Optimal Control and Mean Field Games (Part 1)

P. Cardaliaguet

Paris-Dauphine

"NEW TRENDS IN OPTIMAL CONTROL" Ravello, Italy September, 3-7, 2012

Mean field game theory analyzes

- optimal control problems
- with (infinitely) many identical controlers

In other words it is a mathematical modeling approach to continuous-time systems which involve a great number of "agents".

Ideas introduced by

- Lasry-Lions '06,
- Huang-Caines-Malhame, '06

Motivations:

- Problems arising in economy
 - financial markets (Price formation and dynamic equilibria, Formation of volatility) (Lasry, Lions, 2006)
 - general economic equilibrium with rational expectations (Guéant, Lasry, and Lions, 2007)
- Dynamics of population models
 - crowd motion: mexican wave "la ola", ... (Guéant, Lasry, Lions -Lachapelle, ...)
 - academic behavior (Besancenot, Courtault, El Dika...)
- Engineereing literature: Large Population Stochastic Wireless Power Control Problem (Huang, Caines, Malhamé, 2003, Mériaux, Lasaulce...)

Different approaches

- limit of N-player (stochastic) differential games as N → +∞,
 → analogy with the Mean Field theories in statistical physics (kinetic theory of gases, Boltzmann and Vlasov equations) and quantum mechanics and quantum Chemistry (Hartree-Fock models...)
- direct definition of (stochastic) differential games with infinitely many identical players (applications to N-player games),
 - approach from game theory
- potential games: games arising as necessary conditions for optimal control problems of PDE equations.
 - related to optimal transportation problems

The Mean Field Game system

The 3 approaches yield the same MFG system with unknown $(u,m):[0,T]\times\mathbb{R}^d\to\mathbb{R}^2$:

$$(MFG) \quad \begin{cases} (i) \quad -\partial_t u - \sigma^2 \Delta u + H(x, Du, m) = 0 \\ & \text{in } [0, T] \times \mathbb{R}^d \\ (ii) \quad \partial_t m - \sigma^2 \Delta m - \operatorname{div}(m \, D_p H(x, Du, m)) = 0 \\ & \text{in } [0, T] \times \mathbb{R}^d \\ (iii) \quad m(0) = m_0, \ u(x, T) = G(x, m(T)) \quad \text{in } \mathbb{R}^d \end{cases}$$

where

- $\sigma \in \mathbb{R}$,
- H = H(x, p, m) is a convex Hamiltonian (in p) depending on the density m,
- G = G(x, m(T)) is a function depending on the position x and the density m(T) at time T.
- m_0 is a probability density on \mathbb{R}^d .

System introduced in

- Lasry-Lions '06,
- Huang-Caines-Malhame, '06

to model large population differential games.

Aim of the lectures

- Describe the MFG model and its interpretations (Part 1)
- Existence of the MFG system by fixed point arguments (First order, non local MFG - Part 2)
- The MFG system as optimality condition for optimal control problems of PDEs
 (First order, local MFG, Part 2)
 - (First order, local MFG Part 3)

Part 1

Interpretations of the MFG system

- Static games with many players
- Description of the MFG system
- Some results for second order MFG systems
- 4 Heuristic derivation of the MFG system

- Static games with many players
- Description of the MFG system
- Some results for second order MFG systems
- 4 Heuristic derivation of the MFG system

- Static games with many players
- Description of the MFG system
- Some results for second order MFG systems
- 4 Heuristic derivation of the MFG system

- Static games with many players
- Description of the MFG system
- Some results for second order MFG systems
- 4 Heuristic derivation of the MFG system

- Static games with many players
- Description of the MFG system
- 3 Some results for second order MFG systems
- 4 Heuristic derivation of the MFG system

Example: Several swimmers on a beach.

They want to be

- close from the sea,
- not too far from their car
- far from each other

What is the optimal repartition of the swimmers?

Key assumption : swimmers are identical (same tastes).

Example: Several swimmers on a beach.

They want to be

- close from the sea,
- not too far from their car
- far from each other

What is the optimal repartition of the swimmers?

Key assumption : swimmers are identical (same tastes).

Formalization

Let *N* be a (large) number of players.

We consider a one-shot game with N symmetric players :

- the players have the same set of actions Q,
- the cost of player i (where $i \in \{1, ..., N\}$) is given by $F_i^N = F^N(x_i, (x_j)_{j \neq i})$ where $F^N : Q^N \to \mathbb{R}$ is symmetric in the last variables.

Back to the "beach" example:

- A strategy for player i is a position x_i on the beach. The A strategy set Q = Beach.
- The cost of player i, F_i^N , can be given, for instance, by

$$F_i^N = F^N(x_i, (x_j)_{j \neq i}) = \alpha \operatorname{dist}(x_i, \operatorname{Sea}) + \beta \operatorname{dist}(x_i, \operatorname{Parking}) - \gamma \frac{1}{N-1} \sum_{j \neq i} |x_j - x_i|$$

where $\alpha, \beta, \gamma > 0$ are the same for all swimmers.

A solution of the game is a Nash equilibrium:

Definition

A Nash equilibrium for the game (F_1^N, \dots, F_N^N) is an element $(\bar{x}_1^N, \dots, \bar{x}_N^N) \in Q^N$ such that

$$F_i^N(y_i,(\bar{x}_i^N)_{j\neq i}) \geq F_i^N(\bar{x}_i^N,(\bar{x}_i^N)_{j\neq i}) \qquad \forall y_i \in Q.$$

In other worlds, \bar{x}_i^N minimizes the map $y_i \to F_i^N(y_i, (\bar{x}_i^N)_{i \neq i})$.

Problem

Understand the behavior of Nash equilibria $(\bar{x}_1^N, \dots, \bar{x}_N^N) \in Q^N$ as $N \to +\infty$.

Symmetric functions of many variables

Let Q be a compact metric space. We denote by $\mathcal{P}(Q)$ be the set of Borel probability measures on Q, endowed with the Kantorowich-Rubinstein distance

$$\mathbf{d}_1(\mu, \nu) = \sup \left\{ \int_Q f \ d(\mu - \nu) \text{ where } f : Q \to \mathbb{R} \text{ is } 1\text{-Lipschitz continuous} \right\} \ .$$

Facts:

- \mathbf{d}_1 metricizes the weak-* convergence on $\mathcal{P}(Q)$.
- $\mathcal{P}(Q)$ is compact for \mathbf{d}_1 .

Let, for any $N \in \mathbb{N}$, $w_N : \mathbb{Q}^N \to \mathbb{R}$ be a symmetric function such that

(Uniform bound) $\exists C_0 > 0$ with

$$\|w_N\|_{L^{\infty}(Q)} \leq C_0 \quad \forall N \in \mathbb{N} ,$$

② (Uniform Lipschitz continuity) $\exists C_1 > 0$ such that

$$|w_N(X)-w_N(Y)| \leq C_1 \mathbf{d}_1(m_X^N, m_Y^N) \qquad \forall X, \, Y \in Q^N, \, \, \forall N \in \mathbb{N},$$

where $m_X^N = \frac{1}{N} \sum_{i=1}^N \delta_{x_i}$ and $m_Y^N = \frac{1}{N} \sum_{i=1}^N \delta_{y_i}$ if $X = (x_1, \dots, x_N)$ and $Y = (y_1, \dots, y_N)$.

Lemma

There is a subsequence (w_{N_k}) of (w_N) and a Lipschitz continuous map $W: \mathcal{P}(Q) \to \mathbb{R}$ such that

$$\lim_{k\to +\infty} \sup_{X\in \mathcal{Q}^{N_k}} |w_{N_k}(X) - W(m_X^{N_k})| = 0 \ .$$

Remarks:

- The result holds if one replaces the "uniform Lipschitz continuity" assumption by a uniform modulus.
- This condition still holds if

$$\|\partial_{x_j}w_N\|_{\infty}\leq \frac{C_1}{N}$$
.

Indeed, fix $X, Y \in Q^N$ and let σ permutation s.t.

$$\mathbf{d}_1(m_X^N, m_Y^N) = \frac{1}{N} \sum_{i=1}^N d(x_i, y_{\sigma(i)}).$$

Then

$$|w_{N}(X) - w_{N}(Y)| = |w_{N}(X) - w_{N}((y_{\sigma(i)}))|$$

$$\leq \sum_{i=1}^{N} \frac{C_{1}}{N} d(x_{i}, y_{\sigma(i)}) = C_{1} \mathbf{d}_{1}(m_{X}^{N}, m_{Y}^{N})$$

Proof of the Lemma : Let $W^N : \mathcal{P}(Q) \to \mathbb{R}$ be defined by

$$W^N(m) = \inf_{X \in \mathcal{Q}^N} \left\{ w_N(X) + C_1 \mathbf{d}_1(m_X^N, m) \right\} \qquad \forall m \in \mathcal{P}(\mathcal{Q}) \ .$$

Then

- $|W^N(m)| \le C_0 + C_1 \operatorname{diam}(Q)$ $\forall m \in \mathcal{P}(Q)$,
- $W^N(m_X^N) = w_N(X)$ for any $X \in Q^N$,
- the W^N are C_1 -Lipschitz continuous on $\mathcal{P}(Q)$.

By Ascoli, $\exists (W_{N_k})$ which converges uniformly to a limit W. Then

$$\limsup_{k\to +\infty} \sup_{X\in Q^{N_k}} |w_{N_k}(X)-W(m_X^{N_k})| \leq \lim_{k\to +\infty} \sup_{m\in \mathcal{P}(Q)} |W_{N_k}(m)-W(m)| = 0 \; .$$

Back to the game with many players

We consider a symmetric *N*-player one-shot game :

- the set of actions Q is the same for each players and Q is compact,
- the cost of player i (where $i \in \{1, ..., N\}$) is $F_i^N = F^N(x_i, (x_j)_{j \neq i})$ where $F^N : Q^N \to \mathbb{R}$ is symmetric in the last variables.

