Optimal Control and Mean Field Games (Part 3)

P. Cardaliaguet

Paris-Dauphine

"NEW TRENDS IN OPTIMAL CONTROL" Ravello, Italy September, 3-7, 2012

Joint work with P.-M. Cannarsa (in progress)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Ø Describe the model and its interpretations (Part 1)
- $\checkmark\,$ Existence of the MFG system by fixed point arguments (Non local MFG Part 2)
- → The MFG system as optimality condition for an optimal control problem of HJ equations (Local MFG - Part 3)

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Part 3

The MFG system and optimal control problems for PDE equations

.

We are interested in the MFG system

$$(MFG) \qquad \begin{cases} (i) & -\partial_t u + H(x, Du) = f(x, m(x, t)) \\ (ii) & \partial_t m - \operatorname{div}(mD_p H(x, Du)) = 0 \\ (iii) & m(0) = m_0, \ u(x, T) = u_T(x) \end{cases}$$

where $f : \mathbb{R}^d \times [0, +\infty) \to [0, +\infty)$ is a local coupling term.

Problem : Existence/uniqueness of a solutions - smoothness properties.

 The Monge-Kantorovitch optimal transport problems : minimize the cost to transport a probability density m
₀ onto a probability density m
₁. The dual problem reads

$$\max\left\{\int_{\mathbb{R}^d} u(x)d(\bar{m}_1-\bar{m}_0)(x), \ u:\mathbb{R}^d\to\mathbb{R} \ 1-\text{Lipschitz continuous}\right\}.$$

If *u* is optimal, the system of necessary conditions reads

$$\left\{ \begin{array}{l} |Du| \leq 1 \text{ in } \mathbb{R}^d, \quad |Du| = 1 \text{ in } \{m > 0\} \\ -\text{div}(mDu) = \bar{m}_1 - \bar{m}_0 \text{ in } \mathbb{R}^d \end{array} \right.$$

where *m* is the transport density.

 \rightarrow Existence of solutions, uniqueness of *m* and uniqueness (up to additive constants) of *u* on each connected component of $\{m > 0\}$. (Evans-Gangbo 1999, Feldman-Mc Cann 2002, Ambrosio 2003)

・ロト ・ 四ト ・ ヨト ・ ヨト

• Sandpile model : Introduced by Hadeler, Kuttler (1999). $\Omega \subset \mathbb{R}^2$ is a bounded table, on which one pours sand with a rate f = f(x). In the stationary regime, the heap of sand consists in a standing layer u and a rolling layer m.

$$\begin{cases} |Du| \le 1 \text{ in } \Omega, & |Du| = 1 \text{ in } \{m > 0\} \\ -\text{div}(mDu) = f \text{ in } \Omega \\ u = 0 \text{ on } \partial\Omega \end{cases}$$

 \rightarrow existence and representation of solutions, uniqueness of *m* and uniqueness of *u* in $\{m > 0\}$. (Feldman (1999), Carnarsa-C. (2004), Crasta-Finzi Vita (2008), Cannarsa-C.-Sinestrari (2009)).

Adjoint methods for Hamilton-Jacobi PDE : analysis of the vanishing viscosity limit :

$$\begin{cases} \partial_t u^{\varepsilon} + H(Du^{\varepsilon}) = \epsilon \Delta u^{\varepsilon}, \\ -\partial_t m^{\varepsilon} - \operatorname{div} \left(DH(Du^{\varepsilon}) \right) = \epsilon \Delta m^{\varepsilon}, \\ u^{\varepsilon}(0, x) = u_0(x), \ m^{\varepsilon}(1, .) = m_1. \end{cases}$$

 \rightarrow better understand the convergence of the vanishing viscosity method when *H* is nonconvex. (Evans (2010))

イロト イポト イヨト イヨト

 A congestion model : An optimal transport problem related to congestion yields to the following system of PDEs : for α ∈ (0, 1),

$$\begin{cases} \partial_t u + \frac{\alpha}{4} m^{\alpha - 1} |Du|^2 = 0, \\ \partial_t m + \operatorname{div} \left(\frac{1}{2} m^{\alpha} Du \right) = 0, \\ m(0, .) = m_0, \ m(1, .) = m_1. \end{cases}$$

(Benamou-Brenier formulation of Wasserstein distance : $\alpha = 1$ - Dolbeault-Nazaret-Savaré, 2009)

 \longrightarrow analysis of the system : Existence and uniqueness of a weak solution

(C.-Carlier-Nazaret 2012.)

$$(MFG) \qquad \begin{cases} (i) & -\partial_t u + H(x, Du) = f(x, m(x, t)) \\ (ii) & \partial_t m - \operatorname{div}(mD_p H(x, Du)) = 0 \\ (iii) & m(0) = m_0, \ u(x, T) = u_T(x) \end{cases}$$

under the assumptions that

- $f : \mathbb{R}^d \times [0, +\infty) \to [0, +\infty)$ is a local coupling term.
- all the data are \mathbb{Z}^d -periodic in space : denoted by \sharp .

