(s)) \end{bmatrix} s \in [t, T].$

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 42 / 52

(日)

Assume that f(x, A) is a (*n*-dimensional) uniformly convex set for all x.

This implies that $H(x, p) = \max_{a \in A} - p \cdot f(x, a)$ is smooth for $p \neq 0$.

Theorem

Let (α, y) be an optimal pair for the point $(t, x) \in [0, T] \times \mathbb{R}^n$ and let $p : [t, T] \to \mathbb{R}^n$ be a dual arc associated with (α, y) such that $p(\bar{s}) \neq 0$ for some $\bar{s} \in [t, T]$. Then $p(s) \neq 0$ for all $s \in [t, T]$ and (y, p) solves the system

 $\left(egin{array}{ll} y'(s)=-\mathcal{H}_{p}(y(s),p(s))\ p'(s)=\mathcal{H}_{x}(y(s),p(s))\end{array}
ight) s\in [t,T].$

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 42 / 52

Assume that f(x, A) is a (*n*-dimensional) uniformly convex set for all x.

This implies that $H(x, p) = \max_{a \in A} - p \cdot f(x, a)$ is smooth for $p \neq 0$.

Theorem

Let (α, y) be an optimal pair for the point $(t, x) \in [0, T] \times \mathbb{R}^n$ and let $p : [t, T] \to \mathbb{R}^n$ be a dual arc associated with (α, y) such that $p(\bar{s}) \neq 0$ for some $\bar{s} \in [t, T]$. Then $p(s) \neq 0$ for all $s \in [t, T]$ and (y, p) solves the system

 $\left(egin{array}{ll} y'(s)=-\mathcal{H}_{p}(y(s),p(s))\ p'(s)=\mathcal{H}_{x}(y(s),p(s))\end{array}
ight) s\in [t,T].$

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 42 / 52

Assume that f(x, A) is a (*n*-dimensional) uniformly convex set for all x.

This implies that $H(x, p) = \max_{a \in A} - p \cdot f(x, a)$ is smooth for $p \neq 0$.

Theorem

Let (α, y) be an optimal pair for the point $(t, x) \in [0, T] \times \mathbb{R}^n$ and let $p : [t, T] \to \mathbb{R}^n$ be a dual arc associated with (α, y) such that $p(\bar{s}) \neq 0$ for some $\bar{s} \in [t, T]$. Then $p(s) \neq 0$ for all $s \in [t, T]$ and (y, p) solves the system

$$\begin{cases} y'(s) = -H_p(y(s), p(s)) \\ p'(s) = H_x(y(s), p(s)) \end{cases} s \in [t, T]. \end{cases}$$

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 42 / 52

Theorem

Given a point $(t, x) \in [0, T[\times \mathbb{R}^n \text{ and a vector } \bar{p} = (\bar{p}_t, \bar{p}_x) \in D^* V(t, x)$ such that $\bar{p} \neq 0$, let us associate with \bar{p} the pair $(y(\cdot), p(\cdot))$ which solves the hamiltonian system with initial conditions y(t) = x, $p(t) = \bar{p}_x$.

Then $y(\cdot)$ is an optimal trajectory for (t, x) and $p(\cdot)$ is a dual arc associated with $y(\cdot)$.

The map from $D^*V(t, x)$ to the set of optimal trajectories from (t, x) defined in this way is injective, and it is one-to-one if $0 \notin D^*V(t, x)$.

Corollary

If $0 \notin D^*V(t, x)$, then the optimal trajectory at (t, x) is unique if and only if V is differentiable at (t, x).

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 43 / 52

Theorem

Given a point $(t, x) \in [0, T[\times \mathbb{R}^n \text{ and a vector } \bar{p} = (\bar{p}_t, \bar{p}_x) \in D^* V(t, x)$ such that $\bar{p} \neq 0$, let us associate with \bar{p} the pair $(y(\cdot), p(\cdot))$ which solves the hamiltonian system with initial conditions y(t) = x, $p(t) = \bar{p}_x$.

Then $y(\cdot)$ is an optimal trajectory for (t, x) and $p(\cdot)$ is a dual arc associated with $y(\cdot)$.

