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Mean field game theory analyzes

@ optimal control problems

@ with (infinitely) many identical controlers

In other words it is a mathematical modeling approach to continuous-time
systems which involve a great number of “agents".

Ideas introduced by
@ Lasry-Lions 06,

@ Huang-Caines-Malhame, '06
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Motivations :

@ Problems arising in economy

e financial markets (Price formation and dynamic equilibria,
Formation of volatility) (Lasry, Lions, 2006)

@ general economic equilibrium with rational expectations
(Guéant, Lasry, and Lions, 2007)

@ Dynamics of population models

e crowd motion : mexican wave "la ola", ... (Guéant, Lasry, Lions -
Lachapelle, ...)
e academic behavior (Besancenot, Courtault, El Dika...)

@ Engineereing literature : Large Population Stochastic Wireless Power
Control Problem
(Huang, Caines, Malhamé, 2003, Mériaux, Lasaulce...)
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Different approaches

@ limit of N—player (stochastic) differential games as N — +o0,
— analogy with the Mean Field theories in statistical physics (kinetic
theory of gases, Boltzmann and Vlasov equations) and quantum
mechanics and quantum Chemistry (Hartree-Fock models...)

@ direct definition of (stochastic) differential games with infinitely many
identical players (applications to N—player games),
— approach from game theory

@ potential games : games arising as necessary conditions for optimal
control problems of PDE equations.

— related to optimal transportation problems

P. Cardaliaguet (Paris-Dauphine) MFG 4/94



The Mean Field Game system

The 3 approaches yield the same MFG system with unknown
(u,m): [0, T] x RY — R?:

() —0w —o?Au+ H(x,Du,m) =0

in [0, T] x RY
(MFG) (if)  8m — o?Am — div(m DyH(x, Du,m)) = 0
in [0, T] x RY
(i) m(0) = mo, u(x,T)= G(x,m(T))  inR
where
@ s eR,

@ H = H(x,p, m) is a convex Hamiltonian (in p) depending on the density
m1

@ G = G(x,m(T)) is a function depending on the position x and the
density m(T) attime T.

@ my is a probability density on RY.
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System introduced in

@ Lasry-Lions '06,
@ Huang-Caines-Malhame, 06

to model large population differential games.
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Aim of the lectures

@ Describe the MFG model and its interpretations
(Part 1)

@ Existence of the MFG system by fixed point arguments
(First order, non local MFG - Part 2)

@ The MFG system as optimality condition for optimal control problems of
PDEs
(First order, local MFG - Part 3)

P. Cardaliaguet (Paris-Dauphine) MFG 7194



Part 1

Interpretations of the MFG system
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Outline

“ Static games with many players
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Outline

“ Static games with many players

e Description of the MFG system
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Outline

“ Static games with many players
e Description of the MFG system

e Some results for second order MFG systems
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Outline

“ Static games with many players
e Description of the MFG system
e Some results for second order MFG systems

e Heuristic derivation of the MFG system
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Static games with many players

Outline

° Static games with many players
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Static games with many players

Example : Several swimmers on a beach.

They want to be
@ close from the sea,
@ not too far from their car

@ far from each other

What is the optimal repartition of the swimmers ? J
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Static games with many players

Example : Several swimmers on a beach.

They want to be
@ close from the sea,
@ not too far from their car

@ far from each other

What is the optimal repartition of the swimmers ? J

Key assumption : swimmers are identical (same tastes).
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Static games with many players
Formalization

Let N be a (large) number of players.

We consider a one-shot game with N symmetric players :

@ the players have the same set of actions Q,

@ the cost of player i (where i € {1,...,N})is given by FN = FN(x;, (x)ji)
where FN : QN — R is symmetric in the last variables.
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Static games with many players

Back to the “beach” example :

@ A strategy for player i is a position x; on the beach. The A strategy set
Q = Beach.

@ The cost of player i, FN, can be given, for instance, by
1
FN = FN (Xi, (Xj)ji) = adist(x;, Sea)+/3 dist(x;, Parking) —y N_1 Z | x;—Xi|
J#i

where «, 8,v > 0 are the same for all swimmers.
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Static games with many players

A solution of the game is a Nash equilibrium :

Definition

A Nash equilibrium for the game (F, ..., F{) is an element
(xN,...,xN) € QN such that

FN(vi, 3)j) = FYN N, (3Y)e) Wyie Q.

In other worlds, XY minimizes the map y; — F(yi, (x")ji)-
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Static games with many players

Problem

Understand the behavior of Nash equilibria (x, ..., x\) € QN as N — +oc.
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Static games with many players

Symmetric functions of many variables

Let Q be a compact metric space. We denote by P(Q) be the set of Borel
probability measures on Q, endowed with the Kantorowich-Rubinstein
distance

di(u,v) =sup {/ f d(p —v) where f : Q — R is 1—Lipschitz continuous} .
Q
Facts :
@ di metricizes the weak-* convergence on P(Q).

@ P(Q) is compact for dy.
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Static games with many players

Let, forany N € N, wy : Q" — R be a symmetric function such that
@ (Uniform bound) 3Cy > 0 with

[Whlle@) < Co  VYNEN,
@ (Uniform Lipschitz continuity) 3C; > 0 such that
wn(X) — wh(Y)| < Cidi(m¥, mY)  vX,YeQ@V vNeN,

where mi = LS 5, and m = LN 6, if X = (x,...,xv) and
Y= )

There is a subsequence (wy, ) of (wy) and a Lipschitz continuous map
W : P(Q) — R such that

lim  sup |wy, (X) — W(my)| =0.

k—+o0 Xe QM
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Static games with many players

Remarks :

@ The result holds if one replaces the “uniform Lipschitz continuity”
assumption by a uniform modulus.