Difficulties for the MFG with local coupling

- For nonlocal coupling, existence/regularity of the MFG system come from
 - semi-concavity estimates for HJ equations with C^2 RHS,
 - preservation of the absolute continuity of *m*₀ by Kolmogorov equation for gradient flows of semi-concave functions.

• For local equations,

- the RHS is a priori only measurable (or integrable),
- the HJ with discontinuous RHS is poorly understood,
- the Kolmogorov equation with $Du \in L^{\infty}$ is ill-posed as well.

 \rightarrow requires a completely different approach.

A (10) A (10) A (10)

Difficulties for the MFG with local coupling

- For nonlocal coupling, existence/regularity of the MFG system come from
 - semi-concavity estimates for HJ equations with C^2 RHS,
 - preservation of the absolute continuity of *m*₀ by Kolmogorov equation for gradient flows of semi-concave functions.

For local equations,

- the RHS is a priori only measurable (or integrable),
- the HJ with discontinuous RHS is poorly understood,
- the Kolmogorov equation with $Du \in L^{\infty}$ is ill-posed as well.

 \rightarrow requires a completely different approach.

Difficulties for the MFG with local coupling

- For nonlocal coupling, existence/regularity of the MFG system come from
 - semi-concavity estimates for HJ equations with C^2 RHS,
 - preservation of the absolute continuity of *m*₀ by Kolmogorov equation for gradient flows of semi-concave functions.

For local equations,

- the RHS is a priori only measurable (or integrable),
- the HJ with discontinuous RHS is poorly understood,
- the Kolmogorov equation with $Du \in L^{\infty}$ is ill-posed as well.

 \longrightarrow requires a completely different approach.

This is the case

- For an optimal control problem for an Hamilton-Jacobi equation
- For an optimal control problem for a Kolmogorov equation
- The second one is the dual of the first one.

This is the case

• For an optimal control problem for an Hamilton-Jacobi equation

• For an optimal control problem for a Kolmogorov equation

• The second one is the dual of the first one.

/□ ▶ ◀ 글 ▶ ◀ 글

This is the case

- For an optimal control problem for an Hamilton-Jacobi equation
- For an optimal control problem for a Kolmogorov equation
- The second one is the dual of the first one.

/□ ▶ ◀ 글 ▶ ◀ 글

This is the case

- For an optimal control problem for an Hamilton-Jacobi equation
- For an optimal control problem for a Kolmogorov equation
- The second one is the dual of the first one.

.

Preliminary estimates on HJ equations

- 2) Optimal control of the HJ equation
- 3 Optimal control of the Kolmogorov equation
- Existence/uniqueness of solutions for the (MFG) system

5 Conclusion

A (10) A (10)

- Optimal control of the HJ equation
- 3 Optimal control of the Kolmogorov equation
- Existence/uniqueness of solutions for the (MFG) system
- 5 Conclusion

4 A N

- A 🖻 🕨

Preliminary estimates on HJ equations

- 2) Optimal control of the HJ equation
- 3 Optimal control of the Kolmogorov equation
 - 4 Existence/uniqueness of solutions for the (MFG) system

5 Conclusion

A .

Preliminary estimates on HJ equations

- 2) Optimal control of the HJ equation
- 3 Optimal control of the Kolmogorov equation
- Existence/uniqueness of solutions for the (MFG) system

5 Conclusion

- Preliminary estimates on HJ equations
- 2) Optimal control of the HJ equation
- Optimal control of the Kolmogorov equation
- Existence/uniqueness of solutions for the (MFG) system

5 Conclusion

Preliminary estimates on HJ equations

- 2) Optimal control of the HJ equation
- Optimal control of the Kolmogorov equation
- Existence/uniqueness of solutions for the (MFG) system

5 Conclusion

4 A N

We study the optimal control of Hamilton-Jacobi equations :

(HJ)
$$\begin{cases} -\partial_t u + H(x, Du) = \alpha & \text{in } (0, T) \times \mathbb{R}^d \\ u(T, x) = u_T(x) & \text{in } \mathbb{R}^d \end{cases}$$

by the control $\alpha = \alpha(t, x)$.

 \rightarrow Find estimates for the solution *u* in terms of integral norms of α .

• L^{∞} estimates

Hölder estimates

< 47 ▶

- A B M A B M

Discussion

The viscosity solution of

(HJ)
$$\begin{cases} -\partial_t u + H(x, Du) = \alpha & \text{in } (0, T) \times \mathbb{R}^d \\ u(T, x) = u_T(x) & \text{in } \mathbb{R}^d \end{cases}$$

is represented by the optimal control problem

$$u(t,x) = \inf_{\xi(\cdot), \ \xi(t)=x} \left\{ \int_t^T \left(L(\xi(s),\xi'(s)) + \alpha(s,\xi(s)) \right) ds + u_T(\xi(T)) \right\}$$

where $L(x, y) := \sup_{z} \langle z, y \rangle - H(x, -z)$ is as smooth as H.

- The optimal control avoids places where α is large...
- but if α << -1 even at some small places, then u << -1. So smallness of α leads to instabilities.