In view of the previous discussion, we can assume that there is $F: Q \times \mathcal{P}(Q) \to \mathbb{R}$, continuous, such that, for any $i \in \{1, \dots, N\}$

$$F^N(x_i,(x_j)_{j\neq i})=F\left(x_i,\frac{1}{N-1}\sum_{j\neq i}\delta_{x_j}\right) \qquad \forall (x_1,\ldots,x_N)\in Q^N.$$

For instance, in the "beach" example: The map F is given by

$$F(x, m) = \alpha \operatorname{dist}(x, \operatorname{Sea}) + \beta \operatorname{dist}(x, \operatorname{Parking}) - \gamma \int_{\operatorname{Reach}} |y - x| dm(y)$$

Then

$$F^{N}(x_{i}, (x_{j})_{j \neq i}) := F\left(x_{i}, \frac{1}{N-1} \sum_{j \neq i} \delta_{x_{j}}\right)$$

$$= \alpha \operatorname{dist}(x_{i}, \operatorname{Sea}) + \beta \operatorname{dist}(x_{i}, \operatorname{Parking}) - \gamma \frac{1}{N-1} \sum_{i \neq i} |x_{j} - x_{i}|$$

For instance, in the "beach" example: The map F is given by

$$F(x, m) = \alpha \operatorname{dist}(x, \operatorname{Sea}) + \beta \operatorname{dist}(x, \operatorname{Parking}) - \gamma \int_{\operatorname{Reach}} |y - x| dm(y)$$

Then

$$F^{N}(x_{i},(x_{j})_{j\neq i}) := F\left(x_{i}, \frac{1}{N-1} \sum_{j\neq i} \delta_{x_{j}}\right)$$

$$= \alpha \operatorname{dist}(x_{i}, \operatorname{Sea}) + \beta \operatorname{dist}(x_{i}, \operatorname{Parking}) - \gamma \frac{1}{N-1} \sum_{i\neq i} |x_{i} - x_{i}|$$

Recall that a Nash equilibrium for the game (F_1^N, \dots, F_N^N) is an element $(\bar{x}_1^N, \dots, \bar{x}_N^N) \in Q^N$ such that

$$F_i^N(y_i,(\bar{x}_j^N)_{j\neq i}) \geq F_i^N(\bar{x}_i^N,(\bar{x}_j^N)_{j\neq i}) \qquad \forall y_i \in Q \ .$$

For $(\bar{x}_1^N,\dots,\bar{x}_N^N)\in Q^N$, we set

$$X^N = (\bar{x}_1^N, \dots, \bar{x}_N^N)$$
 and $\bar{m}^N = \frac{1}{N} \sum_{i=1}^N \delta_{\bar{x}_i^N}$.

Proposition

Assume that, for any N, $X^N=(\bar{x}_1^N,\dots,\bar{x}_N^N)$ is a Nash equilibrium for the game F_1^N,\dots,F_N^N .

Then up to a subsequence, the sequence of measures $(\bar{m}^N = \frac{1}{N} \sum_{i=1}^N \delta_{\bar{x}_i^N})$ converges to a measure $\bar{m} \in \mathcal{P}(Q)$ such that

$$(*) \qquad \int_{Q} F(y,\bar{m}) d\bar{m}(y) = \inf_{m \in \mathcal{P}(Q)} \int_{Q} F(y,\bar{m}) dm(y) \ .$$

Remark: (*) is equivalent to saying that the support of \bar{m} is contained in the set of minima of $F(y, \bar{m})$:

$$\bar{m}(\lbrace x ; F(x,\bar{m}) \leq F(x',\bar{m}) \ \forall x' \in Q \rbrace) = 1$$
.

Definition

Given a continuous map $F: Q \times \mathcal{P}(Q) \to \mathbb{R}$, we say that $\bar{m} \in \mathcal{P}(Q) \to \mathbb{R}$ is a Nash equilibrium of the continuous game if \bar{m} satisfies

(*)
$$\int_{Q} F(y, \bar{m}) d\bar{m}(y) = \inf_{m \in \mathcal{P}(Q)} \int_{Q} F(y, \bar{m}) dm(y) ,$$

or, equivalently,

$$\bar{m}(\lbrace x \; ; \; F(x,\bar{m}) \leq F(y,\bar{m}) \qquad \forall y \in Q \rbrace) = 1 \; .$$

Proof of the Proposition : We can assume that the sequence

$$(\bar{m}^N = \frac{1}{N} \sum_{i=1}^N \delta_{\bar{x}_i^N})$$
 converges to some \bar{m} . Let us check that \bar{m} satisfies $(*)$.

ullet By definition, the measure $\delta_{ar{\chi}_i^N}$ is a minimum of the problem

$$\inf_{m\in\mathcal{P}(Q)}\int_{Q}F(y,\frac{1}{N-1}\sum_{j\neq i}\delta_{\bar{x}_{j}^{N}})dm(y)\;.$$

• Since $d\left(\frac{1}{N-1}\sum_{j\neq i}\delta_{\bar{x}_{j}^{N}}, \bar{m}^{N}\right)\leq \frac{2}{N}$ and since F is continuous, the measure $\delta_{\bar{x}_{i}^{N}}$ is also ε -optimal for the problem

$$\inf_{m\in\mathcal{P}(Q)}\int_{Q}F(y,\bar{m}^{N})dm(y)$$

for N is large enough.

• By linearity, \bar{m}^N is also ε -optimal for the problem

$$\int_{\Omega} F(y, \bar{m}^N) d\bar{m}^N(y) \leq \inf_{m \in \mathcal{P}(Q)} \int_{\Omega} F(y, \bar{m}^N) dm(y) + \varepsilon.$$

for N is large enough.

• Letting $N \to +\infty$ gives the result.

Existence of a solution to (*)

Assume $F: Q \times \mathcal{P}(Q) \to \mathbb{R}$ is continuous.

Proposition

There is at least one Nash equilibrium of the continuous game, i.e., a measure \bar{m} such that

(*)
$$\int_{Q} F(y, \bar{m}) d\bar{m}(y) = \inf_{m \in \mathcal{P}(Q)} \int_{Q} F(y, \bar{m}) dm(y)$$

holds.

Remark : In general, no Nash equilibria for the *N*-person game. So the above Proposition is not a consequence of the passage to the limit.

Proof: Recall Ky Fan fixed point Theorem:

Let X be a convex compact set of a locally convex Hausdorff space and $G: X \to 2^X$ be a multiapplication with convex compact values and closed graph. Then G has a fixed point :

$$\exists \bar{x} \in X \text{ such that } \bar{x} \in G(\bar{x})$$
.

Let $X = \mathcal{P}(Q)$ and $G: X \to 2^X$ defined by

$$G(m) = \operatorname{argmin}_{m' \in X} \int_{Q} F(x, m) dm'(x)$$

Then *G* is upper-semicontinuous multi-application with convex compact values.

So G has a fixed point:

$$\exists \bar{m} \in X \text{ such that } \int_{Q} F(y, \bar{m}) d\bar{m}(y) = \inf_{m \in \mathcal{P}(Q)} \int_{Q} F(y, \bar{m}) dm(y) .$$

From MFG to Nash equilibria in the *N*-player game

Problem : Given a Nash equilibrium of the continuous game, is it possible to derive a Nash equilibrium for the N-player game (for large N)?

Yes, but in mixed strategies.

From MFG to Nash equilibria in the *N*-player game

Problem : Given a Nash equilibrium of the continuous game, is it possible to derive a Nash equilibrium for the N-player game (for large N)?

Yes, but in mixed strategies.

Existence of ε -Nash equilibria

Mixed extension : Recall that $F_i^N(x_i,(x_j)_{j\neq 0}) = F\left(x_i,\frac{1}{N-1}\sum_{j\neq i}\delta_{x_j}\right)$. The mixed extension of F_i^N is the map $\tilde{F}_i^N:(\mathcal{P}(Q))^N\to\mathbb{R}$ defined by

$$ilde{F}_i^N(m_i,(m_j)_{j \neq i}) = \int \ldots \int F_i^N(y_i,(y_j)_{j \neq i}) dm_1(y_1) \ldots dm_N(y_N)$$

for all $(m_1, \ldots, m_N) \in (\mathcal{P}(Q))^N$.

Proposition

Let \bar{m} be a Nash equilibrium of the continuous game associated with the continuous cost $F: Q \times \mathcal{P}(Q) \to \mathbb{R}$.

Then, $\forall \varepsilon > 0$, $\exists \bar{N}$ such that, for $N \geq \bar{N}$, the random strategy $(\bar{m}, \dots, \bar{m}) \in (\mathcal{P}(Q))^N$ is an ε -Nash equilibrium of the N-player game :

$$\tilde{F}(m,(\bar{m},\ldots,\bar{m})) \geq \tilde{F}(\bar{m},(\bar{m},\ldots,\bar{m})) - \varepsilon \quad \forall m \in \mathcal{P}(Q)$$

Existence of ε -Nash equilibria

Mixed extension : Recall that $F_i^N(x_i,(x_j)_{j\neq 0}) = F\left(x_i,\frac{1}{N-1}\sum_{j\neq i}\delta_{x_j}\right)$. The mixed extension of F_i^N is the map $\tilde{F}_i^N:(\mathcal{P}(Q))^N\to\mathbb{R}$ defined by

$$ilde{F}_i^N(m_i,(m_j)_{j\neq i}) = \int \ldots \int F_i^N(y_i,(y_j)_{j\neq i}) dm_1(y_1) \ldots dm_N(y_N)$$

for all $(m_1, \ldots, m_N) \in (\mathcal{P}(Q))^N$.

Proposition

Let \bar{m} be a Nash equilibrium of the continuous game associated with the continuous cost $F: Q \times \mathcal{P}(Q) \to \mathbb{R}$.