@ This condition still holds if

2
[0 Wil < -

Indeed, fix X, Y € QN and let o permutation s.t.

dy(my, m) = Z d(Xi, Yo(i)

Then
[wn(X) —wn(Y)| = |',"V/N(X) = Wn((Yo(i))l
Z %d(Xi,}’a(i)) = Cidy(mY, my)

i=1

IN
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Static games with many players

Proof of the Lemma : Let WV : P(Q) — R be defined by
WN(m) = Jnf {wn(X) + Cidi(m¥,m)}  YmeP(Q).
(S

Then

(*) |W’V(m)\ < Co + C4 diam(O) Vm e P(Q),

@ WN(mY) = wy(X) forany X € QV,

@ the WV are C;—Lipschitz continuous on P(Q).
By Ascoli, 3(Wjy, ) which converges uniformly to a limit W. Then

limsup sup |wp, (X) — W(m)’\(’k)| < lim sup |[Wn,(m)—W(m)=0.
k—+o00 XeQMk k=400 mep(Q)
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Static games with many players

Back to the game with many players

We consider a symmetric N—player one-shot game :
@ the set of actions Q is the same for each players and Q is compact,

@ the cost of player i (where i € {1,...,N})is FN = FN(x;, (x;);»i) where
FN . QN — R is symmetric in the Iast varlables

In view of the previous discussion, we can assume that there is

F:Qx P(Q) — R, continuous, such that, forany i € {1,...,N}

j#i

F’V(x,-,()q),-#,-) = (x,, — del) Y(xi,...,xn) € Q.
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Static games with many players

For instance, in the “beach" example : The map F is given by

F(x, m) = a dist(x, Sea) + (3 dist(x, Parking) — v / ly — x|dm(y)
Beach
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Static games with many players

For instance, in the “beach" example : The map F is given by
H&nﬂ:aMMuﬁmy+ﬂmMX£mh@)~y/ ly — x|dm(y)
Beach

Then

1
FY00 Og)) = F | X0 > oy
J#
: . . 1
= o dist(X;, Sea) + 3 dist(x;, Parking) — v N7 Z |X; — Xi|
J#
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Static games with many players

Recall that a Nash equilibrium for the game (FV, ..., F{) is an element
(xN,...,xN) € QN such that
Fr i ]N)i) = BN (Y)) - Wi Q.

For (xV,...,xN) € QV, we set

N
_ _ _ 1
XN:(X{V,,XH) and mN:N;(s)—(IN
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Static games with many players

Proposition
Assume that, for any N, XN = (x1 ,...,)'(,’\\,’) is a Nash equilibrium for the game
SN B

_ 1
Then up to a subsequence, the sequence of measures (MmN = N Z (5)—({\/)

converges to a measure m € P(Q) such that

(*) /QF(y,ﬁv)dr_n = inf /F(y, Yam(y) .

meP(Q

Remark : (x) is equivalent to saying that the support of m is contained in the
set of minima of F(y, m) :

m({x; F(x,m) < F(x,m)vx' € Q}) =1.
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Static games with many players

Definition

Given a continuous map F : Q x P(Q) — R, we say that m € P(Q) — Ris a
Nash equilibrium of the continuous game if m satisfies

(*) /OF(y,r'n)dm = inf /Fy, m)dm(y

meP(Q

or, equivalently,

m({x; F(x,m) < F(y,m) VyeQ})=1.
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Proof of the Proposition : We can assume that the sequence

~ N

N
1 _ L
(m" = N E 57,“) converges to some m. Let us check that m satisfies (x).

i=1
@ By definition, the measure d;~ is @ minimum of the problem

. 1
Aoy [, FU- g 2 0500m).
Q j#i

. 1 —_ N 2 . . .

° — E o mY ] <=

Since d (N — 2 JXI_N, <N and since F is continuous, the
measure dxn is also e—optimal for the problem

inf [ F(y,m")d
mel;;(o)/o (y, m*)dm(y)

for N is large enough.
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Static games with many players

@ By linearity, m" is also c—optimal for the problem

/ Fly, mMydmN(y) < _inf / Fly, mN)dm(y) + =
Q meP(Q) Q

for N is large enough.

@ Letting N — +oo gives the result.
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Static games with many players

Existence of a solution to (x)

Assume F : Q x P(Q) — R is continuous.

Proposition

There is at least one Nash equilibrium of the continuous game, i.e., a
measure m such that

() [ Fy.mamy) = ot | Fy.mdm(y)

holds.

Remark : In general, no Nash equilibria for the N—person game. So the
above Proposition is not a consequence of the passage to the limit.
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Static games with many players

Proof : Recall Ky Fan fixed point Theorem :

Let X be a convex compact set of a locally convex Hausdorff space and
G : X — 2X be a multiapplication with convex compact values and closed
graph. Then G has a fixed point :

X € X such that X € G(X) .

Let X = P(Q) and G : X — 2X defined by
G(m) = argminm,ex/ F(x, m)dm’(x)
Q

Then G is upper-semicontinuous multi-application with convex compact
values.
So G has a fixed point :

EﬁveXsuchthat/ F(y,mdm(y) = inf /Fy, m)dm(y
Q mE’P(Q
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Static games with many players

From MFG to Nash equilibria in the N—player game

Problem : Given a Nash equilibrium of the continuous game, is it possible to
derive a Nash equilibrium for the N—player game (for large N) ?
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Static games with many players

From MFG to Nash equilibria in the N—player game

Problem : Given a Nash equilibrium of the continuous game, is it possible to
derive a Nash equilibrium for the N—player game (for large N) ?

Yes, but in mixed strategies.
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Static games with many players

Existence of e—Nash equilibria

. . 1
Mixed extension : Recall that F¥(x;, (X;);x0) = F (x,-, N1 ;6)9) . The
mixed extension of FV is the map FN : (P(Q))N — R defined by

EN(m (my)) = / . / FN (i, (1)) (1) - A ()

forall (my,...,my) € (P(Q)N.
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Static games with many players

Existence of e—Nash equilibria

. . 1
Mixed extension : Recall that F¥(x;, (X;);x0) = F (x,-, N1 ;6)9) . The
mixed extension of FV is the map FN : (P(Q))N — R defined by

EN(m (my)) = / . / FN (i, (1)) (1) - A ()

forall (my,...,my) € (P(Q)N.