Assumptions

The Hamiltonian H : ℝ^d × ℝ^d → ℝ is of class C¹ and has a superlinear growth in the gradient variable : there is r > 1 such that

$$\frac{1}{\bar{C}}|\xi|^{\mathbf{r}}-\bar{C}\leq H(x,\xi)\leq \bar{C}(|\xi|^{\mathbf{r}}+1) \qquad \forall (x,\xi)\in \mathbb{R}^d\times \mathbb{R}^d \ .$$

- $x \to H(x, z)$ is \mathbb{Z}^d periodic for any z.
- $\alpha \in L^{p}_{\sharp}([0, T] \times \mathbb{R}^{d})$ where p > 1 + d/r.

16/63

Upper bounds

Let $\alpha \in \mathcal{C}^1_{\sharp}([0, T] \times \mathbb{R}^d)$ and *u* be a viscosity subsolution to

 $-\partial_t u + H(x, Du) \leq \alpha$ in $(0, T) \times \mathbb{R}^d$

Lemma (Cannarsa, C.)

There is a universal constant C such that

$$u(t_1, x) \le u(t_2, x) + C(t_2 - t_1)^{\frac{p-1-d/r}{p+d/r}} \|(\alpha)_+\|_p$$

for any $0 \le t_1 < t_2 \le T$ (where p - 1 - d/r > 0 by assumption).

Remark : the result actually holds if $u \in BV_{\sharp}$, $Du \in L^{r}$ and $\alpha \in L^{p}_{\sharp}$, where the inequality holds in the sense of distribution.

(日)

Proof : We assume that *u* and α are of class C^1 . Fix $\beta \in (1/r, \frac{1}{d(q-1)})$. For $\sigma \in \mathbb{R}^d$ with $|\sigma| \leq 1$, we define the arc

$$egin{aligned} \mathbf{x}_{\sigma}(oldsymbol{s}) = \left\{egin{aligned} \mathbf{x} + \sigma(oldsymbol{s} - t_1)^eta & ext{if } oldsymbol{s} \in [t_1, rac{t_1 + t_2}{2}] \ \mathbf{x} + \sigma(t_2 - oldsymbol{s})^eta & ext{if } oldsymbol{s} \in [rac{t_1 + t_2}{2}, t_2] \end{aligned}
ight. \end{aligned}$$

Let *L* be the convex conjugate of $p \rightarrow H(x, -p)$, i.e., $L(x, \xi) = H^*(x, -\xi)$. Then

$$egin{array}{l} \displaystyle rac{d}{dt} \left[u(s,x_{\sigma}(s)) - \int_{s}^{t_{2}} L(x_{\sigma}(au),x_{\sigma}'(au))d au
ight] \ &= \partial_{t} u(s,x_{\sigma}(s)) + \langle Du(s,x_{\sigma}(s)),x_{\sigma}'(s)
angle + L(x_{\sigma}(s),x_{\sigma}'(s)) \ &\geq \partial_{t} u(s,x_{\sigma}(s)) - H(x_{\sigma}(s),Du(s,x_{\sigma}(s))) \ \geq -lpha(s,x_{\sigma}(s)) \end{array}$$

< 日 > < 同 > < 回 > < 回 > < 回 > <

$$\frac{d}{dt}\left[u(s,x_{\sigma}(s))-\int_{s}^{t_{2}}L(x_{\sigma}(\tau),x_{\sigma}'(\tau))d\tau\right] \geq -\alpha(s,x_{\sigma}(s))$$

We integrate in time on $[t_1, t_2]$:

So

$$u(t_2,x)-u(t_1,x)+\int_s^{t_2}L(x_{\sigma}(\tau),x_{\sigma}'(\tau))d\tau\geq -\int_s^{t_2}\alpha(\tau,x_{\sigma}(\tau))d\tau$$

Then we integrate on $\sigma \in B_1$:

$$u(t_1,x) \leq u(t_2,x) + \frac{1}{|B_1|} \int_{B_1} \int_{t_1}^{t_2} \left[L(x_\sigma(s),x'_\sigma(s)) + \alpha(s,x_\sigma(s)) \right] ds d\sigma \; .$$

By the growth assumption on L (=coercivity assumption on H), we have

$$\frac{1}{|B_1|} \int_{B_1} \int_{t_1}^{t_2} L(x_{\sigma}(s), x'_{\sigma}(s)) \, ds d\sigma \leq \bar{C} \left[\int_{B_1} \int_{t_1}^{t_2} |x'_{\sigma}(s)|^{r'} \, ds d\sigma + (t_2 - t_1) \right] \\ \leq C(t_2 - t_1)^{1 - r'(1 - \beta)}$$

where $1 - r'(1 - \beta) > 0$ since $\beta > 1/r$.

(a)

Using Hölder's inequality, we get, on another hand,

$$\int_{B_1}\int_{t_1}^{t_2}\alpha(s,x_{\sigma}(s))dsd\sigma \leq C(t_2-t_1)^{(1-d\beta(q-1))/q}\|\alpha\|_{\rho}$$

where $1 - d\beta(q-1) > 0$ since $\beta < \frac{1}{d(q-1)}$.

For a suitable choice of $\beta \in (\frac{1}{r}, \frac{1}{d(q-1)})$, we obtain finally that

$$u(t_1, x) \leq u(t_2, x) + C(t_2 - t_1)^{\frac{p-1-d/r}{d+d/r}} \|\alpha\|_p$$
.