The map from $D^*V(t,x)$ to the set of optimal trajectories from (t,x) defined in this way is injective, and it is one-to-one if $0 \notin D^*V(t,x)$.

Corollary

If $0 \notin D^*V(t, x)$, then the optimal trajectory at (t, x) is unique if and only if V is differentiable at (t, x).

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 43 / 52

Theorem

Given a point $(t, x) \in [0, T[\times \mathbb{R}^n \text{ and a vector } \bar{p} = (\bar{p}_t, \bar{p}_x) \in D^* V(t, x)$ such that $\bar{p} \neq 0$, let us associate with \bar{p} the pair $(y(\cdot), p(\cdot))$ which solves the hamiltonian system with initial conditions y(t) = x, $p(t) = \bar{p}_x$.

Then $y(\cdot)$ is an optimal trajectory for (t, x) and $p(\cdot)$ is a dual arc associated with $y(\cdot)$.

The map from $D^*V(t,x)$ to the set of optimal trajectories from (t,x) defined in this way is injective, and it is one-to-one if $0 \notin D^*V(t,x)$.

Corollary

If $0 \notin D^* V(t, x)$, then the optimal trajectory at (t, x) is unique if and only if V is differentiable at (t, x).

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7. 2012 43 / 52

-

Theorem

Given a point $(t, x) \in [0, T[\times \mathbb{R}^n \text{ and a vector } \bar{p} = (\bar{p}_t, \bar{p}_x) \in D^* V(t, x)$ such that $\bar{p} \neq 0$, let us associate with \bar{p} the pair $(y(\cdot), p(\cdot))$ which solves the hamiltonian system with initial conditions y(t) = x, $p(t) = \bar{p}_x$.

Then $y(\cdot)$ is an optimal trajectory for (t, x) and $p(\cdot)$ is a dual arc associated with $y(\cdot)$.

The map from $D^*V(t, x)$ to the set of optimal trajectories from (t, x) defined in this way is injective, and it is one-to-one if $0 \notin D^*V(t, x)$.

Corollary

If $0 \notin D^*V(t, x)$, then the optimal trajectory at (t, x) is unique if and only if V is differentiable at (t, x).

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7. 2012 43 / 52

Theorem

Given a point $(t, x) \in [0, T[\times \mathbb{R}^n \text{ and a vector } \bar{p} = (\bar{p}_t, \bar{p}_x) \in D^* V(t, x)$ such that $\bar{p} \neq 0$, let us associate with \bar{p} the pair $(y(\cdot), p(\cdot))$ which solves the hamiltonian system with initial conditions y(t) = x, $p(t) = \bar{p}_x$.

Then $y(\cdot)$ is an optimal trajectory for (t, x) and $p(\cdot)$ is a dual arc associated with $y(\cdot)$.

The map from $D^*V(t, x)$ to the set of optimal trajectories from (t, x) defined in this way is injective, and it is one-to-one if $0 \notin D^*V(t, x)$.

Corollary

If $0 \notin D^* V(t, x)$, then the optimal trajectory at (t, x) is unique if and only if V is differentiable at (t, x).

3

Outline

Introduction to semiconcave functions, generalized differentials, and singularities

- Semiconcave functions
- ۲

- Singular sets, rectifiability

Singular sets, rectifiability

The singular set

Given $u: A \to \mathbb{R}$ semiconcave, the singular set of u is

 $\Sigma(u) = \{x \in A : u \text{ is not differentiable at } x\}$ $= \{x \in A : D^+u(x) \text{ is not a singleton}\}.$

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 45 / 52

The singular set

Given $u: A \to \mathbb{R}$ semiconcave, the singular set of u is

 $\Sigma(u) = \{x \in A : u \text{ is not differentiable at } x\}$ $= \{x \in A : D^+u(x) \text{ is not a singleton}\}.$

We know: Σ has measure zero.

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 45 / 52

The singular set

Given $u: A \to \mathbb{R}$ semiconcave, the singular set of u is

 $\Sigma(u) = \{x \in A : u \text{ is not differentiable at } x\}$ $= \{x \in A : D^+u(x) \text{ is not a singleton}\}.$

We know: Σ has measure zero.