Then, $\forall \varepsilon > 0$, $\exists \bar{N}$ such that, for $N \geq \bar{N}$, the random strategy $(\bar{m}, \dots, \bar{m}) \in (\mathcal{P}(Q))^N$ is an ε -Nash equilibrium of the N-player game :

$$\tilde{F}(m,(\bar{m},\ldots,\bar{m})) \geq \tilde{F}(\bar{m},(\bar{m},\ldots,\bar{m})) - \varepsilon \qquad \forall m \in \mathcal{P}(Q)$$
.

Potential games

Case of local interactions : We now assume that $F: Q \times [0, +\infty) \to \mathbb{R}$.

In this context, a Nash equilibrium of the continuous game is an a.c. probability measure \bar{m} satisfying

$$(*) \qquad \int_Q F(y,\bar{m}(y))\bar{m}(y)dy = \inf_{m \in \mathcal{P}(Q)} \int_Q F(y,\bar{m}(y))dm(y) \;,$$

or, equivalently,

$$F(x, \bar{m}(x)) = \inf_{y \in Q} F(y, \bar{m}(y))$$
 for a.e. x .

Proposition

Let $\Phi(x,m) = \int_0^m F(x,r) dr$. Assume that \bar{m} is an a.c. probability measure on Q minimizing

$$m \to \int_Q \Phi(x, m(x)) dx$$

Then \bar{m} is a Nash equilibrium of the continuous game.

Indeed, the necessary conditions read

$$\int_{\mathcal{Q}} \frac{\partial \Phi}{\partial m}(x, \bar{m})(m - \bar{m}) \geq 0 \qquad \forall m \in \mathcal{P}(\mathcal{Q}) \ .$$

So

$$\int_{Q} F(x, \bar{m}) dm \geq \int_{Q} F(x, \bar{m}) d\bar{m} \qquad \forall m \in \mathcal{P}(Q) \; ,$$

which shows that m is an equilibrium.

An example: People in a concert want to be

- ullet as close as possible from the stage (= 0 $\in \mathbb{R}^2$)
- not too packed

Modelized by the map
$$F(x, m) = \frac{|x|^2}{2} + \log(m(x))$$
.

The optimality condition (*) reads:

$$F(\cdot, \bar{m}) = \min_{y \in \mathbb{R}^2} F(y, \bar{m}) \quad \text{in } \{\bar{m} > 0\}$$

Let
$$\bar{\lambda} = \min_{y \in \mathbb{R}^2} F(y, \bar{m})$$
. Then $\frac{|x|^2}{2} + \log(\bar{m}(x)) = \bar{\lambda} \text{ if } \bar{m}(x) > 0 \text{ , i.e.,}$

$$\bar{m}(x) = e^{\bar{\lambda}}e^{-\frac{|x|^2}{2}}$$

So \bar{m} is a Gaussian.

An example: People in a concert want to be

- as close as possible from the stage (= $0 \in \mathbb{R}^2$)
- not too packed

Modelized by the map
$$F(x, m) = \frac{|x|^2}{2} + \log(m(x))$$
.

The optimality condition (*) reads:

$$F(\cdot, \bar{m}) = \min_{y \in \mathbb{R}^2} F(y, \bar{m}) \quad \text{in } \{\bar{m} > 0\} .$$

Let
$$\bar{\lambda} = \min_{y \in \mathbb{R}^2} F(y, \bar{m})$$
. Then $\frac{|x|^2}{2} + \log(\bar{m}(x)) = \bar{\lambda} \text{ if } \bar{m}(x) > 0 \text{ , i.e.,}$

$$\bar{m}(x) = e^{\bar{\lambda}} e^{-\frac{|x|^2}{2}}.$$

So \bar{m} is a Gaussian.

An example: People in a concert want to be

- ullet as close as possible from the stage (= 0 $\in \mathbb{R}^2$)
- not too packed

Modelized by the map
$$F(x, m) = \frac{|x|^2}{2} + \log(m(x))$$
.

The optimality condition (*) reads:

$$F(\cdot, \bar{m}) = \min_{y \in \mathbb{R}^2} F(y, \bar{m}) \quad \text{in } \{\bar{m} > 0\} .$$

Let
$$ar{\lambda}=\min_{y\in\mathbb{R}^2}F(y,ar{m}).$$
 Then $\frac{|x|^2}{2}+\log(ar{m}(x))=ar{\lambda} ext{ if } ar{m}(x)>0 \ , ext{ i.e.,}$

$$\bar{m}(x)=e^{\bar{\lambda}}e^{-\frac{|x|^2}{2}}$$
.

So \bar{m} is a Gaussian.

Generalization (Mas-Colell, 1984)

Goal: deal with several populations problems.

Back to the swimmers' example: Several swimmers on a beach.

They want to be

- close from the sea.
- not too far from their car,
- far from each other,
- they can have different priorities.

What is the optimal repartition of the swimmers according to their priorities?

Description of the game:

- The set of strategies is a compact metric space Q. Let $\mathcal{P}(Q)$ be the set of Borel probability measures on Q.
- A cost function is a continuous map $u: Q \times \mathcal{P}(Q) \to \mathbb{R}$. We set $C_Q := \mathcal{C}^0(Q \times \mathcal{P}(Q))$ the set of cost functions.
- A game is a Borel probability measure μ over the set C_Q of cost functions.

Remarks

- Each cost function describes a type of population.
- A game represents the distribution of each type in the overall population.
- The previous model consisted in a single type : $\mu = \delta_F$ where $F \in C_Q$.

Description of the game:

- The set of strategies is a compact metric space Q. Let $\mathcal{P}(Q)$ be the set of Borel probability measures on Q.
- A cost function is a continuous map $u: Q \times \mathcal{P}(Q) \to \mathbb{R}$. We set $C_Q := \mathcal{C}^0(Q \times \mathcal{P}(Q))$ the set of cost functions.
- A game is a Borel probability measure μ over the set C_Q of cost functions.

Remarks:

- Each cost function describes a type of population.
- A game represents the distribution of each type in the overall population.
- The previous model consisted in a single type : $\mu = \delta_F$ where $F \in C_Q$.

Definition

Let μ be a game. A Nash equilibrium of the game is a measure σ over $C_Q \times Q$ such that, if σ_C and σ_Q are the marginals of σ , then

- $\mathbf{0} \ \sigma_{\mathcal{C}} = \mu \text{ and }$

Remarks:

- In principle, we would like a map $\Phi: C_Q \to Q$ saying what strategy $\phi(u)$ a player of type u should play. This map seldom exists.
- In the single type model (i.e., $\mu = \delta_F$ where $F \in C_Q$), a Nash equilibrium σ must satisfy :
 - \bullet $\sigma = \delta_F \otimes \tau$ where $\tau \in \mathcal{P}(Q)$,

Theorem (Mas-Colell, 1984)

Given a game μ there exists a Nash equilibrium.

Proof: Again by the Ky Fan fixed point Theorem.

Conclusion

Nash equilibrium of the continuous games

- arise as limit of N-player games as $N \to +\infty$,
- can be intrinsically defined by an equilibrium condition
- can be derived as equilibrium position for potential games
- also allows to formalize the behavior of several populations

Mean field games

- generalize the above approaches when the optimization problem is replace by an optimal control problem.
- (however seldom deal with several population games)

Conclusion

Nash equilibrium of the continuous games

- arise as limit of N-player games as $N \to +\infty$,
- can be intrinsically defined by an equilibrium condition
- can be derived as equilibrium position for potential games
- also allows to formalize the behavior of several populations

Mean field games

- generalize the above approaches when the optimization problem is replace by an optimal control problem.
- (however seldom deal with several population games)

Some references on games with many players (nonatomic games)

Cooperative games and Shapley value

- Shapley (1961), Shapley and Shubik (1963), Aumann-Shapley (1974), Aumann (1975),
- Hildenbrand and Mertens (1972), Hildenbrand (1974), Dubey (1975), Hart (1977), Neyman (1977), Mertens (1980),
 Dubey-Neyman (1984), Monderer (1986), Haimanko (2000), ...

Noncooperative games

 Schmeidler (1973), Novshek and Sonnenschein (1983) Mas-Colell (1983, 1984), Green (1984), Fudenberg-Levine (1986), Sandholm (2001), Kalai (2004) ...

Outline

- Static games with many players
- Description of the MFG system
- 3 Some results for second order MFG systems
- 4 Heuristic derivation of the MFG system

The Mean Field Game system

We study solutions $(u, m) : [0, T] \times \mathbb{R}^d \to \mathbb{R}^2$ to

$$(\textit{MFG}) \quad \left\{ \begin{array}{ll} (\textit{i}) & -\partial_t u - \sigma^2 \Delta u + \textit{H}(x, \textit{D}u, \textit{m}) = 0 \\ & \text{in } [0, \textit{T}] \times \mathbb{R}^d \\ (\textit{ii}) & \partial_t \textit{m} - \sigma^2 \Delta \textit{m} - \text{div}(\textit{m} \, \textit{D}_p \textit{H}(x, \textit{D}u, \textit{m})) = 0 \\ & \text{in } [0, \textit{T}] \times \mathbb{R}^d \\ (\textit{iii}) & \textit{m}(0, x) = \textit{m}_0(x), \; \textit{u}(x, \textit{T}) = \textit{G}(x, \textit{m}(\textit{T})) \end{array} \right. \quad \text{in } \mathbb{R}^d$$

where

- $\sigma \in \mathbb{R}$.
- H = H(x, p, m) is a convex Hamiltonian (in p) depending on the density m,
- G = G(x, m(T)) is a function depending on the position x and the density m(T) at time T.
- m_0 is a probability density on \mathbb{R}^d .

We want to understand this system as a Nash equilibrium of a continuous game where the payoff is of optimal control type.