Proposition

Let m be a Nash equilibrium of the continuous game associated with the
continuous cost F : Q x P(Q) — R.

Then, Ve > 0, 3N such that, for N > N, the random strategy
(m,...,m) € (P(Q))N is an e—Nash equilibrium of the N—player game :

E(m,(m,....m))>F(m,(m,....,m)—= VYmeP(Q).
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Static games with many players
Potential games

Case of local interactions : We now assume that F : Q x [0, +00) — R.

In this context, a Nash equilibrium of the continuous game is an a.c.
probability measure m satisfying

() / Fly. m(y))m(y)dy = _inf / Fly. m(y))dm(y) .
Q Q

meP(Q)

or, equivalently,

F(x,m(x)) = ylrgg F(y,m(y)) forae. x .
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Static games with many players

Proposition

m
Let d(x, m) = / F(x,r)dr. Assume that mis an a.c. probability measure on
0
Q minimizing
m— / d(x, m(x))dx
Q

Then mis a Nash equilibrium of the continuous game.

Indeed, the necessary conditions read

g—:’(x, m(m-m)>0 VmeP(Q).
Q

So
/F(x,m)dmz/F(x,ﬁv)dm vme P(Q),
Q Q

which shows that m is an equilibrium.
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Static games with many players

An example : People in a concert want to be
@ as close as possible from the stage (= 0 € R?)

@ not too packed
2
Modelized by the map F(x,m) = % + log(m(x)).
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Static games with many players

An example : People in a concert want to be
@ as close as possible from the stage (= 0 € R?)

@ not too packed
2
Modelized by the map F(x,m) = % + log(m(x)).

The optimality condition (x) reads :

F(-.m) = min F(y,m) in {f> 0}
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Static games with many players

An example : People in a concert want to be
@ as close as possible from the stage (= 0 € R?)

@ not too packed
2
Modelized by the map F(x,m) = % + log(m(x)).

The optimality condition (x) reads :

F(-,m) = min F(y, m) in{m> 0} .

yeR2
< . _ |x|2 _ - :
Let A = min F(y,m). Then ot log(m(x)) = Aif m(x) >0 ,i.e.,
ye

So mis a Gaussian.
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Static games with many players

Generalization (Mas-Colell, 1984)

Goal : deal with several populations problems.
Back to the swimmers’ example : Several swimmers on a beach.

They want to be
@ close from the sea,
@ not too far from their car,
@ far from each other,

@ they can have different priorities.

What is the optimal repartition of the swimmers according to their priorities ?
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Static games with many players

Description of the game :

@ The set of strategies is a compact metric space Q. Let P(Q) be the set
of Borel probability measures on Q.

@ A cost function is a continuous map u : Q x P(Q) — R. We set
Co = C°%(Q x P(Q)) the set of cost functions.

@ A game is a Borel probability measure p over the set Cq of cost
functions.
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Static games with many players

Description of the game :

@ The set of strategies is a compact metric space Q. Let P(Q) be the set
of Borel probability measures on Q.

@ A cost function is a continuous map u : Q x P(Q) — R. We set
Co = C°%(Q x P(Q)) the set of cost functions.

@ A game is a Borel probability measure p over the set Cq of cost
functions.

Remarks :
@ Each cost function describes a type of population.
@ A game represents the distribution of each type in the overall population.

@ The previous model consisted in a single type : © = 6 where F € Cq.
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Static games with many players

Definition

Let u be a game. A Nash equilibrium of the game is a measure o over
Cq x Q such that, if o¢c and oq are the marginals of o, then

Q@ oc=pand
Q o ({(u,x); u(x;00) > u(x';0q) ¥x' € Q}) = 1.

Remarks :

@ In principle, we would like a map ¢ : Cq — Q saying what strategy ¢(u)
a player of type u should play. This map seldom exists.

@ In the single type model (i.e., u = ér where F € Cg), a Nash equilibrium
o must satisfy :

@ o=@ 7where T € P(Q),
Q ~({x; F(x;7)> F(x';7)vx' € Q}) = 1.
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Static games with many players

Theorem (Mas-Colell, 1984)
Given a game . there exists a Nash equilibrium.

Proof : Again by the Ky Fan fixed point Theorem.
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Static games with many players

Conclusion

Nash equilibrium of the continuous games
@ arise as limit of N—player games as N — +o0,
@ can be intrinsically defined by an equilibrium condition
@ can be derived as equilibrium position for potential games

@ also allows to formalize the behavior of several populations
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Static games with many players

Conclusion

Nash equilibrium of the continuous games
@ arise as limit of N—player games as N — +o0,
@ can be intrinsically defined by an equilibrium condition
@ can be derived as equilibrium position for potential games

@ also allows to formalize the behavior of several populations

Mean field games

@ generalize the above approaches when the optimization problem is
replace by an optimal control problem.

@ (however seldom deal with several population games)
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Static games with many players

Some references on games with many players

(nonatomic games)

@ Cooperative games and Shapley value

e Shapley (1961), Shapley and Shubik (1963), Aumann-Shapley
(1974), Aumann (1975),

o Hildenbrand and Mertens (1972), Hildenbrand (1974), Dubey
(1975), Hart (1977), Neyman (1977), Mertens (1980),
Dubey-Neyman (1984), Monderer (1986), Haimanko (2000), ...