Much sharper results can be given in terms of *rectifiability* properties.

46 / 52

rectifiable sets

Let $k \in \{0, 1, \ldots, n\}$ and let $C \subset \mathbb{R}^n$.

- *C* is called a *k*-rectifiable set if there exists a Lipschitz continuous function *f* : ℝ^k → ℝⁿ such that *C* ⊂ *f*(ℝ^k).
- *C* is called a *countably k*-*rectifiable* set if it is the union of a countable family of *k*-rectifiable sets.
- *C* is called a *countably* H^k-*rectifiable set* if there exists a countably *k*-rectifiable set *E* ⊂ ℝⁿ such that H^k(C \ E) = 0. Here H^k denotes the *k*-dimensional Hausdorff measure.

rectifiable sets

Let $k \in \{0, 1, \ldots, n\}$ and let $C \subset \mathbb{R}^n$.

- *C* is called a *k*-rectifiable set if there exists a Lipschitz continuous function *f* : ℝ^k → ℝⁿ such that *C* ⊂ *f*(ℝ^k).
- *C* is called a *countably k*-*rectifiable* set if it is the union of a countable family of *k*-rectifiable sets.
- *C* is called a *countably* H^k-*rectifiable set* if there exists a countably *k*-rectifiable set *E* ⊂ ℝⁿ such that H^k(C \ E) = 0. Here H^k denotes the *k*-dimensional Hausdorff measure.

rectifiable sets

Let $k \in \{0, 1, \ldots, n\}$ and let $C \subset \mathbb{R}^n$.

- *C* is called a *k*-rectifiable set if there exists a Lipschitz continuous function *f* : ℝ^k → ℝⁿ such that *C* ⊂ *f*(ℝ^k).
- *C* is called a *countably k*-*rectifiable* set if it is the union of a countable family of *k*-rectifiable sets.
- *C* is called a *countably* H^k-rectifiable set if there exists a countably k-rectifiable set E ⊂ ℝⁿ such that H^k(C \ E) = 0. Here H^k denotes the k-dimensional Hausdorff measure.

It is easy to see that, if u is semiconcave with a linear modulus, then Du is a function of bounded variation.

The singular set $\Sigma(u)$ coincides with the *jump set* of *Du* in the theory of *BV* functions.

Standard results about *BV* functions then imply that $\Sigma(u)$ is *countably* \mathcal{H}^{n-1} -rectifiable.

More precise results can be obtained by a direct approach.

A D A A B A A B A A B A

- It is easy to see that, if u is semiconcave with a linear modulus, then Du is a function of bounded variation.
- The singular set $\Sigma(u)$ coincides with the *jump set* of *Du* in the theory of *BV* functions.
- Standard results about *BV* functions then imply that $\Sigma(u)$ is *countably* \mathcal{H}^{n-1} -rectifiable.
- More precise results can be obtained by a direct approach.

- It is easy to see that, if u is semiconcave with a linear modulus, then Du is a function of bounded variation.
- The singular set $\Sigma(u)$ coincides with the *jump set* of *Du* in the theory of *BV* functions.
- Standard results about *BV* functions then imply that $\Sigma(u)$ is *countably* \mathcal{H}^{n-1} -*rectifiable*.
- More precise results can be obtained by a direct approach.

- It is easy to see that, if u is semiconcave with a linear modulus, then Du is a function of bounded variation.
- The singular set $\Sigma(u)$ coincides with the *jump set* of *Du* in the theory of *BV* functions.
- Standard results about *BV* functions then imply that $\Sigma(u)$ is *countably* \mathcal{H}^{n-1} -*rectifiable*.
- More precise results can be obtained by a direct approach.

$D^+u(x)$ is a convex set \implies it has an integer dimension.

For $k = 1, \ldots, n$, we define

$\Sigma^k(u) = \{x \in \Sigma : \dim(D^+u(x)) = k\}.$

Theorem

If $u : \Omega \to \mathbb{R}$ is semiconcave (with a general modulus) then the set $\Sigma^k(u)$ is countably (n - k)-rectifiable for any k = 1, ..., n.