Heuristic interpretation of (i)

Given a family $(m_t)_{t \in [0,T]}$ of probability densities, an average agent controls the stochastic differential equation

$$dX_s = \alpha_s ds + \sqrt{2}\sigma^2 dB_s,$$
 $X_t = x$

where (α_s) is the control and (B_s) is a standard B.M. He aims at minimizing the cost

$$J(x,(\alpha_s),(m_s)) := \mathbf{E}\left[\int_t^T L(X_s,\alpha_s,m(s)) ds + G(X_T,m(T))\right].$$

where
$$L(x, q, m) = \sup_{p \in \mathbb{R}^d} \{ -\langle p, q \rangle - H(x, p, m) \}.$$

His value function *u* is given by

$$u(t,x) = \inf_{(\alpha_s)} J(x,(\alpha_s),(m_s))$$

Heuristic interpretation of (i)

Given a family $(m_t)_{t \in [0,T]}$ of probability densities, an average agent controls the stochastic differential equation

$$dX_s = \alpha_s ds + \sqrt{2}\sigma^2 dB_s,$$
 $X_t = x$

where (α_s) is the control and (B_s) is a standard B.M. He aims at minimizing the cost

$$J(x,(lpha_s),(m_s)) := \mathbf{E}\left[\int_t^T L(X_s,lpha_s,m(s)) \ ds + G(X_T,m(T))
ight] \ .$$

where
$$L(x, q, m) = \sup_{p \in \mathbb{R}^d} \{ -\langle p, q \rangle - H(x, p, m) \}.$$

His value function u is given by

$$u(t,x)=\inf_{(\alpha_s)}J(x,(\alpha_s),(m_s)).$$

• The value function *u* then satisfies

$$\begin{cases} (i) & -\partial_t u - \sigma^2 \Delta u + H(x, Du, m) = 0 & \text{in } \mathbb{R}^d \times (0, T) \\ (iii) & u(x, T) = G(x, m(T)) & \text{in } \mathbb{R}^d \end{cases}$$

The optimal control is given by

$$\alpha^*(t,x) = -D_p H(x, Du(t,x), m(t,x)).$$

Proof by verification: If u solves (i) and (iii), we have by Itô's formula,

$$\frac{d}{ds} \mathbf{E} \left[u(s, X_s) - \int_s^T L(X_\tau, \alpha_\tau, m(\tau)) d\tau \right]
= \mathbf{E} \left[\partial_s u(s, X_s) + \langle Du, \alpha_s \rangle + \sigma^2 \Delta u + L(X_s, \alpha_s, m(s)) \right]
\ge \mathbf{E} \left[\partial_s u(s, X_s) + \sigma^2 \Delta u - H(X_s, Du, m(s)) \right] = 0$$

with equality only for $\alpha = \alpha^*$.

• The value function *u* then satisfies

$$\left\{ \begin{array}{ll} (i) & -\partial_t u - \sigma^2 \Delta u + H(x, Du, m) = 0 & \quad \text{in } \mathbb{R}^d \times (0, T) \\ \\ (iii) & u(x, T) = G(x, m(T)) & \quad \text{in } \mathbb{R}^d \end{array} \right.$$

The optimal control is given by

$$\alpha^*(t,x) = -D_p H(x, Du(t,x), m(t,x)).$$

Proof by verification: If u solves (i) and (iii), we have by Itô's formula,

$$\frac{d}{ds} \mathbf{E} \left[u(s, X_s) - \int_s^T L(X_\tau, \alpha_\tau, m(\tau)) d\tau \right]
= \mathbf{E} \left[\partial_s u(s, X_s) + \langle Du, \alpha_s \rangle + \sigma^2 \Delta u + L(X_s, \alpha_s, m(s)) \right]
\ge \mathbf{E} \left[\partial_s u(s, X_s) + \sigma^2 \Delta u - H(X_s, Du, m(s)) \right] = 0$$

with equality only for $\alpha = \alpha^*$.

Integrating between 0 and T:

$$\mathbf{E}\left[u(T,X_T)-u(t,x)+\int_t^T L(X_\tau,\alpha_\tau,m(\tau))d\tau\right]\geq 0$$

with equality for $\alpha = \alpha^*$.

By (iii),
$$u(T, X_T) = G(X_T, m(T))$$
, so that

$$u(t,x) \leq \mathbf{E} \left[\int_t^T L(X_\tau, \alpha_\tau, m(\tau)) d\tau + G(X_T, m(T)) \right]$$

with equality for $\alpha = \alpha^*$.

Therefore u is the value function

Integrating between 0 and T:

$$\mathbf{E}\left[u(T,X_T)-u(t,x)+\int_t^T L(X_\tau,\alpha_\tau,m(\tau))d\tau\right]\geq 0$$

with equality for $\alpha = \alpha^*$.

By (iii),
$$u(T, X_T) = G(X_T, m(T))$$
, so that

$$u(t,x) \leq \mathbf{E}\left[\int_t^T L(X_{\tau},\alpha_{\tau},m(\tau))d\tau + G(X_{\tau},m(T))\right]$$

with equality for $\alpha = \alpha^*$.

Therefore u is the value function.

Integrating between 0 and T:

$$\mathbf{E}\left[u(T,X_T)-u(t,x)+\int_t^T L(X_\tau,\alpha_\tau,m(\tau))d\tau\right]\geq 0$$

with equality for $\alpha = \alpha^*$.

By (iii),
$$u(T, X_T) = G(X_T, m(T))$$
, so that

$$u(t,x) \leq \mathbf{E} \left[\int_t^T L(X_\tau, \alpha_\tau, m(\tau)) d\tau + G(X_T, m(T)) \right]$$

with equality for $\alpha = \alpha^*$.

Therefore u is the value function.

To summarize: Given a family $(m_t)_{t \in [0,T]}$ of probability densities,

the value function u of an average agent is the solution to the HJ eq

$$\left\{ \begin{array}{ll} (i) & -\partial_t u - \sigma^2 \Delta u + H(x, Du, m) = 0 & \quad \text{in } \mathbb{R}^d \times (0, T) \\ \\ (iii) & u(x, T) = G(x, m(T)) & \quad \text{in } \mathbb{R}^d \end{array} \right.$$

The optimal control is given by

$$\alpha^*(t,x) = -D_{\scriptscriptstyle D}H(x,Du(t,x),m(t)) .$$

Therefore its optimal dynamics solves the SDE

$$dX_s = -D_p H(X_s, Du(t, X_s), m(s)) ds + \sqrt{2}\sigma^2 dB_s,$$
 $X_t = x$

Heuristic interpretation of (ii)

Assume that the initial distribution of the players is the probability m_0 .

Then the distribution $\tilde{m}(s)$ of the players at time s is the law of \tilde{X}_s , where (\tilde{X}_s) solves the SDE

$$d\tilde{X}_s = -D_p H(\tilde{X}_s, Du(t, \tilde{X}_s), m(s)) ds + \sqrt{2} dB_s, \qquad \qquad \tilde{X}_0 \sim m_0$$

Equation satisfied by $(\tilde{m}(s))$: Let $\phi = \phi(s,x) \in \mathcal{C}_c^{\infty}$. Then, by Itô's formula,

$$\frac{d}{ds} \int_{\mathbb{R}^d} \phi \tilde{m}(s) = \frac{d}{ds} \mathbf{E} \left[\phi(s, \tilde{X}_s) \right]
= \mathbf{E} \left[\partial_s \phi - \langle D_\rho H(\tilde{X}_s, Du, m(s)), D\phi \rangle + \sigma^2 \Delta \phi \right]
= \int_{\mathbb{R}^d} \left(\partial_s \phi - \langle D_\rho H(x, Du, m(s)), D\phi \rangle + \sigma^2 \Delta \phi \right) \tilde{m}(s)$$

Heuristic interpretation of (ii)

Assume that the initial distribution of the players is the probability m_0 .

Then the distribution $\tilde{m}(s)$ of the players at time s is the law of \tilde{X}_s , where (\tilde{X}_s) solves the SDE

$$d ilde{X}_s = - extstyle D_p H(ilde{X}_s, extstyle Du(t, ilde{X}_s), extstyle m(s)) ds + \sqrt{2} dB_s, \hspace{1cm} ilde{X}_0 \sim extstyle m_0$$

Equation satisfied by $(\tilde{m}(s))$: Let $\phi = \phi(s, x) \in \mathcal{C}_c^{\infty}$. Then, by Itô's formula,

$$\begin{split} \frac{d}{ds} \int_{\mathbb{R}^d} \phi \tilde{m}(s) &= \frac{d}{ds} \mathbf{E} \left[\phi(s, \tilde{X}_s) \right] \\ &= \mathbf{E} \left[\partial_s \phi - \langle D_p H(\tilde{X}_s, Du, m(s)), D\phi \rangle + \sigma^2 \Delta \phi \right] \\ &= \int_{\mathbb{R}^d} \left(\partial_s \phi - \langle D_p H(x, Du, m(s)), D\phi \rangle + \sigma^2 \Delta \phi \right) \tilde{m}(s) \end{split}$$

Integrate in time to get:

$$0 = \int_{0}^{T} \int_{\mathbb{R}^{d}} (\partial_{s}\phi - \langle D_{p}H(x, Du, m(s)), D\phi \rangle + \sigma^{2}\Delta\phi) \, \tilde{m}(s)$$
$$= \int_{0}^{T} \int_{\mathbb{R}^{d}} (-\partial_{s}\tilde{m}(s) + \operatorname{div}(\tilde{m}(s)D_{p}H(x, Du, m(s))) + \sigma^{2}\Delta\tilde{m}(s)) \, \phi$$

where div =
$$\sum_{i=1}^{d} \frac{\partial}{\partial x_i}$$
.