@ Noncooperative games

o Schmeidler (1973), Novshek and Sonnenschein (1983) Mas-Colell
(1983, 1984), Green (1984), Fudenberg-Levine (1986), Sandholm
(2001), Kalai (2004) ...
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Description of the MFG system

Outline

9 Description of the MFG system

P. Cardaliaguet (Paris-Dauphine) MFG 40/94



Description of the MFG system
The Mean Field Game system

We study solutions (u, m) : [0, T] x RY — R? to

() —0w —o2Au+ H(x,Du,m) =0

in [0, T] x RY
(MFG) (i) 9xm — o?Am — div(m DyH(x,Du,m)) =0
in [0, T] x RY
(i)  m(0,x) = mo(x), u(x, T)= G(x,m(T)) in R9
where
@ 7R,
@ H = H(x,p, m)is a convex Hamiltonian (in p) depending on the density
m,

@ G = G(x,m(T)) is a function depending on the position x and the
density m(T) attime T.

@ my is a probability density on RY.
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Description of the MFG system

We want to understand this system as a Nash equilibrium of a continuous
game where the payoff is of optimal control type.
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Description of the MFG system

Heuristic interpretation of (/)

Given a family (m;):cp0, 7 of probability densities, an average agent controls
the stochastic differential equation

dXs = asds + V252dBs, X; = x

where (as) is the control and (B;) is a standard B.M. He aims at minimizing
the cost

)
J(x, (as), (mg)) = E U L(Xs, s, m(s)) ds + G(Xr, m(T))

where L(X7 q, m) = Sup {_<p7 q> - H(X7 P, m)}
peR?
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Description of the MFG system

Heuristic interpretation of (/)

Given a family (m;):cp0, 7 of probability densities, an average agent controls
the stochastic differential equation

dXs = asds + V252dBs, X; = x

where (as) is the control and (B;) is a standard B.M. He aims at minimizing
the cost

)
J(x, (as), (mg)) = E U L(Xs, s, m(s)) ds + G(Xr, m(T))

where L(X7 q, m) = Sup {_<p7 q> - H(X7 P, m)}
peR?

His value function u is given by

u(t, x) = inf J(x, (as), (Ms)) .

(as)
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@ The value function u then satisfies
() —0w —o?Au+ H(x,Du,m) =0 inRY x (0, T)
(i) u(x, T)= G(x,m(T)) in RY
@ The optimal control is given by

a*(t,x) = —DpH(x, Du(t, x), m(t, x)) .
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Description of the MFG system

@ The value function u then satisfies
() —0w —o?Au+ H(x,Du,m) =0 inRY x (0, T)
{ (i) u(x, T)= G(x,m(T)) in RY
@ The optimal control is given by
a*(t,x) = —DpH(x, Du(t, x), m(t, x)) .

Proof by verification : If u solves (i) and (iii), we have by It6’s formula,

iE [u(s Xs) — /TL(XT,aT,m(T))dT

[0su(s, Xs) + (Du, as) + o2 Au+ L(Xs, as, m(s))]

=E
> E [0su(s, Xs) + 02 Au — H(Xs, Du, m(s))] = 0

with equality only for o = o*.
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Description of the MFG system

Integrating between 0 and T :
;
E | u(T, Xr) — u(t, x) +/ L(X;, 0, m(T))dT] >0
t

with equality for o = o*.
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Description of the MFG system

Integrating between 0 and T :
;
E [u( T.Xr) — u(t, x) +/ L(X.,a, m(T))dT] >0
t

with equality for o = o*.

By (iii), u(T, X7) = G(X1,m(T)), so that
T
u(t,x) <E l/ L(X;, ar, m(7))dr + G(Xr, m( T))]
t

with equality for « = o*.
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Description of the MFG system

Integrating between 0 and T :
;
E [u( T.Xr) — u(t, x) +/ L(X.,a, m(T))dT] >0
t

with equality for o = o*.

By (iii), u(T, X7) = G(X1,m(T)), so that
T
u(t,x) <E l/ L(X;, ar, m(7))dr + G(Xr, m( T))]
t

with equality for « = o*.

Therefore u is the value function.
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Description of the MFG system

To summarize : Given a family (m;)cpo, 7 of probability densities,

@ the value function u of an average agent is the solution to the HJ eq
(i) —ow—c?Au+H(x,Du,m)=0  inR?x (0, T)
{ (i) u(x,T)=G(x,m(T))  inR4
@ The optimal control is given by
a*(t, x) = —DpH(x, Du(t, x), m(t)) .
@ Therefore its optimal dynamics solves the SDE

dXs = —DyH(Xs, Du(t, Xs), m(s))ds + v202dBs, Xe = x
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Description of the MFG system

Heuristic interpretation of (/i)

Assume that the initial distribution of the players is the probability my.

Then the distribution /(s) of the players at time s is the law of X5, where (X;)
solves the SDE

dXs = —DpH(Xs, Du(t, Xs), m(s))ds + v2dBk, Xo ~ mo
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Description of the MFG system

Heuristic interpretation of (/i)

Assume that the initial distribution of the players is the probability my.

Then the distribution /(s) of the players at time s is the law of X5, where (X;)
solves the SDE

dXs = —DpH(Xs, Du(t, Xs), m(s))ds + v2dBk, Xo ~ mo
Equation satisfied by (m(s)) : Let ¢ = ¢(s, x) € C°. Then, by It&’s formula,
3 L omts) = S [o(s. %)
—E [asqﬁ < H(Xs, Du, m(s)), Do) +02A¢]
— [ (@50~ (DoH(x. Du m()). D5) + 72 A0) (s)
Rd
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Description of the MFG system

Integrate in time to get :

0 = / g (9s¢ — (DpH(x, Du, m(s)), D) + a2 A¢) i(s)
/ / (—0si(s) + div(i(s) DpH(x, Du, m(s))) + c?AM(s)) ¢
Rd

where div = Z R
1

So m solves the Kolmogorov equation
{ (if) O — o2 A — div(M DpH(x, Du,m)) = 0 inR? x (0, T)

(i) mMm0)=my  inRY
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Description of the MFG system

To summarize : Given a family (m;):co, 7] of probability densities,

@ the value function u of an average agent is the solution to the HJ eq
(i) —0w —o?Au+ H(x,Du,m) =0 inR? x (0, T)
{ (i) u(x, T)y= G(x,m(T)) in RY
@ The distribution m(s) of the players solves the Kolmogorov equation
{ (i) Oy — o2 A — div(M DpH(x,Du,m)) =0  inRY x (0, T)