ヘロア 人間 アイヨア・

20/63

Regularity

Theorem (C.-Silvestre, 2012)

Let u be a bounded viscosity solution of

$$\begin{cases} -\partial_t u + H(x, Du) = \alpha & \text{in } (0, T) \times \mathbb{R}^d \\ u(T, x) = u_T(x) & \text{in } \mathbb{R}^d \end{cases}$$

where $\alpha \geq 0$, $\alpha \in L^p$ with p > 1 + d/r.

Then, for any $\delta > 0$, u is Hölder continuous in $[0, T - \delta] \times \mathbb{R}^d$:

$$|u(t,x)-u(s,y)|\leq C|(t,x)-(s,y)|^{\gamma}$$

where

$$\gamma = \gamma(\|\boldsymbol{u}\|_{\infty}, \|\boldsymbol{\alpha}\|_{\boldsymbol{p}}, \boldsymbol{d}, \boldsymbol{r}), \ \boldsymbol{C} = \boldsymbol{C}(\|\boldsymbol{u}\|_{\infty}, \|\boldsymbol{\alpha}\|_{\boldsymbol{m}}, \boldsymbol{d}, \boldsymbol{r}, \delta).$$

э

イロト イ理ト イヨト イヨト

Related results

- Capuzzo Dolcetta-Leoni-Porretta (2010), Barles (2010) : stationary equations, bounded RHS,
- C. (2009), Cannarsa-C. (2010), C. Rainer (2011) : evolution equations, bounded RHS,
- Dall'Aglio-Porretta (preprint) : stationary setting, unbounded RHS,
- C.-Silvestre (2012) : evolution equations, unbounded RHS.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Idea of proofs :

- For the stationary setting, by comparison with suitable test functions. (Capuzzo Dolcetta-Leoni-Porretta, Barles, Dall'Aglio-Porretta)
- For evolution equations, two techniques
 - By representation formula and reverse Hölder inequalities, (C., Cannarsa-C., C. Rainer)
 - Comparison + improvement of oscillations techniques (C.-Silvestre)

< 回 > < 三 > < 三 >

Summary

Let (u, α) solve

$$\begin{cases} -\partial_t u + H(x, Du) = \alpha & \text{in } (0, T) \times \mathbb{R}^d \\ u(T, \cdot) = u_T & \text{in } \mathbb{R}^d \end{cases}$$

with $\alpha = \alpha(t, x) \ge 0$. Then

(Upper bound)

$$u(t_1,\cdot) \leq u(t_2,\cdot) + C(t_2-t_1)^{\frac{p-1-d/r}{d+d/r}} \|\alpha\|_p$$
 a.e.

for any $0 \le t_1 < t_2 \le T$ (where r - d(q - 1) > 0 by assumption (H3)).

- (Lower bound) $u(t,x) \ge u_T(x) C(T-t)$.
- (Regularity) u is locally Hölder continuous in [0, T) × ℝ^d with a modulus depending only on ||α||_p and ||u_T||_∞.

- 2 Optimal control of the HJ equation
- 3 Optimal control of the Kolmogorov equation
- Existence/uniqueness of solutions for the (MFG) system

5 Conclusion

A (10) F (10)

Back to the MFG system

$$(MFG) \qquad \begin{cases} (i) & -\partial_t u + H(x, Du) = f(x, m(x, t)) \\ (ii) & \partial_t m - \operatorname{div}(mD_p H(x, Du)) = 0 \\ (iii) & m(0) = m_0, \ u(x, T) = u_T(x) \end{cases}$$

under the assumptions that

- $f : \mathbb{R}^d \times [0, +\infty) \to [0, +\infty)$ is a local coupling term.
- all the data are \mathbb{Z}^d -periodic in space : denoted by \sharp .

We study the optimal control of the HJ equation :

$$(\mathbf{HJ}-\mathbf{Pb}) \qquad \inf\left\{\int_0^T \int_Q F^*(x,\alpha(t,x)) \, dx dt - \int_Q u(0,x) dm_0(x)\right\}$$

where *u* is the solution to the HJ equation

$$\begin{cases} -\partial_t u + H(x, Du) = \alpha & \text{in } (0, T) \times \mathbb{R}^d \\ u(T, \cdot) = u_T & \text{in } \mathbb{R}^d \end{cases}$$

and $F^*(x, a) = \sup_{m \in \mathbb{R}} (am - F(x, m))$ where

$$F(x,m) = \begin{cases} \int_0^m f(x,m')dm' & \text{if } m \ge 0\\ +\infty & \text{otherwise} \end{cases}$$

Note that $F^*(x, a) = 0$ for $a \le 0$.
We study the optimal control of the HJ equation :

$$(\mathbf{HJ}-\mathbf{Pb}) \qquad \inf\left\{\int_0^T \int_Q F^*(x,\alpha(t,x)) \, dx dt - \int_Q u(0,x) dm_0(x)\right\}$$

where *u* is the solution to the HJ equation

$$\begin{cases} -\partial_t u + H(x, Du) = \alpha & \text{in } (0, T) \times \mathbb{R}^d \\ u(T, \cdot) = u_T & \text{in } \mathbb{R}^d \end{cases}$$

and $F^*(x, a) = \sup_{m \in \mathbb{R}} (am - F(x, m))$ where

$$F(x,m) = \begin{cases} \int_0^m f(x,m')dm' & \text{if } m \ge 0\\ +\infty & \text{otherwise} \end{cases}$$

Note that $F^*(x, a) = 0$ for $a \le 0$.