So \tilde{m} solves the Kolmogorov equation

$$\begin{cases} (ii) & \partial_t \tilde{m} - \sigma^2 \Delta \tilde{m} - \operatorname{div}(\tilde{m} D_p H(x, Du, m)) = 0 & \text{in } \mathbb{R}^d \times (0, T) \\ (iii) & \tilde{m}(0) = m_0 & \text{in } \mathbb{R}^d \end{cases}$$

To summarize: Given a family $(m_t)_{t \in [0,T]}$ of probability densities,

• the value function u of an average agent is the solution to the HJ eq

$$\left\{ \begin{array}{ll} (i) & -\partial_t u - \sigma^2 \Delta u + H(x, Du, m) = 0 & \quad \text{in } \mathbb{R}^d \times (0, T) \\ \\ (iii) & u(x, T) = G(x, m(T)) & \quad \text{in } \mathbb{R}^d \end{array} \right.$$

• The distribution $\tilde{m}(s)$ of the players solves the Kolmogorov equation

$$\left\{ \begin{array}{ll} (ii) & \partial_t \tilde{m} - \sigma^2 \Delta \tilde{m} - \operatorname{div}(\tilde{m} \ D_p H(x, Du, m)) = 0 & \quad \operatorname{in} \mathbb{R}^d \times (0, T) \\ \\ (iii) & \tilde{m}(0) = m_0 & \quad \operatorname{in} \mathbb{R}^d \end{array} \right.$$

A solution (u, m) of the mean filed game is a fixed point of the map $m \to \tilde{m}$.

Structure of MFG system

Namely, the pair $(u, m) : [0, T] \times \mathbb{R}^d \to \mathbb{R}^2$ solves

$$(\textit{MFG}) \quad \left\{ \begin{array}{ll} (\textit{i}) & -\partial_t u - \sigma^2 \Delta u + \textit{H}(x, \textit{D}u, \textit{m}) = 0 \\ (\textit{ii}) & \partial_t \textit{m} - \sigma^2 \Delta \textit{m} - \operatorname{div}(\textit{m} \; \textit{D}_p \textit{H}(x, \textit{D}u, \textit{m})) = 0 \\ (\textit{iii}) & \textit{m}(0) = \textit{m}_0, \; \textit{u}(x, \textit{T}) = \textit{G}(x, \textit{m}(\textit{T})) \end{array} \right.$$

where

- $H(x, p, m) = \sup_{q \in \mathbb{R}^d} \{ -\langle p, q \rangle L(x, q, m) \}$ is convex in p.
- $m \rightarrow H(x, p, m)$ can be
 - a local map: e.g.,

$$H(x, p, m) = \frac{1}{2}|p|^2 - F(x, m(x))$$
 or $H(x, p, m) = \frac{|p|^2}{(m(x))^{\alpha}}$

- or a nonlocal map : e.g., $H(x, p, m) = \frac{1}{2}|p|^2 (\rho \star m(t, \cdot)) \star \rho$.
- $m(t, \cdot)$ is a probability density on \mathbb{R}^d for all $t \in [0, T]$.

An example : the mexican wave (Guéant-Lasry-Lions)

The stadium is formalized as a 1 - D torus $T^1 = \mathbb{R} \setminus \mathbb{Z}$.

Each individual is characterized by

- its geographic position in the stadium $x \in T^1$
- a position $z \in [0, 1]$ describing if he is seated (z = 0), standing (z = 1), or in an intermediate position $(z \in (0, 1))$.

Individuals

- cannot change their geographic position
- prefer either being seated or standing
- avoid to change too often their position
- wants to look like their neighbors

If the position of individual seated at place $y \in T^1$ and at time t is $\tilde{z}(t, y)$, the optimal control problem for the individual at place x is :

$$\inf_{(z(s))} \int_0^T \left\{ \ell(z(s)) + \frac{1}{2} \left(\dot{z}(s) \right)^2 + F(x, z(s), \tilde{z}(s, \cdot)) \right\} ds$$

where $z(0) = z_0(x)$,

$$\ell(z) = Kz^{\alpha}(1-z)^{\beta} \qquad (\alpha, \beta > 0)$$

$$F(x,z(s),\tilde{z}(s,\cdot))=F(z(s),\tilde{z})=\int_{\mathbb{R}}\left((z(s)-\tilde{z}(s,x-y))^2\,G(y)dy\right)$$

(where G is, e.g., a Gaussian).

This yields to the (first order) MFG system for (u, m) where $m = \delta_{\tilde{z}(t,x)}(z)$:

$$\begin{cases} (i) & -\partial_t u + \frac{1}{2}(\partial_z u)^2 - \ell(z) = F(x, z, \tilde{z}(s, \cdot)) \\ & \text{in } [0, T] \times \mathbb{R}^2 \\ (ii) & \partial_t m - \operatorname{div}(m\partial_z u) = 0 \\ & \text{in } [0, T] \times \mathbb{R}^2 \\ (iii) & \tilde{z}(0) = \tilde{z}_0, \ u(x, T) = 0 \quad \text{in } \mathbb{R}^2 \end{cases}$$

 \longrightarrow Guéant, Lasry, Lions prove the existence of an explicit periodic solution in an asymptotic regime.

Summary

Heuristic argument show that the (*MFG*) system represents a Nash equilibrium for a continuous game.

This raises several questions:

- Existence, uniqueness for the MFG system,
- Link with games with a large number of players,
- Asymptotic behavior of the system
- MFG as optimality conditions for optimal control problems of EDPs.
- . . .

Outline

- Static games with many players
- Description of the MFG system
- Some results for second order MFG systems
- 4 Heuristic derivation of the MFG system

We discuss here

- Existence and uniqueness results for second order (MFG) systems,
- Link with Nash equilibria for differential games with a large number of players
- The asymptotic limit as $T \to +\infty$ of the (*MFG*) system.

Existence of solutions (nonlocal, second order MFG)

We consider the system

$$(\textit{MFG}) \left\{ \begin{array}{ll} (\textit{i}) & -\partial_t u - \Delta u + \textit{H}(x,\textit{D}u) = \textit{F}(x,\textit{m}(t,\cdot)) \\ & \text{in } \mathbb{R}^d \times (0,\textit{T}) \\ (\textit{ii}) & \partial_t m - \Delta m - \operatorname{div}\left(\textit{D}_p\textit{H}(x,\textit{D}u)m\right) = 0 \\ & \text{in } \mathbb{R}^d \times (0,\textit{T}) \\ (\textit{iii}) & \textit{m}(0) = \textit{m}_0 \;,\; \textit{u}(x,\textit{T}) = \textit{u}_f(x) \end{array} \right.$$

where

- data are periodic in space,
- $F : \mathbb{R}^d \times M \to \mathbb{R}$ (where M is the set of probability measures on \mathbb{T}^d).

Assumptions on the data

- $lackbox{0} F$ maps $\mathbb{R}^d imes L^1_\sharp(\mathbb{R}^d)$ into a bounded subset of $W^{1,\infty}_\sharp(\mathbb{R}^d)$,
- ② F is continuous from $\mathbb{R}^d \times L^1_{\sharp}(\mathbb{R}^d)$ to $C^0_{\sharp}(\mathbb{R}^d)$,
- § F is bounded from $\mathcal{C}^{k,\alpha}_{\sharp}(\mathbb{R}^d)$ into $\mathcal{C}^{k+1,\alpha}_{\sharp}(\mathbb{R}^d)$,
- **4 M** : \mathbb{R}^d × \mathbb{R}^d → \mathbb{R} is smooth, periodic in x, convex in p, with

$$\left|\frac{H(x,p)}{\partial p}\right| \leq C(1+|p|)$$

Under the above conditions, there exists a classical solution (u, m) of (MFG).

Proof: By fixed point. Fix $m \in L^{\infty}([0, T], L^{1}_{\mathbb{H}}(\mathbb{R}^{d}))$.

Solve

$$-\partial_t u - \Delta u + H(x, Du) = F(x, m(t, \cdot)), \qquad u(x, T) = u_f(x)$$

Then u is bounded Lipschitz in x, Hölder in t and Du is Hölder (unif. w.r.t m)

• Let \tilde{m} solve

$$\partial_t \tilde{m} - \Delta \tilde{m} - \operatorname{div} (D_p H(x, Du) \tilde{m}) = 0, \qquad \tilde{m}(0) = m_0$$

Then \tilde{m} is Hölder continuous (unif. w.r.t. m)

• The map $m \to \tilde{m}$ is continuous on $L^{\infty}([0,T],L^1_{\sharp}(\mathbb{R}^d))$ with pre-compact range : conclusion by Schauder fixed point theorem.

Under the above conditions, there exists a classical solution (u, m) of (MFG).

Proof: By fixed point. Fix $m \in L^{\infty}([0, T], L^{1}_{\sharp}(\mathbb{R}^{d}))$.

Solve

$$-\partial_t u - \Delta u + H(x, Du) = F(x, m(t, \cdot)), \qquad u(x, T) = u_f(x)$$

Then u is bounded Lipschitz in x, Hölder in t and Du is Hölder (unif. w.r.t. m)

Let m̃ solve

$$\partial_t \tilde{m} - \Delta \tilde{m} - \operatorname{div} (D_p H(x, Du) \tilde{m}) = 0, \qquad \tilde{m}(0) = m_0$$

Then \tilde{m} is Hölder continuous (unif. w.r.t. m)

• The map $m \to \tilde{m}$ is continuous on $L^{\infty}([0,T],L^1_{\sharp}(\mathbb{R}^d))$ with pre-compact range : conclusion by Schauder fixed point theorem.

Under the above conditions, there exists a classical solution (u, m) of (MFG).

Proof: By fixed point. Fix $m \in L^{\infty}([0, T], L^{1}_{\sharp}(\mathbb{R}^{d}))$.