(i) mO0)=my inRY

A solution (u, m) of the mean filed game is a fixed point of the map m — m. J
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Description of the MFG system

Structure of MFG system

Namely, the pair (u, m) : [0, T] x RY — R? solves

() —0w —o?Au+ H(x,Du,m) =0
(MFG) (i)  9ym — o2 Am — div(m DpH(x, Du,m)) =0
{ (iiiy - m(0) = mo, u(x, T) = G(x, m(T))

where
@ H(x,p, m) = supgcgs {—(P,q) — L(x,q, m)} is convex in p.
@ m — H(x,p,m) can be
e alocal map :e.g.,

1 pl?
H(x,p,m) = =|p|? — F(x, m(x or  H(x,p,m)=
(x.p.m) = 5|p2 = F(x, m(x)) (X.Pm) = (e
e oranonlocal map : e.g., H(x,p,m) = %|p|2 —(pxm(t,-)) = p.

@ m(t,-) is a probability density on R for all t € [0, T].
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Description of the MFG system

An example : the mexican wave (Guéant-Lasry-Lions)

The stadium is formalized as a 1 — D torus T' = R\Z.

Each individual is characterized by
@ its geographic position in the stadium x € T'

@ a position z € [0, 1] describing if he is seated (z = 0), standing (z = 1),
or in an intermediate position (z € (0, 1)).

Individuals
@ cannot change their geographic position
@ prefer either being seated or standing

@ avoid to change too often their position

@ wants to look like their neighbors
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Description of the MFG system

If the position of individual seated at place y € T' and at time t is Z(t, y), the
optimal control problem for the individual at place x is :

nf. /0 ' {e(z(s)) + % (2(5))% + F(x, 2(s), (s, '))} ds

where z(0) = zy(x),
{(2)=Kz*(1-2)° (a,8>0)
F(x,2(s), 2(s,")) = F(z(s),2) = /R((Z(S) — 2(s,x—y))* G(y)dy

(where G is, e.g., a Gaussian).
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Description of the MFG system

This yields to the (first order) MFG system for (u, m) where m = §3(; y(2) :

(i) —0w+ $(9.u)? — €(2) = F(x,z,2(s,"))
in [0, T] x R2
(ify O0m—div(mo,u) =0
in [0, T] x R2
(i) 2(0) =2y, u(x,T)=0  inR?

— Guéant, Lasry, Lions prove the existence of an explicit periodic solution in
an asymptotic regime.
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Description of the MFG system
Summary

Heuristic argument show that the (MFG) system represents a Nash
equilibrium for a continuous game.

This raises several questions :

@ Existence, uniqueness for the MFG system,

@ Link with games with a large number of players,

@ Asymptotic behavior of the system

@ MFG as optimality conditions for optimal control problems of EDPs.
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Some results for second order MFG systems

Outline

e Some results for second order MFG systems
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Some results for second order MFG systems

We discuss here
@ Existence and uniqueness results for second order (MFG) systems,

@ Link with Nash equilibria for differential games with a large number of
players

@ The asymptotic limit as T — +oo of the (MFG) system.
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Some results for second order MFG systems

Existence of solutions (nonlocal, second order MFG)

We consider the system

(i) —dw — Au+ H(x, Du) = F(x, m(t, "))

in Rd (O, T)
(MFG) (ify 9ym— Am — div(DpH(x, Du)m) =
demej

(iify  m(0) = my , u(x, T) = ug(x)

where
@ data are periodic in space,
@ F:RYx M — R (where M is the set of probability measures on T¢).
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Some results for second order MFG systems

Assumptions on the data
@ F maps R? x L}(R?) into a bounded subset of W;’OO(RO’),
@ F is continuous from R x L}(R?) to CJ(RY),
© F is bounded from ¢;**(RY) into €/ (R),
©Q H:RYxRY - Ris smooth, periodic in x, convex in p, with
P < o1+ 1p)

© my and us are smooth.
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Some results for second order MFG systems

Theorem (Lasry-Lions, 06)
Under the above conditions, there exists a classical solution (u, m) of (MFG).
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Some results for second order MFG systems

Theorem (Lasry-Lions, 06)

Under the above conditions, there exists a classical solution (u, m) of (MFG).

Proof : By fixed point. Fix m € L>([0, T], L}(RY)).

@ Solve
—0iu — Au+ H(x, Du) = F(x, m(t,-)), u(x, T) = ug(x)

Then u is bounded Lipschitz in x, H6lder in t and Du is Holder (unif. w.r.t.
m)
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Some results for second order MFG systems

Theorem (Lasry-Lions, 06)

Under the above conditions, there exists a classical solution (u, m) of (MFG).

Proof : By fixed point. Fix m € L>([0, T], L}(RY)).
@ Solve
—0wu— Au+ H(x,Du) = F(x,m(t,-)),  u(x,T)= us(x)

Then u is bounded Lipschitz in x, H6lder in t and Du is Holder (unif. w.r.t.
m)

@ Let msolve
dym — Am — div (DpH(x, Du)m) = 0, m(0) = mp .

Then m is Holder continuous (unif. w.r.t. m).
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Some results for second order MFG systems

Theorem (Lasry-Lions, 06)
Under the above conditions, there exists a classical solution (u, m) of (MFG).

Proof : By fixed point. Fix m € L>([0, T], L}(RY)).
@ Solve
—0wu— Au+ H(x,Du) = F(x,m(t,-)),  u(x,T)= us(x)

Then u is bounded Lipschitz in x, H6lder in t and Du is Holder (unif. w.r.t.
m)

@ Let msolve
O¢m — Am — div (DpH(x, Du)m) = 0, m(0) = my .
Then m is Holder continuous (unif. w.r.t. m).