Heuristics :

- α must be small in order to minimize $\int_0^T \int_Q F^*(x, \alpha(t, x)) dx dt$.
- However, if α is small, then *u* is also small (by comparison).
- This contradicts the smallness of the term $-\int_Q u(0, x) dm_0(x)$ (because $m_0 \ge 0$).

A B A B A B A

In order to prove existence of optimal solutions

- We look for estimates on minimizing sequences,
- and derive from them a relaxed problem.

4 A N

Assumptions

- (H1) $f : \mathbb{R}^d \times [0, +\infty) \to \mathbb{R}$ is smooth and increasing with respect to the second variable *m* with f(x, 0) = 0,
- (H2) There exists q > 1 and a constant \overline{C} such that

$$-\overline{C}+rac{1}{\overline{C}}|m|^{q-1}\leq f(x,m)\leq \overline{C}(1+|m|^{q-1})\qquad orall m$$
.

(H3) The Hamiltonian $H : \mathbb{R}^d \times \mathbb{R}^d \to \mathbb{R}$ is of class \mathcal{C}^1 and has a superlinear growth in the gradient variable : there is r > d(q-1) such that

$$rac{1}{ar{C}}|\xi|^r-ar{C}\leq H(x,\xi)\leq ar{C}(|\xi|^r+1) \qquad orall (x,\xi)\in \mathbb{R}^d imes \mathbb{R}^d \ .$$

< 同 ト < 三 ト < 三 ト

(H4) We also assume that there is $\theta \in [0, \frac{r}{d+1})$ such that

$$|H(x,\xi) - H(y,\xi)| \leq \overline{C}|x-y| (|\xi| \vee 1)^{ heta} \qquad \forall x,y,\xi \in \mathbb{R}^d$$

(H5) $u_T : \mathbb{R}^d \to \mathbb{R}$ is a smooth, periodic map, while $m_0 : \mathbb{R}^d \to \mathbb{R}$ is a smooth, periodic map, with $m_0 \ge 0$ and $\int_{\Omega} m_0 dx = 1$.

Remark : Recall that $F^*(x, a) = \sup_{m \in \mathbb{R}} F(x, m)$ where

$$F(x,m) = \begin{cases} \int_0^m f(x,m')dm' & \text{if } m \ge 0\\ +\infty & \text{otherwise} \end{cases}$$

With our assumptions, F^* is C^1 , nondecreasing, with $F^*(x, a) = 0$ for $a \le 0$.

(H4) We also assume that there is $\theta \in [0, \frac{r}{d+1})$ such that

$$|H(x,\xi) - H(y,\xi)| \leq \overline{C}|x-y| (|\xi| \vee 1)^{ heta} \qquad \forall x,y,\xi \in \mathbb{R}^d$$

(H5) $u_{\mathcal{T}} : \mathbb{R}^d \to \mathbb{R}$ is a smooth, periodic map, while $m_0 : \mathbb{R}^d \to \mathbb{R}$ is a smooth, periodic map, with $m_0 \ge 0$ and $\int_{\Omega} m_0 dx = 1$.

Remark : Recall that $F^*(x, a) = \sup_{m \in \mathbb{R}} F(x, m)$ where

$$F(x,m) = \begin{cases} \int_0^m f(x,m')dm' & \text{if } m \ge 0\\ +\infty & \text{otherwise} \end{cases}$$

With our assumptions, F^* is C^1 , nondecreasing, with $F^*(x, a) = 0$ for $a \le 0$.

A B A B A B A
 A B A
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 A
 A

Estimates on the minimizing sequence

Let (u_n, α_n) be a minimizing sequence for the optimal control of HJ equation :

$$\left\{\int_0^T \int_Q F^*(x,\alpha_n) \, dx dt - \int_Q u_n(0,x) dm_0(x)\right\} \rightarrow \text{ inf}$$

where (u_n, α_n) is the solution to the HJ equation

$$\begin{cases} -\partial_t u_n + H(x, Du_n) = \alpha_n & \text{in } (0, T) \times \mathbb{R}^d \\ u_n(T, \cdot) = u_T & \text{in } \mathbb{R}^d \end{cases}$$

- A B M A B M

Let $\tilde{\alpha}_n = \alpha_n \vee 0$ and \tilde{u}_n solve

$$\begin{cases} -\partial_t \tilde{u}_n + H(x, D\tilde{u}_n) = \tilde{\alpha}_n & \text{ in } (0, T) \times \mathbb{R}^d \\ \tilde{u}_n(T, \cdot) = u_T & \text{ in } \mathbb{R}^d \end{cases}$$

Then :

- by comparison, $u_n \leq \tilde{u}_n$,
- $F^*(x, \alpha_n(t, x)) \ge F^*(x, \tilde{\alpha}_n(t, x))$ because $F^*(x, 0) \le F^*(x, a)$ for all a.