Solve

$$-\partial_t u - \Delta u + H(x, Du) = F(x, m(t, \cdot)), \qquad u(x, T) = u_f(x)$$

Then u is bounded Lipschitz in x, Hölder in t and Du is Hölder (unif. w.r.t. m)

Let m̃ solve

$$\partial_t \tilde{m} - \Delta \tilde{m} - \operatorname{div} \left(D_p H(x, Du) \tilde{m} \right) = 0, \qquad \tilde{m}(0) = m_0.$$

Then \tilde{m} is Hölder continuous (unif. w.r.t. m).

• The map $m \to \tilde{m}$ is continuous on $L^{\infty}([0,T],L^1_{\sharp}(\mathbb{R}^d))$ with pre-compact range : conclusion by Schauder fixed point theorem.

Under the above conditions, there exists a classical solution (u, m) of (MFG).

Proof: By fixed point. Fix $m \in L^{\infty}([0, T], L^{1}_{\sharp}(\mathbb{R}^{d}))$.

Solve

$$-\partial_t u - \Delta u + H(x, Du) = F(x, m(t, \cdot)), \qquad u(x, T) = u_f(x)$$

Then u is bounded Lipschitz in x, Hölder in t and Du is Hölder (unif. w.r.t. m)

Let m̃ solve

$$\partial_t \tilde{m} - \Delta \tilde{m} - \operatorname{div} \left(D_p H(x, Du) \tilde{m} \right) = 0, \qquad \tilde{m}(0) = m_0.$$

Then \tilde{m} is Hölder continuous (unif. w.r.t. m).

• The map $m \to \tilde{m}$ is continuous on $L^{\infty}([0, T], L^1_{\sharp}(\mathbb{R}^d))$ with pre-compact range : conclusion by Schauder fixed point theorem.

Assume further that

$$\int_{Q_1} (F(m) - F(m'))(m - m') \ge 0 \qquad \forall m, m' \in L^1_{\sharp}(\mathbb{R}^d) ,$$

and, either H uniformly convex in p or

$$\int_{\Omega_1} (F(m) - F(m'))(m - m') = 0 \qquad \Rightarrow \qquad F(m) = F(m') .$$

Proposition

The solution to (MFG) is unique.

Typical example : $F(m) = (\rho \star m) \star \rho$, where ρ is smooth and symmetric. Then

$$\int_{Q_{1}} (F(m) - F(m'))(m - m') = \int_{Q_{1}} (\rho \star (m - m'))^{2}$$

$$\geq \left(\int_{Q_{1}} \rho \star (m - m') \right)^{2} = (F(m) - F(m'))^{2}.$$

From MFG to Nash equilibria with many players

Let (u, m) be a solution to

$$(\textit{MFG}) \quad \left\{ \begin{array}{ll} (\textit{i}) & -\partial_t u - \Delta u + \textit{H}(x, \textit{D}u) = \textit{F}(x, \textit{m}) \\ (\textit{ii}) & \partial_t \textit{m} - \Delta \textit{m} - \operatorname{div}(\textit{m} \, \textit{D}_p \textit{H}(x, \textit{D}u)) = 0 \\ (\textit{iii}) & \textit{m}(0) = \textit{m}_0, \ \textit{u}(x, \textit{T}) = \textit{G}(x) \end{array} \right.$$

Aim

Build (almost-)Nash equilibria from (u, m).

References:

- Huang-Caines-Malhame, 2006.
- Carmona-De la Rue-Lachapelle, preprint 2012

The game

We consider a N-Player differential games, where each player i controls his dynamics

$$dX_s^i = lpha_s^i ds + \sqrt{2} dW_s^i, \qquad X_0^i \sim m_0$$

with $\alpha^i : [0, T] \to \mathbb{R}^d$ control of Player i, W^i are independent d-dimensional BM and X_0^i are independent.

Players aim at minimizing the cost function, given by

$$J^{i}(\alpha^{1},\ldots,\alpha^{N}) = \mathbf{E}\left[\int_{t}^{T} L(X_{s}^{i},\alpha_{s}^{i})ds + F(X_{s}^{i},\frac{1}{N-1}\sum_{j\neq i}\delta_{X_{s}^{i}})ds + G(X_{T}^{i})\right]$$

where
$$X = (X^1, \dots, X^N)$$
 and $L(x, \alpha) = \sup_{p} \{ \langle p, \alpha \rangle - H(x, p) \}.$

Assumptions:

- Data are periodic in space
- G(x, m) = G(x) (for simplicity)
- F = F(x, m) is smoothing
- H = H(x, p) is convex in p and satisfies standard regularity and growth conditions (e.g., $H(x, p) = \frac{1}{2}|p|^2$)
- (*u*, *m*) is a smooth solution to (MFG)

Controls associated with the MFG

For any i = 1, ..., N, let \tilde{X}^i be the solution to

$$\left\{ \begin{array}{l} d\tilde{X}_s^i = -\partial_p H(\tilde{X}_s^i, Du(s, \tilde{X}_s^i)) ds + \sqrt{2} dW_s^i \\ \tilde{X}_0^i \sim m_0 \end{array} \right.$$

We set $\tilde{\alpha}_s^i = -\partial_p H(\tilde{X}_s^i, Du(s, \tilde{X}_s^i))$.

Lemma

For any i = 1, ..., N, the law of \tilde{X}_s^i is m(s).

Approximate Nash equilibrium

Theorem

For $\epsilon > 0$, there is N_{ϵ} such that $: \forall N \geq N_{\epsilon}$, $(\tilde{\alpha}^1, \dots, \tilde{\alpha}^N)$ is an ϵ -Nash equilibrium :

$$J^{i}(\tilde{\alpha}^{1},\ldots,\tilde{\alpha}^{N}) \leq J^{i}(\alpha^{i},(\tilde{\alpha}^{j})_{j\neq i}) + \epsilon$$

for any control α^i .

Remark : $(\tilde{\alpha}^1, \dots, \tilde{\alpha}^N)$ is an open-loop Nash equilibrium : no need to observe the other players.

Idea of proof : the $(\tilde{X}^j_s)_{j\neq i}$ are iid with law m(s), so that, by the law of large numbers,

$$\frac{1}{N-1}\sum_{i\neq i}\delta_{\tilde{X}_{\mathbf{s}}^{i}}\sim m(\mathbf{s})$$
.

Estimate for N_{ϵ}

Theorem (Louzada)

One can take

$$N_{\epsilon} \sim \log\left(\frac{1}{\epsilon}\right) \frac{1}{\epsilon^{d+2}}$$

Idea of proof: Quantitative concentration inequalities (Bolley-Guillin-Villani, 2007) allow to estimate the difference

$$\left|F(x,\frac{1}{N-1}\sum_{j\neq i}\delta_{\tilde{X}_s^j})-F(x,m(s))\right|.$$

Existence of solutions (local, second order MFG)

We study the model equation

$$(MFG) \left\{ \begin{array}{ll} (i) & -\partial_t u - \Delta u + \frac{1}{2} |Du|^2 = F(x,m) \\ & \text{in } \mathbb{R}^d \times (0,T) \\ (ii) & \partial_t m - \Delta m - \operatorname{div}\left(mDu\right) = 0 \\ & \text{in } \mathbb{R}^d \times (0,T) \\ (iii) & m(0) = m_0 \;,\; u(x,T) = u_f(x) \end{array} \right.$$

where

- data are periodic in space,
- $F: \mathbb{R}^d \times [0, +\infty) \to \mathbb{R}$ is smooth.

Theorem (C.-Lasry-Lions-Porretta, 2012)

Assume that $F: \mathbb{R}^d \times [0, +\infty) \to \mathbb{R}$ is \mathcal{C}^1 , \mathbb{Z}^d -periodic in x and bounded below.

Then there exists a classical solution (u, m) of (MFG).

It is unique if F is increasing.

Remarks:

- No growth condition on F...
- ... but a strong structure condition on the Hamiltonian.
- Existence of classical solutions for more general equations but bounded
 F: Lasry-Lions, 06.
- Existence of weak solutions for more general equations: Lasry-Lions, 06.

Theorem (C.-Lasry-Lions-Porretta, 2012)

Assume that $F: \mathbb{R}^d \times [0, +\infty) \to \mathbb{R}$ is \mathcal{C}^1 , \mathbb{Z}^d -periodic in x and bounded below.

Then there exists a classical solution (u, m) of (MFG).

It is unique if F is increasing.

Remarks:

- No growth condition on F...
- ... but a strong structure condition on the Hamiltonian.
- Existence of classical solutions for more general equations but bounded
 F: Lasry-Lions, 06.
- Existence of weak solutions for more general equations: Lasry-Lions, 06.

Asymptotic behavior

Goal : Investigate the long-time behavior of the solution (u^T, m^T) to the Mean Field Game system

$$(MFG) \quad \begin{cases} (i) & -\partial_t u^T - \Delta u^T + \frac{1}{2}|Du^T|^2 = F(x, m^T) \\ (ii) & \partial_t m^T - \Delta m^T - \operatorname{div}(m^T D u^T) = 0 \\ (iii) & m^T(0) = m_0, \ u^T(x, T) = u_f(x) \end{cases}$$

Motivation: Hope to reduce the system to a stationary equation.

The expected limit is the ergodic system:

$$(\textit{MFG}-\textit{ergo}) \quad \left\{ \begin{array}{ll} (\textit{i}) & \bar{\lambda} - \Delta \bar{u} + \frac{1}{2} |D\bar{u}|^2 = \textit{F}(\textit{x},\bar{\textit{m}}) & \text{in } \mathbb{R}^d \\ \\ (\textit{ii}) & -\Delta \bar{\textit{m}} - \text{div}(\bar{\textit{m}}D\bar{u}) = 0 & \text{in } \mathbb{R}^d \end{array} \right.$$

Note that

- $ar{m} = e^{-ar{u}}/\left(\int_{Q_1} e^{-ar{u}}
 ight)$ solves (MFG-ergo)(ii)
- the map

$$(x,t) \rightarrow (\bar{u}(x) + \bar{\lambda}t , \bar{m}(x))$$

satisfies (MFG)(i-ii).