@ The map m — mis continuous on L*([0, T], Lj} (R?)) with pre-compact
range : conclusion by Schauder fixed point theorem.
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Some results for second order MFG systems

Assume further that
[ (Fm) = Fm)m—mi) =0 vm.m e LiR).
1
and, either H uniformly convex in p or

/ (F(m) — F(m'))(m—m') =0 = F(m)=F(m').

Q

Proposition
The solution to (MFG) is unique.

Typical example : F(m) = (p x m) x p, where p is smooth and symmetric.
Then

(F(m) — F(m))(m — m') = /Q (p* (m— m))?
! 2

( [ os(m- m’)) — (F(m) — F(m)?.
Q

Qi

Y
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Some results for second order MFG systems

From MFG to Nash equilibria with many players

Let (u, m) be a solution to

(" —0wu— Au+ H(x,Du) = F(x,m)
(MFG) { (if)y 0ym— Am —div(m Dp,H(x, Du)) = 0
(i) m(0) = mgp, u(x, T) = G(x)

Build (almost-)Nash equilibria from (u, m).

References :
@ Huang-Caines-Malhame, 2006.

@ Carmona-De la Rue-Lachapelle, preprint 2012
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Some results for second order MFG systems

The game

We consider a N—Player differential games, where each player i controls his
dynamics

dX! = alds + vV2dWi,  X§~mo

with o' : [0, T] — R? control of Player i, W' are independent d—dimensional
BM and X are independent.

Players aim at minimizing the cost function, given by

Jial,.. / L(X, o ds+F(x;,N =" 8,) o5+ G(XP)

j#i

where X = (X',..., XN)and L(x,a) = sup {{p,a) — H(x,p)}.
p
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Some results for second order MFG systems

Assumptions :

@ Data are periodic in space
@ G(x,m) = G(x) (for simplicity)
@ F = F(x, m) is smoothing

@ H = H(x, p) is convex in p and satisfies standard regularity and growth
conditions

(e.9., H(x,p) = }Ip?)

@ (u,m) is a smooth solution to (MFG)
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Some results for second order MFG systems

Controls associated with the MFG
Foranyi=1,..., N, let X' be the solution to

dX! = —8,H(X., Du(s, X%))ds + vV2dW:
)N((I) ~ Mo

We set @} = —9p,H(X., Du(s, X1)).

Forany i=1,...,N, the law of X! is m(s).
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Some results for second order MFG systems

Approximate Nash equilibrium

For e > 0, there is N, such that : YN > N_, (&', ...,aN) is an e~Nash
equilibrium : ‘ o
Ji(@',...,a"y < I, (&)u) + e
for any control o/'.
Remark : (a@',...,aN) is an open-loop Nash equilibrium : no need to observe

the other players.

Idea of proof : the ()N(é')#,- are iid with law m(s), so that, by the law of large
numbers,

1
J#
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Some results for second order MFG systems

Estimate for N,

Theorem (Louzada)
One can take

1 1
N, ~log (Z) e

Idea of proof : Quantitative concentration inequalities (Bolley-Guillin-Villani,
2007) allow to estimate the difference

F(x, ﬁ ;55@-) — F(x,m(s))| .
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Some results for second order MFG systems

Existence of solutions (local, second order MFQG)

We study the model equation

(i) —ow—Au+ %|Du|2 = F(x,m)
inR? x (0, 7)
(MFG) §  (iiy am— Am — div(mDu) = 0
inRY x (0, T)
(iii) - m(0) = mo , u(x, T) = u(x)
where
@ data are periodic in space,

@ F:RY x[0,+00) — R is smooth.
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Some results for second order MFG systems

Theorem (C.-Lasry-Lions-Porretta, 2012)

Assume that F : R? x [0, +oc) — R is C', Z9—periodic in x and bounded
below.

Then there exists a classical solution (u, m) of (MFG).

It is unique if F is increasing.
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Some results for second order MFG systems

Theorem (C.-Lasry-Lions-Porretta, 2012)

Assume that F : R? x [0, +oc) — R is C', Z9—periodic in x and bounded
below.

Then there exists a classical solution (u, m) of (MFG).

It is unique if F is increasing.

Remarks :
@ No growth condition on F...
@ ... but a strong structure condition on the Hamiltonian.

@ Existence of classical solutions for more general equations but bounded
F : Lasry-Lions, 06.

@ Existence of weak solutions for more general equations : Lasry-Lions,
06.
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Some results for second order MFG systems
Asymptotic behavior

Goal : Investigate the long-time behavior of the solution (u”, m") to the
Mean Field Game system

(1) —ow” — AuT + 3|Du’|? = F(x,m")
(MFG) (i) om" — AmT —div(m"DuT) =0

(iify  mT(0) = mo, u(x,T) = us(x)

Motivation : Hope to reduce the system to a stationary equation.
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Some results for second order MFG systems

The expected limit is the ergodic system :

(i) X—Au+ 3|Duf?=F(x,m)  inRY
(MFG — ergo)
(i) —Am—div(mDu) =0  in R
Note that
e m=eY (fQ e*‘_’) solves (MFG-ergo)(ii)

@ the map B
(x,1) = (O(x) + At, m(x))

satisfies (MFG)(i-ii).
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Some results for second order MFG systems

Assumptions on the data

@ F:RY xR — Ris locally Lipschitz continuous, Z9—periodic in x, and
increasing with respect to m.

@ mp : RY — R is smooth, Z9—periodic, mg > 0 and Jo, Mo = 1.

@ G:R? = Ris smooth, Z9—periodic.
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Some results for second order MFG systems

Convergence under mild monotony condition

Recall the definition of the scaled functions on R? x [0, 1] :

v'(t, x) = uT(tT, x) ; u'(t,x) == m' (1T, x)

Theorem (C.-Lasry-Lions-Porretta, ’12)
As T — +oo,

@ u'(t,-)/T convergestot — (1 — )\ in L2(Qy) forany t € [0,1],
Q. —/ v’ (t) converges to i in [2(Q; x (0,1)),
Q

© 1" converges to m in LP(Qy x (0,1)),
for any p < Ni2.
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Some results for second order MFG systems

Convergence rate (strong monotony)

Assume, furthermore, there is v > 0 with

F(x,s)— F(x,t) >~(s—t) Vs>t VxeR?.