Therefore

$$\int_0^T \int_Q F^*(x,\tilde{\alpha}_n) - \int_Q \tilde{u}_n(0)m_0 \leq \int_0^T \int_Q F^*(x,\alpha_n) - \int_Q u_n(0)m_0$$

and $(\tilde{u}_n, \tilde{\alpha}_n)$ is still a minimizing sequence.

э

So we now assume that (u_n, α_n) be a minimizing sequence for the optimal control of HJ equation with $\alpha_n \ge 0$.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We use the results of the first part :

• (Upper bound)

$$u_n(t_1, \cdot) \leq u_n(t_2, \cdot) + C(t_2 - t_1)^{\frac{p-1-d/r}{d+d/r}} \|\alpha_n\|_p$$

for any $0 \le t_1 < t_2 \le T$ (where r - d(q - 1) > 0 by assumption (H3)).

- (Lower bound) $u_n(t,x) \ge u_T(x) C(T-t)$.
- (Regularity) u_n is locally Hölder continuous in [0, T) × ℝ^d with a modulus depending only on ||α_n||_p and ||u_T||_∞.

In particular

$$u_n(\mathbf{0},\cdot) \leq u_T + C \|lpha_n\|_p$$

By assumption on *F*, we have

$$rac{1}{ar{C}}|a|^
ho-ar{C}\leq F^*(x,a)\leq ar{C}(1+|a|^
ho) \qquad orall a\geq 0 \;,$$

(where 1/p + 1/q = 1). Therefore

$$\boldsymbol{C} \geq \int_0^T \int_{\boldsymbol{Q}} \boldsymbol{F}^*(\boldsymbol{x}, \alpha_n) - \int_{\boldsymbol{Q}} \boldsymbol{u}_n(\boldsymbol{0}) \boldsymbol{m}_0 \geq \int_0^T \int_{\boldsymbol{Q}} |\alpha_n|^p - \boldsymbol{C} ||\alpha_n||_p - \boldsymbol{C}$$

This shows that (α_n) is bounded in L^p .

크

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Estimates on the minimizing sequence

Proposition

If (u_n, α_n) is a minimizing sequence, then

- (α_n) is bounded in L^p .
- (uniform bounds on the *u_n*)

$$u_T(x) - \mathcal{C}(T-t) \leq u_n(t,x) \leq u_T(x) + \mathcal{C}(T-t)^{\frac{p-1-d/r}{d+d/r}}$$

- (Regularity) the u_n are uniformly locally Hölder continuous in $[0, T) \times \mathbb{R}^d$.
- (Integral bounds) Du_n is bounded in L_{\sharp}^r and $(\partial_t u_n)$ is bounded in L_{\sharp}^1 .

Remark : In particular, (Du_n) is bounded in BV_{\sharp} .

.

Explanation of the integral bound

From the equation satisfied by the (u_n) we have

$$\int_0^T \int_Q H(x, Du_n) = \int_0^T \int_Q (\alpha_n + \partial_t u_n)$$

$$\leq \|\alpha_n\|_p + \int_Q (u_n(T) - u_n(0)) \leq C$$

As *H* is coercive, (Du_n) is bounded in L_{\pm}^r .

Now

$$\partial_t u_n = H(x, Du_n) - \alpha_n$$

where $(H(x, Du_n))$ is bounded in L^1_{\sharp} while (α_n) is bounded in L^p_{\sharp} . So $(\partial_t u_n)$ is bounded in L^1_{\sharp} .

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The relaxed problem

Let \mathcal{K} be the set $(u, \alpha) \in BV_{\sharp}((0, T) \times \mathbb{R}^d) \times L^p_{\sharp}((0, T) \times \mathbb{R}^d)$ such that

- $Du \in L^r_{\sharp}((0, T) \times \mathbb{R}^d)$
- $\alpha \geq$ 0 a.e.
- $u(T, x) = u_T(x)$ and

$$-\partial_t u + H(x, Du) \leq \alpha$$
 in $(0, T) \times \mathbb{R}^d$.

holds in the sense of distribution.

Note that ${\mathcal K}$ is a convex set.

The relaxed problem is

$$(\mathbf{HJ} - \mathbf{Rpb}) \qquad \inf_{(u,\alpha) \in \mathcal{K}} \left\{ \int_0^T \int_Q F^*(x, \alpha(t, x)) \, dx dt - \int_Q u(0, x) dm_0(x) \right\}$$

The relaxed problem

Let \mathcal{K} be the set $(u, \alpha) \in BV_{\sharp}((0, T) \times \mathbb{R}^d) \times L^p_{\sharp}((0, T) \times \mathbb{R}^d)$ such that

- $Du \in L^r_{\sharp}((0, T) \times \mathbb{R}^d)$
- $\alpha \geq$ 0 a.e.
- $u(T, x) = u_T(x)$ and

$$-\partial_t u + H(x, Du) \leq \alpha$$
 in $(0, T) \times \mathbb{R}^d$.

holds in the sense of distribution.

Note that ${\mathcal K}$ is a convex set.