Assumptions on the data

- $F: \mathbb{R}^d \times \mathbb{R} \to \mathbb{R}$ is locally Lipschitz continuous, \mathbb{Z}^d —periodic in x, and increasing with respect to m.
- $m_0: \mathbb{R}^d \to \mathbb{R}$ is smooth, \mathbb{Z}^d -periodic, $m_0 > 0$ and $\int_{Q_1} m_0 = 1$.
- $G: \mathbb{R}^d \to \mathbb{R}$ is smooth, \mathbb{Z}^d -periodic.

Convergence under mild monotony condition

Recall the definition of the scaled functions on $\mathbb{R}^d \times [0,1]$:

$$v^T(t,x) := u^T(tT,x)$$
 ; $\mu^T(t,x) := m^T(tT,x)$

Theorem (C.-Lasry-Lions-Porretta, '12)

As $T \to +\infty$,

- \bullet $v^T(t,\cdot)/T$ converges to $t \to (1-t)\bar{\lambda}$ in $L^2(Q_1)$ for any $t \in [0,1]$,
- 2 $v^T \int_{Q_1} v^T(t)$ converges to \bar{u} in $L^2(Q_1 \times (0,1))$,
- **3** μ^T converges to \bar{m} in $L^p(Q_1 \times (0,1))$, for any $p < \frac{N+2}{N}$.

Convergence rate (strong monotony)

Assume, furthermore, there is $\gamma > 0$ with

$$F(x,s) - F(x,t) \ge \gamma(s-t)$$
 $\forall s \ge t, \ \forall x \in \mathbb{R}^d$.

Set
$$\tilde{u}^T(t,x) = u^T(t,x) - \int_{Q_1} u^T(t,y) dy$$
.

Theorem (C.-Lasry-Lions-Porretta, '12)

There is $\kappa > 0$ such that

$$||m^{T}(t) - \bar{m}||_{L^{1}(Q_{1})} \leq \frac{C}{t} \left(e^{-\kappa(T-t)} + e^{-\kappa t} \right)$$

The proofs relies on two ingredients:

- The Hamiltonian structure of the (MFG) equation
- A main energy equality

The Hamiltonian structure:

Set
$$\Phi(x, m) = \int_0^m F(x, \rho) d\rho$$
 and

$$\mathcal{E}(u,m) = \int_{\Omega_1} m \frac{1}{2} |Du|^2 + \langle Du, Dm \rangle - \Phi(x,m) \, dx$$

Lemma

 (u^T, m^T) solution of (MFG) \Leftrightarrow (u^T, m^T) satisfies

$$\begin{cases} (i) & -\partial_t u^T = -\frac{\partial \mathcal{E}}{\partial m}(u^T, m^T) \\ (ii) & \partial_t m^T = -\frac{\partial \mathcal{E}}{\partial u}(u^T, m^T) \\ (iii) & m^T(0) = m_0, \ u^T(x, T) = G(x, m^T(T)) \end{cases}$$

In particular the energy $\mathcal{E}(u^T(t), m^T(t))$ is constant along the flow.

Main energy equality:

Lemma (Lasry-Lions, 06)

For any $t \in [0, T]$

$$-\frac{d}{dt}\int_{O_1}(u^T(t)-\bar{u})(m^T(t)-\bar{m})dx=$$

$$\int_{Q_1} \frac{(m^T(t) + \bar{m})}{2} |Du^T(t) - D\bar{u}|^2 + (F(x, m^T(t)) - F(x, \bar{m}))(m^T(t) - \bar{m})$$

Proof : Multiply (MFG)(i)-(MFG-ergo)-(i) by $(m^T - \bar{m})$ and substract to (MFG)(ii)-(MFG-ergo)(ii) multiplied by $(u^T - \bar{u})$.

Why the convergence?

We define the scaled functions on $\mathbb{R}^d \times [0, 1]$:

$$v^T(x,t) := u^T(x,tT)$$
 ; $\mu^T(x,t) := m^T(x,tT)$

Integrate in time the main energy equality:

$$\begin{split} \int_{0}^{1} \int_{Q_{1}} \frac{(\mu^{T} + \bar{m})}{2} |Dv^{T} - D\bar{u}|^{2} + (F(x, \mu^{T}) - F(x, \bar{m}))(\mu^{T} - \bar{m}) \ dxdt \\ &= -\frac{1}{T} \left[\int_{Q_{1}} (v^{T} - \bar{u})(\mu^{T} - \bar{m}) dx \right]_{0}^{1} \end{split}$$

Then

- The Hamiltonian structure implies that the RHS \rightarrow 0 as $T \rightarrow +\infty$,
- $Dv^T \rightarrow D\bar{u}$,
- which implies that $Dv^T \to D\bar{u}$

Why the convergence?

We define the scaled functions on $\mathbb{R}^d \times [0, 1]$:

$$v^T(x,t) := u^T(x,tT)$$
 ; $\mu^T(x,t) := m^T(x,tT)$

Integrate in time the main energy equality:

$$\int_{0}^{1} \int_{Q_{1}} \frac{(\mu^{T} + \bar{m})}{2} |Dv^{T} - D\bar{u}|^{2} + (F(x, \mu^{T}) - F(x, \bar{m}))(\mu^{T} - \bar{m}) dxdt$$

$$= -\frac{1}{T} \left[\int_{Q_{1}} (v^{T} - \bar{u})(\mu^{T} - \bar{m}) dx \right]_{0}^{1}$$

Then

- The Hamiltonian structure implies that the RHS \rightarrow 0 as $T \rightarrow +\infty$,
- $Dv^T \rightarrow D\bar{u}$,
- which implies that $Dv^T \to D\bar{u}$

Why the convergence?

We define the scaled functions on $\mathbb{R}^d \times [0, 1]$:

$$v^T(x,t) := u^T(x,tT)$$
 ; $\mu^T(x,t) := m^T(x,tT)$

Integrate in time the main energy equality:

$$\int_{0}^{1} \int_{Q_{1}} \frac{(\mu^{T} + \bar{m})}{2} |Dv^{T} - D\bar{u}|^{2} + (F(x, \mu^{T}) - F(x, \bar{m}))(\mu^{T} - \bar{m}) dxdt$$

$$= -\frac{1}{T} \left[\int_{Q_{1}} (v^{T} - \bar{u})(\mu^{T} - \bar{m}) dx \right]_{0}^{1}$$

Then

- The Hamiltonian structure implies that the RHS \rightarrow 0 as $T \rightarrow +\infty$,
- $Dv^T \rightarrow D\bar{u}$,
- which implies that $Dv^T \to D\bar{u}$

Conclusion and comments for second order problems

- Existence and uniqueness results for second order (MFG) systems :
 - Well understood for nonlocal equations, work to be done for local ones (unbounded RHS),
 - · Little is known for systems of the form

$$\begin{cases} (i) & -\partial_t u - \Delta u + \frac{|Du|^2}{2 m^{\alpha}} = 0 \\ (ii) & \partial_t m - \Delta m - \operatorname{div}\left(m^{1-\alpha}Du\right) = 0 \\ (iii) & m(0) = m_0 , \ u(x,T) = u_f(x) \end{cases}$$

- Link with Nash equilibria for differential games with a large number of players
 - OK nonlocal setting,
 - Nothing written in the local setting
- The asymptotic limit as $T \to +\infty$ of the (*MFG*) system : known only for quadratic Hamiltonians.

Some references

- Introduction of the model, existence, uniqueness
 - Lasry-Lions: CRAS 06, Jpn. J. Math. 2 (2007), Lions' lecture at Collège de France
 - Huang-Caines-Malhamé: Com. Information Systems '06, ...
 - Related works: Guéant, Gomes-Pires-Sanchez Morgado.
- Discrete model
 - Lions' lecture at Collège de France
 - Gomes-Mohr-Souza J. Math. Pures Appl. (9) 93 (2010)
 - Guéant (preprint)
- Numerical approximation
 - Achdou-Capuzzo Dolcetta: SIAM J. Numer. Anal. 48 (2010).
 - Lachapelle-Salomon-Turinici : Math. Models Methods Appl. Sci. (2010).
 - Achdou-Camilli-Capuzzo Dolcetta: SIAM J. Control Opt. (2012).
 - Camilli-Silva: preprint.

Some references (continued)

- Long-time behavior
 - Gomes-Mohr-Souza (discrete setting)
 - C.-Lasry-Lions-Porretta: NHM 2012.
- Linear-quadratic MFG
 - Bardi, NHM 2012
 - Bensoussan-Sung-Yam-Yung, pre-print.
 - Carmona, Delarue, Lachapelle
- Related works :
 - Price formation: Lasry-Lions, Chayes-González-Gualdani, Markowich-Matevosyan-Pietschmann-Wolfram, Caffarelli-Markowich-Pietschmann
 - Formalization of human crowds: Lachapelle, Santambrogio
- Lecture notes on MFG: Guéant-Lasry-Lions, Achdou, C., Tao.

Outline

- Static games with many players
- Description of the MFG system
- Some results for second order MFG systems
- 4 Heuristic derivation of the MFG system

Warning: this part is mostly heuristic.

Differential games with many players (1/3)

We consider a N-Player differential games, where each player i controls his velocity

$$\frac{d}{ds}X_s^i = \alpha_s^i, \qquad X_t^i = x^i$$

with $\alpha^i : [0, T] \to \mathbb{R}^d$ control of Player *i*.

Players aim at minimizing the cost function, given by

$$J_i^N(t,x,\alpha) = \int_t^T L_i^N(X_s,\alpha_s^i) ds + G_i^N(X_T)$$

where $X = (X^1, \dots, X^N)$, $L_i^N : \mathbb{R}^{Nd} \times \mathbb{R}^d \to \mathbb{R}$ and $G_i^N : \mathbb{R}^{Nd} \to \mathbb{R}$.