Set i (t,x) = u'(t, x) _/o u(t,y)dy.

Theorem (C.-Lasry-Lions-Porretta, ’12)
There is x > 0 such that

= T C —K — —K
Q 107() - Ullay < (e (7= 1 e t)

Tt

= C —k(I— —K
@ |m"(t)— Ml < + (67 + &)

o 41504

<
L'(Q)

—HlO
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Some results for second order MFG systems

The proofs relies on two ingredients :

@ The Hamiltonian structure of the (MFG) equation

@ A main energy equality
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The Hamiltonian structure :
Set ®(x,m) = [, F(x, p) dp and

E(u,m) = m%\Du|2 + (Du, Dm) — &(x, m) dx
Q

Lemma
(u”, m") solution of (MFG) < (u”, m") satisfies

() —du’ = fg—ri(ur, m')

., o€
(i) om™ = —8—U(UT, m')

(iily  mT(0) = mo, uT(x,T) = G(x,m"(T))

In particular the energy E(u’ (t), m’(t)) is constant along the flow.
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Some results for second order MFG systems

Main energy equality :

Lemma (Lasry-Lions, 06)
Foranyte [0, T]

/ (MO, 547 (4) — DGR + (Fx, mT (1)) — FOx, )’ (6) — )
Q

Proof : Multiply (MFG)(i)-(MFG-ergo)-(i) by (m” — m) and substract to
(MFG)(ii)-(MFG-ergo)(ii) multiplied by (u” — &).
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Some results for second order MFG systems
Why the convergence ?

We define the scaled functions on RY x [0, 1] :

oT(x, ) =uT(x,tT)  ;  ul(x,t):=m'(x,tT)
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Some results for second order MFG systems
Why the convergence ?

We define the scaled functions on RY x [0, 1] :
oT(x, 1) = uT(x,tT)  ;  ul(x, t):=m(x,tT)
Integrate in time the main energy equality :
1 T
| [ 00— Do + (Fx. ™) - Fx m))(u” — ) det
o Jo
1

- UG (T — B)(u" — M)dx

0
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Some results for second order MFG systems
Why the convergence ?

We define the scaled functions on R? x [0, 1]
vl (x, 1) == uT(x,T) u(x, 1) .= m'(x,tT)

Integrate in time the main energy equality :

[ ] 00T b ¢ (e~ Flxm)” - ) it
0 Joy

! UQ (T — ) (T — M)dx

T 0

Then
@ The Hamiltonian structure implies that the RHS — 0as T — 4+

e DvT — Du,
@ which implies that Dv™ — D
77194
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Some results for second order MFG systems

Conclusion and comments for second order problems

@ Existence and uniqueness results for second order (MFG) systems :

o Well understood for nonlocal equations, work to be done for local
ones (unbounded RHS),
o Little is known for systems of the form
2
(i) —0wu— Au+ ‘ZD“L ~0
(i) 0xm—Am—div(m'~“Du) =0
(iil)  m(0) = mq , u(x, T) = ur(x)

@ Link with Nash equilibria for differential games with a large number of
players

@ OK nonlocal setting,
@ Nothing written in the local setting

@ The asymptotic limit as T — +oo of the (MFG) system : known only for
quadratic Hamiltonians.
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Some results for second order MFG systems
Some references

@ Introduction of the model, existence, uniqueness

o Lasry-Lions : CRAS 06, Jpn. J. Math. 2 (2007), Lions’ lecture at
College de France

e Huang-Caines-Malhamé : Com. Information Systems '086, ...

o Related works : Guéant, Gomes-Pires-Sanchez Morgado.

@ Discrete model

e Lions’ lecture at College de France
o Gomes-Mohr-Souza J. Math. Pures Appl. (9) 93 (2010)
o Guéant (preprint)
@ Numerical approximation
o Achdou-Capuzzo Dolcetta : SIAM J. Numer. Anal. 48 (2010).
e Lachapelle-Salomon-Turinici : Math. Models Methods Appl. Sci.
(2010).
@ Achdou-Camilli-Capuzzo Dolcetta : SIAM J. Control Opt. (2012).
o Camilli-Silva : preprint.
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Some results for second order MFG systems

Some references (continued)

@ Long-time behavior

o Gomes-Mohr-Souza (discrete setting)
o C.-Lasry-Lions-Porretta : NHM 2012.

@ Linear-quadratic MFG

e Bardi, NHM 2012
@ Bensoussan-Sung-Yam-Yung, pre-print.
e Carmona, Delarue, Lachapelle

@ Related works :

@ Price formation : Lasry-Lions, Chayes-Gonzalez-Gualdani,
Markowich-Matevosyan-Pietschmann-Wolfram,
Caffarelli-Markowich-Pietschmann

e Formalization of human crowds : Lachapelle, Santambrogio

@ Lecture notes on MFG : Guéant-Lasry-Lions, Achdou, C., Tao.
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Heuristic derivation of the MFG system

Outline

e Heuristic derivation of the MFG system
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Heuristic derivation of the MFG system

Warning : this part is mostly heuristic.
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Heuristic derivation of the MFG system

Differential games with many players (1/3)

We consider a N—Player differential games, where each player i controls his
velocity

Ixi=al  X=x

with o/ : [0, T] — R control of Player /.

Players aim at minimizing the cost function, given by
T .
JIN(t, x, ) = / LN (X5, al)ds + GN(X7)
t

where X = (X',..., XV), LN : RV x R? — R and GV : RV — R.
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Heuristic derivation of the MFG system

Nash equilibrium

Fix an initial condition (¢, x) € [0, T] x RV, We say that the controls
(of,...,ay) is a Nash equilibrium at (¢, x) if

JI'N(tv X, aTa @ o ~aa*N) < JIN(tv X, aj, (a}k)]'#i)

forany i=1,..., N and any control «;.