The relaxed problem is

$$(\mathbf{HJ}-\mathbf{Rpb}) \qquad \inf_{(u,\alpha)\in\mathcal{K}} \left\{ \int_0^T \int_Q F^*(x,\alpha(t,x)) \, dx dt - \int_Q u(0,x) dm_0(x) \right\}$$

Theorem

 The relaxed problem has (HJ-Rpb) at least one minimum (u, α), where u is continuous and satisfies in the viscosity sense

 $-\partial_t u + H(x, Du) \ge 0$ in $(0, T) \times \mathbb{R}^d$

• The value of the relaxed problem (HJ-Rpb) is equal to the value of the optimal control of the HJ equation (HJ-Pb).

- ∢ ∃ ▶

Outline

- Preliminary estimates on HJ equations
- 2 Optimal control of the HJ equation
- 3 Optimal control of the Kolmogorov equation
- Existence/uniqueness of solutions for the (MFG) system

5 Conclusion

A (1) > A (2) > A

The optimal control problem of HJ equation (HJ-Pb) can be rewritten as

$$\inf\left\{\int_0^T\int_Q F^*(x,-\partial_t u+H(x,Du))\,dxdt-\int_Q u(0,x)dm_0(x)\right\}$$

with constraint $u(T, \cdot) = u_T$.

This is a convex problem.

 \longrightarrow Suggests a duality approach.

The optimal control problem of HJ equation (HJ-Pb) can be rewritten as

$$\inf\left\{\int_0^T\int_Q F^*(x,-\partial_t u+H(x,Du))\,dxdt-\int_Q u(0,x)dm_0(x)\right\}$$

with constraint $u(T, \cdot) = u_T$.

This is a convex problem.

 \longrightarrow Suggests a duality approach.

The optimal control problem of HJ equation (HJ-Pb) can be rewritten as

$$\inf\left\{\int_0^T\int_{\mathcal{Q}}F^*(x,-\partial_t u+H(x,Du))\,dxdt-\int_{\mathcal{Q}}u(0,x)dm_0(x)\right\}$$

with constraint $u(T, \cdot) = u_T$.

This is a convex problem.

 \longrightarrow Suggests a duality approach.

The Fenchel-Rockafellar duality Theorem

Let

- E and F be two normed spaces,
- $\Lambda \in \mathcal{L}_{c}(E, F)$ and
- $\mathcal{F}: E \to \mathbb{R} \cup \{+\infty\}$ and $\mathcal{G}: F \to \mathbb{R} \cup \{+\infty\}$ be two lsc proper convex maps.

Theorem

Under the qualification condition : there is x_0 such that $\mathcal{F}(x_0) < +\infty$ and \mathcal{G} continuous at $\Lambda(x_0)$, we have

$$\inf_{x \in E} \left\{ \mathcal{F}(x) + \mathcal{G}(\Lambda(x)) \right\} = \max_{y^* \in F'} \left\{ -\mathcal{F}^*(\Lambda^*(y^*)) - \mathcal{G}^*(-y^*) \right\}$$

as soon as the LHS is finite.

・ロト ・ 同ト ・ ヨト ・ ヨ

$$\mathcal{F}(x) + \mathcal{F}^*(\Lambda^*(y^*)) \geq \langle \Lambda^*(y^*), x \rangle$$

and

$$\mathcal{G}(\Lambda(x)) + \mathcal{G}^*(-y^*) \geq \langle -y^*, \Lambda(x) \rangle = - \langle \Lambda^*(y^*), x \rangle$$

Adding both inequalities gives

$$\mathcal{F}(x) + \mathcal{F}^*(\Lambda^*(y^*)) + \mathcal{G}(\Lambda(x)) + \mathcal{G}^*(-y^*) \ge 0$$
.

Rearranging

$$\mathcal{F}(x) + \mathcal{G}(\Lambda(x)) \ge - \{\mathcal{F}^*(\Lambda^*(y^*)) + \mathcal{G}^*(-y^*)\}$$

Therefore

$$\inf_{x \in E} \left\{ \mathcal{F}(x) + \mathcal{G}(\Lambda(x)) \right\} \ge \sup_{y^* \in F'} \left\{ -\mathcal{F}^*(\Lambda^*(y^*)) - \mathcal{G}^*(-y^*) \right\}$$

$$\mathcal{F}(x) + \mathcal{F}^*(\Lambda^*(y^*)) \geq \langle \Lambda^*(y^*), x \rangle$$

and

$$\mathcal{G}(\Lambda(x))+\mathcal{G}^*(-y^*)\geq \langle -y^*,\Lambda(x)
angle=-\langle \Lambda^*(y^*),x
angle$$

Adding both inequalities gives

$$\mathcal{F}(x) + \mathcal{F}^*(\Lambda^*(y^*)) + \mathcal{G}(\Lambda(x)) + \mathcal{G}^*(-y^*) \geq 0$$
.