Zajíček (1978), Veselý (1986), Alberti-Ambrosio-Cannarsa (1992).

P. Cannarsa & C. Sinestrari (Rome 2) Optimal

Optimal control, HJ eqns, singularities

September 3 – 7. 2012

48 / 52

$D^+u(x)$ is a convex set \implies it has an integer dimension.

For $k = 1, \ldots, n$, we define

$$\Sigma^k(u) = \{x \in \Sigma : \dim(D^+u(x)) = k\}.$$

Theorem

If $u : \Omega \to \mathbb{R}$ is semiconcave (with a general modulus) then the set $\Sigma^k(u)$ is countably (n - k)-rectifiable for any k = 1, ..., n.

Zajíček (1978), Veselý (1986), Alberti-Ambrosio-Cannarsa (1992).

P. Cannarsa & C. Sinestrari (Rome 2) Optin

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 48 / 52

 $D^+u(x)$ is a convex set \implies it has an integer dimension.

For $k = 1, \ldots, n$, we define

 $\Sigma^k(u) = \{x \in \Sigma : \dim(D^+u(x)) = k\}.$

Theorem

If $u : \Omega \to \mathbb{R}$ is semiconcave (with a general modulus) then the set $\Sigma^k(u)$ is countably (n - k)-rectifiable for any k = 1, ..., n.

Zajíček (1978), Veselý (1986), Alberti-Ambrosio-Cannarsa (1992).

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012

48 / 52

 $D^+u(x)$ is a convex set \implies it has an integer dimension.

For $k = 1, \ldots, n$, we define

 $\Sigma^k(u) = \{x \in \Sigma : \dim(D^+u(x)) = k\}.$

Theorem

If $u : \Omega \to \mathbb{R}$ is semiconcave (with a general modulus) then the set $\Sigma^k(u)$ is countably (n - k)-rectifiable for any k = 1, ..., n.

Zajíček (1978), Veselý (1986), Alberti-Ambrosio-Cannarsa (1992).

example

Let u(x, y) = -|x| - |y|, concave on \mathbb{R}^2 . Then $\Sigma(u) = \{(x, y) : x = 0 \text{ or } y = 0\}$. If x = 0 and y > 0, then $D^+u(x, y) = [-1, 1] \times \{-1\}$. Similarly, any point with $x = 0, y \neq 0$, or with $x \neq 0, y = 0$ belongs to $\Sigma^1(u)$. Finally, $D^+u(0, 0) = [-1, 1] \times [-1, 1]$, and $\Sigma^2(u) = \{(0, 0)\}$.

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities
Let u(x, y) = -|x| - |y|, concave on \mathbb{R}^2 .

Then $\Sigma(u) = \{(x, y) : x = 0 \text{ or } y = 0\}.$

If x = 0 and y > 0, then $D^+u(x, y) = [-1, 1] \times \{-1\}$. Similarly, any point with $x = 0, y \neq 0$, or with $x \neq 0, y = 0$ belongs to $\Sigma^1(u)$.

Finally, $D^+u(0,0) = [-1,1] \times [-1,1]$, and $\Sigma^2(u) = \{(0,0)\}$.

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

Let u(x, y) = -|x| - |y|, concave on \mathbb{R}^2 .

Then $\Sigma(u) = \{(x, y) : x = 0 \text{ or } y = 0\}.$

If x = 0 and y > 0, then $D^+u(x, y) = [-1, 1] \times \{-1\}$. Similarly, any point with $x = 0, y \neq 0$, or with $x \neq 0, y = 0$ belongs to $\Sigma^1(u)$. Finally, $D^+u(0, 0) = [-1, 1] \times [-1, 1]$, and $\Sigma^2(u) = \{(0, 0)\}$.

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities

- Let u(x, y) = -|x| |y|, concave on \mathbb{R}^2 .
- Then $\Sigma(u) = \{(x, y) : x = 0 \text{ or } y = 0\}.$
- If x = 0 and y > 0, then $D^+u(x, y) = [-1, 1] \times \{-1\}$. Similarly, any point with $x = 0, y \neq 0$, or with $x \neq 0, y = 0$ belongs to $\Sigma^1(u)$.