The “controls" are
@ either “open loop" = depend only on time : «; = «;(t)
— Nash equilibria seldom exist in this framework
@ or “closed loop" = depend on time and on the position of the other
players : «j = a(t, X1,..., XN)
— Existence of Nash equilibria in this framework is more likely, but
difficult to implement when N is large.
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Heuristic derivation of the MFG system

Key assumption : Players are identical and, for a player i, the other players
are undistinguishable :

o
LN(x,a) = L(xi, o', 55— > 6x)
J#i

and

1
GIN(X) - (3()([7 ﬁ Z(SX/)
J#i

where L: R xRY x M — R and G: R? x M — R, where M is the set of Borel
probability measures on R, Let

H(X7p7 m) = sup {_<avp> - L(X,Ot, m)}

a€cRd
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Heuristic derivation of the MFG system

The PDE system associated with the differential game

Finding a “good" Nash equilibrium payoff boils down to solve the following
system of Hamilton-Jacobi equations :

8uN
8 (XIaDX,U/ 7N 1 Z(Sx}
ﬁé/
30 Dyt S 00, gl =0
(NE) J#i k#j

i:1,...,N, (t,x) € (0, T) x RN
1
u(T,x) = G(Xi7ﬁzéxj)

J#i
i=1,...,N, x ¢ RN
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Heuristic derivation of the MFG system

Interpretation of the PDE system

Lemma

If (u{") is a smooth solution to (NE), then the feedback strategies

. OH 1
Q; (ta X) = _a_p(xl" DXiuiN(t7 X)v m 25)9)
j#i
provide a feedback Nash equilibrium for the game. Namely

Ul'N(tv X) = JiN(t’ X, (047)1‘:1 ~~~~~ N) < JI'N(tv X, Qs (6‘7)/'75")

for any i and any control «;.

Remark : Payers need to observe all the other players to play in optimal way.
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Heuristic derivation of the MFG system

Existence of solutions for the PDE system

@ System (NE) is ill-posed in general, even for small N
(Bressan-Shen, 2004)

@ In the second order setting, system (NE) has at least one symmetric
solution.
(Bensoussan-Frehse, Lasry-Lions)

@ No uniqueness in general

@ Solution impossible to compute in practice when N is large.

P. Cardaliaguet (Paris-Dauphine) MFG 88 /94



Heuristic derivation of the MFG system

The MFGf

We consider a symmetric solution uN to the PDE system (NE) :

uN(t, x) = ulN(t, x;, (x),+) where ul(t, x;, -) is @ symmetric functions of many
variables.

In view of the previous discussion, we expect that
1
up'(t,x) = U,N(t,X,',(Xj)j;éi) ~U|tx, WZ&(’

J#i
where U: [0, T] x R x M — R.
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Heuristic derivation of the MFG system

The MFGf

We consider a symmetric solution uN to the PDE system (NE) :

uN(t, x) = ulN(t, x;, (x),+) where ul(t, x;, -) is @ symmetric functions of many
variables.

In view of the previous discussion, we expect that

1
up'(t,x) = u (t,xi, (X)) ~ U | £, X, WZ&(’
J#i
where U: [0, T] x R x M — R.

This requires estimates of the form

Cq
sup ||(’9X,.u,-N||OO < N
j#i

which seems to be known only for T small and in the second order case
(Lasry-Lions).
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Heuristic derivation of the MFG system

Since the uN ~ U (t, Xi, g D 6Xj> solve

oulN N1
- 8; (Xi, Dy, U ’N—1§6X")

OH
(NE) +2_ (500 Dy g 12% Dyuf) = 0
J#i k#j

N _ .
ulN(T, x) = G(x;, N_1 > 6y)

J#i

one expects that U = U(t, x, m) satisfies

ou ou oH
——5¢ THOGm DU) + (o ap()ﬂ
in[0, T] x RY x M
U(T,x,m)=G(x,m) inRYxM

m, D,U)V-) =0
(MFGf)
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Heuristic derivation of the MFG system

Notation : If B : RY — RY is a smooth vector field, we have set

ou d
(5 BV} i= Ut xm(s)).y

where m(s) solves

dsm(s) — div(B m(s)) = 0, m(0) =m
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Heuristic derivation of the MFG system

(MFG) as characteristics of (MFG)

Fix the initial repartition my and let m(t) solve

om ., 0OH

B d1v(ma—p(x, DyU,m))=0
m(0) = mg

Set u(x,t) = U(x, m(t), t). We “claim" that u solves

—% + H(x,Du,m) =0
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Heuristic derivation of the MFG system

Indeed 0 ou oU oH
u
9 ot <87m’ 37,0()(’ m, DxU))V-)
where

ou ou oH
ot~ (Gm 9p M D)V} = Hx,m, DcU)

P. Cardaliaguet (Paris-Dauphine) MFG 93 /94



Heuristic derivation of the MFG system

“Indeed”, 5 U oU oH
u
at 81‘ <am7 8p(xama XU))V>
where U oU oH
9 am ap M DUIT) = H(x, m, D)

Therefore the pair (u, m) is a solution of the MFG system

ou

T H(x,Du,m) =0

om . 0OH

o d1v(m%(x, Du,m)) =0

u(x, T) = G(x,m(T)), m(x,0) = my(x)
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Heuristic derivation of the MFG system

Conclusion and comments

@ Very little is known on (MFGf) : recent analysis by Lasry-Lions for a
discretized system (hyperbolic equation in non-divergence form)

@ The above arguments are heuristic : the link between the system of
PDEs related to Nash (NE) and (MFGf) is not clear yet.

© However, the limit of (NE) is known in particular cases (second order
and stationary or short time).
(Lasry-Lions)
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