Nash equilibrium

Fix an initial condition $(t, x) \in [0, T] \times \mathbb{R}^{Nd}$. We say that the controls $(\alpha_1^*, \dots, \alpha_N^*)$ is a Nash equilibrium at (t, x) if

$$J_i^N(t, x, \alpha_1^*, \dots, \alpha_N^*) \leq J_i^N(t, x, \alpha_i, (\alpha_j^*)_{j \neq i})$$

for any i = 1, ..., N and any control α_i .

The "controls" are

- either "open loop" = depend only on time : $\alpha_i = \alpha_i(t)$
 - --- Nash equilibria seldom exist in this framework
- or "closed loop" = depend on time and on the position of the other players : $\alpha_i = \alpha_i(t, x_1, \dots, x_N)$
 - \longrightarrow Existence of Nash equilibria in this framework is more likely, but difficult to implement when N is large.

Key assumption: Players are identical and, for a player i, the other players are undistinguishable:

$$L_i^N(x,\alpha) = L(x_i,\alpha^i,\frac{1}{N-1}\sum_{j\neq i}\delta_{x_j})$$

and

$$G_i^N(x) = G(x_i, \frac{1}{N-1} \sum_{j \neq i} \delta_{x_j})$$

where $L: \mathbb{R}^d \times \mathbb{R}^d \times M \to \mathbb{R}$ and $G: \mathbb{R}^d \times M \to \mathbb{R}$, where M is the set of Borel probability measures on \mathbb{R}^d . Let

$$H(x, p, m) = \sup_{\alpha \in \mathbb{R}^d} \{ -\langle \alpha, p \rangle - L(x, \alpha, m) \}$$

The PDE system associated with the differential game

Finding a "good" *Nash equilibrium payoff* boils down to solve the following system of Hamilton-Jacobi equations:

(NE)
$$\begin{cases} -\frac{\partial u_{i}^{N}}{\partial t} + H(x_{i}, D_{x_{i}}u_{i}^{N}, \frac{1}{N-1}\sum_{j\neq i}\delta_{x_{j}}) \\ + \sum_{j\neq i} \langle \frac{\partial H}{\partial \rho}(x_{j}, D_{x_{j}}u_{j}^{N}, \frac{1}{N-1}\sum_{k\neq j}\delta_{x_{k}}), D_{x_{j}}u_{i}^{N} \rangle = 0 \\ i = 1, \dots, N, \ (t, x) \in (0, T) \times \mathbb{R}^{Nd} \\ u_{i}^{N}(T, x) = G(x_{i}, \frac{1}{N-1}\sum_{j\neq i}\delta_{x_{j}}) \\ i = 1, \dots, N, \ x \in \mathbb{R}^{Nd} \end{cases}$$

Interpretation of the PDE system

Lemma

If (u_i^N) is a smooth solution to (NE), then the feedback strategies

$$\alpha_i^*(t,x) = -\frac{\partial H}{\partial \rho}(x_i, D_{x_i}u_i^N(t,x), \frac{1}{N-1}\sum_{i\neq i}\delta_{x_i})$$

provide a feedback Nash equilibrium for the game. Namely

$$U_i^N(t,x) = J_i^N(t,x,(\alpha_i^*)_{j=1,\dots,N}) \leq J_i^N(t,x,\alpha_i,(\hat{\alpha}_i^*)_{j\neq i})$$

for any *i* and any control α_i .

Remark: Payers need to observe all the other players to play in optimal way.

Existence of solutions for the PDE system

- System (NE) is ill-posed in general, even for small N (Bressan-Shen, 2004)
- In the second order setting, system (NE) has at least one symmetric solution.
 (Bensoussan-Frehse, Lasry-Lions)
- No uniqueness in general
- Solution impossible to compute in practice when *N* is large.

The MFGf

We consider a symmetric solution u_i^N to the PDE system (NE): $u_i^N(t,x) = u_i^N(t,x_i,(x_j)_{j\neq i})$ where $u_i^N(t,x_i,\cdot)$ is a symmetric functions of many variables.

In view of the previous discussion, we expect that

$$u_i^N(t,x) = u_i^N(t,x_i,(x_j)_{j\neq i}) \sim U\left(t,x_i,\frac{1}{N-1}\sum_{j\neq i}\delta_{x_j}\right)$$

where $U: [0, T] \times \mathbb{R}^d \times M \to \mathbb{R}$.

This requires estimates of the form

$$\sup_{i\neq i}\|\partial_{x_j}u_i^N\|_{\infty}\leq \frac{C_1}{N}$$

which seems to be known only for T small and in the second order case (Lasry-Lions).

The MFGf

We consider a symmetric solution u_i^N to the PDE system (NE): $u_i^N(t,x) = u_i^N(t,x_i,(x_j)_{j\neq i})$ where $u_i^N(t,x_i,\cdot)$ is a symmetric functions of many variables.

In view of the previous discussion, we expect that

$$u_i^N(t,x) = u_i^N(t,x_i,(x_j)_{j\neq i}) \sim U\left(t,x_i,\frac{1}{N-1}\sum_{j\neq i}\delta_{x_j}\right)$$

where $U: [0, T] \times \mathbb{R}^d \times M \to \mathbb{R}$.

This requires estimates of the form

$$\sup_{j\neq i}\|\partial_{x_j}u_i^N\|_{\infty}\leq \frac{C_1}{N}\;,$$

which seems to be known only for T small and in the second order case (Lasry-Lions).

Since the $u_i^N \sim U\left(t, x_i, \frac{1}{N-1} \sum_{j \neq i} \delta_{x_j}\right)$ solve

$$(NE) \begin{cases} -\frac{\partial u_i^N}{\partial t} + H(x_i, D_{x_i} u_i^N, \frac{1}{N-1} \sum_{j \neq i} \delta_{x_j}) \\ + \sum_{j \neq i} \langle \frac{\partial H}{\partial p}(x_j, D_{x_j} u_j^N, \frac{1}{N-1} \sum_{k \neq j} \delta_{x_k}), D_{x_j} u_i^N \rangle = 0 \\ u_i^N(T, x) = G(x_i, \frac{1}{N-1} \sum_{j \neq i} \delta_{x_j}) \end{cases}$$

one expects that U = U(t, x, m) satisfies

$$(MFGf) \begin{cases} -\frac{\partial U}{\partial t} + H(x, m, D_x U) + \langle \frac{\partial U}{\partial m}, \frac{\partial H}{\partial p}(x, m, D_x U) \nabla \cdot \rangle = 0 \\ & \text{in } [0, T] \times \mathbb{R}^d \times M \\ U(T, x, m) = G(x, m) & \text{in } \mathbb{R}^d \times M \end{cases}$$

Notation: If $B: \mathbb{R}^d \to \mathbb{R}^d$ is a smooth vector field, we have set

$$\langle rac{\partial \textit{U}}{\partial \textit{m}}, \textit{B} \;
abla \cdot
angle := rac{\textit{d}}{\textit{ds}} \textit{U}(\textit{t}, \textit{x}, \textit{m}(\textit{s}))_{|_{\textit{s}=\textit{0}}}$$

where m(s) solves

$$\partial_s m(s) - \operatorname{div}(B m(s)) = 0, \qquad m(0) = m$$

(MFG) as characteristics of (MFGf)

Fix the initial repartition m_0 and let m(t) solve

$$\begin{cases} \frac{\partial m}{\partial t} - \operatorname{div}(m \frac{\partial H}{\partial p}(x, D_x U, m)) = 0\\ m(0) = m_0 \end{cases}$$

Set u(x, t) = U(x, m(t), t). We "claim" that u solves

$$-\frac{\partial u}{\partial t} + H(x, Du, m) = 0$$

"Indeed",

$$\frac{\partial u}{\partial t} = \frac{\partial U}{\partial t} - \langle \frac{\partial U}{\partial m}, \frac{\partial H}{\partial \rho}(x, m, D_x U)) \nabla \cdot \rangle$$

where

$$\frac{\partial U}{\partial t} - \langle \frac{\partial U}{\partial m}, \frac{\partial H}{\partial p}(x, m, D_x U) \nabla \cdot \rangle = H(x, m, D_x U)$$

Therefore the pair (u, m) is a solution of the MFG system

$$\begin{cases} \frac{\partial u}{\partial t} - H(x, Du, m) = 0 \\ \frac{\partial m}{\partial t} - \operatorname{div}(m \frac{\partial H}{\partial p}(x, Du, m)) = 0 \\ u(x, T) = G(x, m(T)), \ m(x, 0) = m_0(x) \end{cases}$$

"Indeed",

$$\frac{\partial u}{\partial t} = \frac{\partial U}{\partial t} - \langle \frac{\partial U}{\partial m}, \frac{\partial H}{\partial p}(x, m, D_x U)) \nabla \cdot \rangle$$

where

$$\frac{\partial U}{\partial t} - \langle \frac{\partial U}{\partial m}, \frac{\partial H}{\partial p}(x, m, D_x U) \nabla \cdot \rangle = H(x, m, D_x U)$$

Therefore the pair (u, m) is a solution of the MFG system

$$\begin{cases} \frac{\partial u}{\partial t} - H(x, Du, m) = 0 \\ \frac{\partial m}{\partial t} - \operatorname{div}(m \frac{\partial H}{\partial p}(x, Du, m)) = 0 \\ u(x, T) = G(x, m(T)), \ m(x, 0) = m_0(x) \end{cases}$$

Conclusion and comments

- Very little is known on (MFGf): recent analysis by Lasry-Lions for a discretized system (hyperbolic equation in non-divergence form)
- The above arguments are heuristic: the link between the system of PDEs related to Nash (NE) and (MFGf) is not clear yet.
- However, the limit of (NE) is known in particular cases (second order and stationary or short time). (Lasry-Lions)