Finally, $D^+u(0,0) = [-1,1] \times [-1,1]$, and $\Sigma^2(u) = \{(0,0)\}$.

- Let u(x, y) = -|x| |y|, concave on \mathbb{R}^2 .
- Then $\Sigma(u) = \{(x, y) : x = 0 \text{ or } y = 0\}.$
- If x = 0 and y > 0, then $D^+u(x, y) = [-1, 1] \times \{-1\}$. Similarly, any point with $x = 0, y \neq 0$, or with $x \neq 0, y = 0$ belongs to $\Sigma^1(u)$.
- Finally, $D^+u(0,0) = [-1,1] \times [-1,1]$, and $\Sigma^2(u) = \{(0,0)\}$.

イロト イポト イヨト イヨト

50 / 52

sketch of the proof

Definition

Let $S \subset \mathbb{R}^n$ and $x \in \overline{S}$ be given. The contingent cone (or Bouligand's tangent cone) to S at x is the set

$$T(x, S) = \left\{ \lim_{i \to \infty} \frac{x_i - x}{t_i} : x_i \in S, x_i \to x, t_i \in \mathbb{R}_+, t_i \downarrow \mathbf{0} \right\}$$

The vector space generated by T(x, S) is called tangent space to S at x and is denoted by Tan(x, S).

P. Cannarsa & C. Sinestrari (Rome 2) Optimal control, HJ eqns, singularities September 3 – 7, 2012

sketch of the proof (II)

Theorem

Let $S \subset \mathbb{R}^n$ be a set such that dim $\operatorname{Tan}(x, S) \leq k$, for all $x \in S$, for a given integer $k \in [0, n]$. Then S is countably k-rectifiable.

Given ho > 0, we denote by $\Sigma_{
ho}^k(u)$ the set of all $x \in \Sigma^k(u)$ such that $D^+u(x)$ contains a *k*-dimensional sphere of radius ho.

Theorem If u is semiconcave in Ω , then

 $\operatorname{Tan}(x,\Sigma^k_{\rho}(u))\subset [D^+u(x)]^{\perp},\quad \forall\,x\in\Sigma^k_{\rho}(u).$

The rectifiability theorem follows.

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 51 / 52

sketch of the proof (II)

Theorem

Let $S \subset \mathbb{R}^n$ be a set such that dim $Tan(x, S) \leq k$, for all $x \in S$, for a given integer $k \in [0, n]$. Then S is countably k-rectifiable.

Given $\rho > 0$, we denote by $\sum_{\rho}^{k}(u)$ the set of all $x \in \sum^{k}(u)$ such that $D^{+}u(x)$ contains a *k*-dimensional sphere of radius ρ .

Theorem If u is semiconcave in Ω , then

 $\operatorname{Tan}(x,\Sigma^k_{\rho}(u))\subset [D^+u(x)]^{\perp},\quad \forall\,x\in\Sigma^k_{\rho}(u).$

The rectifiability theorem follows.

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012 51 / 52

- コン (雪) (ヨ) (ヨ)

sketch of the proof (II)

Theorem

Let $S \subset \mathbb{R}^n$ be a set such that dim $Tan(x, S) \leq k$, for all $x \in S$, for a given integer $k \in [0, n]$. Then S is countably k-rectifiable.

Given $\rho > 0$, we denote by $\sum_{\rho}^{k}(u)$ the set of all $x \in \sum^{k}(u)$ such that $D^{+}u(x)$ contains a *k*-dimensional sphere of radius ρ .

Theorem

If **u** is semiconcave in Ω , then

 $\operatorname{Tan}(x,\Sigma_{\rho}^{k}(u))\subset [D^{+}u(x)]^{\perp},\quad \forall\,x\in\Sigma_{\rho}^{k}(u).$

The rectifiability theorem follows.

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7. 2012 51 / 52

Thank you for your attention!

P. Cannarsa & C. Sinestrari (Rome 2)

Optimal control, HJ eqns, singularities

September 3 – 7, 2012

・ロット (雪) (日) (日)

52 / 52

э