Rearranging

$$\mathcal{F}(x) + \mathcal{G}(\Lambda(x)) \ge - \{\mathcal{F}^*(\Lambda^*(y^*)) + \mathcal{G}^*(-y^*)\}$$

Therefore

$$\inf_{x\in E} \left\{ \mathcal{F}(x) + \mathcal{G}(\Lambda(x)) \right\} \ge \sup_{y^*\in F'} \left\{ -\mathcal{F}^*(\Lambda^*(y^*)) - \mathcal{G}^*(-y^*) \right\}$$

イロト イヨト イヨト イヨト

$$\mathcal{F}(x) + \mathcal{F}^*(\Lambda^*(y^*)) \geq \langle \Lambda^*(y^*), x \rangle$$

and

$$\mathcal{G}(\Lambda(x)) + \mathcal{G}^*(-y^*) \geq \langle -y^*, \Lambda(x) \rangle = - \langle \Lambda^*(y^*), x \rangle$$

Adding both inequalities gives

$$\mathcal{F}(x) + \mathcal{F}^*(\Lambda^*(y^*)) + \mathcal{G}(\Lambda(x)) + \mathcal{G}^*(-y^*) \ge 0$$
.

Rearranging

$$\mathcal{F}(x) + \mathcal{G}(\Lambda(x)) \geq - \{\mathcal{F}^*(\Lambda^*(y^*)) + \mathcal{G}^*(-y^*)\}$$

Therefore

$$\inf_{x\in E} \left\{ \mathcal{F}(x) + \mathcal{G}(\Lambda(x)) \right\} \ge \sup_{y^*\in F'} \left\{ -\mathcal{F}^*(\Lambda^*(y^*)) - \mathcal{G}^*(-y^*) \right\}$$

イロト イヨト イヨト イヨト

$$\mathcal{F}(x) + \mathcal{F}^*(\Lambda^*(y^*)) \geq \langle \Lambda^*(y^*), x \rangle$$

and

$$\mathcal{G}(\Lambda(x)) + \mathcal{G}^*(-y^*) \geq \langle -y^*, \Lambda(x) \rangle = - \langle \Lambda^*(y^*), x \rangle$$

Adding both inequalities gives

$$\mathcal{F}(x) + \mathcal{F}^*(\Lambda^*(y^*)) + \mathcal{G}(\Lambda(x)) + \mathcal{G}^*(-y^*) \geq 0$$
.

Rearranging

$$\mathcal{F}(\mathbf{x}) + \mathcal{G}(\Lambda(\mathbf{x})) \geq - \{\mathcal{F}^*(\Lambda^*(\mathbf{y}^*)) + \mathcal{G}^*(-\mathbf{y}^*)\}$$

Therefore

$$\inf_{x\in E} \left\{ \mathcal{F}(x) + \mathcal{G}(\Lambda(x)) \right\} \geq \sup_{y^*\in F'} \left\{ -\mathcal{F}^*(\Lambda^*(y^*)) - \mathcal{G}^*(-y^*) \right\}$$

44 / 63

Remark : If \bar{x} and \bar{y}^* are respectively optimal in

$$\inf_{x\in E} \left\{ \mathcal{F}(x) + \mathcal{G}(\Lambda(x)) \right\} \text{ and } \sup_{y^*\in F'} \left\{ -\mathcal{F}^*(\Lambda^*(y^*)) - \mathcal{G}^*(-y^*) \right\}$$

then

$$\mathcal{F}(ar{x})+\mathcal{F}^*(\Lambda^*(ar{y}^*))=\langle\Lambda^*(ar{y}^*),ar{x}
angle$$

and

$$\mathcal{G}(\Lambda(ar{x}))+\mathcal{G}^*(-ar{y}^*)=\langle -ar{y}^*,\Lambda(ar{x})
angle$$

i.e.,

 $\Lambda^*(\bar{y}^*) \in \partial \mathcal{F}(\bar{x})$

and

 $\wedge(ar{x})\in\partial\mathcal{G}^*(-ar{y}^*)$

æ

<ロト < 回 > < 回 > < 回 > .

Remark : If \bar{x} and \bar{y}^* are respectively optimal in

$$\inf_{x \in E} \left\{ \mathcal{F}(x) + \mathcal{G}(\Lambda(x)) \right\} \text{ and } \sup_{y^* \in F'} \left\{ -\mathcal{F}^*(\Lambda^*(y^*)) - \mathcal{G}^*(-y^*) \right\}$$

then

$$\mathcal{F}(ar{x})+\mathcal{F}^*(\Lambda^*(ar{y}^*))=\langle \Lambda^*(ar{y}^*),ar{x}
angle$$

and

$$\mathcal{G}(\Lambda(ar{x}))+\mathcal{G}^*(-ar{y}^*)=\langle -ar{y}^*,\Lambda(ar{x})
angle$$

i.e.,

$$\Lambda^*(\bar{y}^*) \in \partial \mathcal{F}(\bar{x})$$

and

$$\Lambda(\bar{x})\in\partial\mathcal{G}^*(-\bar{y}^*)$$

æ

イロト イヨト イヨト イヨト

The optimal control problem of HJ equation (HJ-Pb)

$$\inf\left\{\int_0^T\int_{Q}F^*(x,-\partial_t u+H(x,Du))\,dxdt-\int_{Q}u(0,x)dm_0(x)\right\}$$

(with constraint $u(T, \cdot) = u_T$) can be rewritten as

 $\inf_{u\in E} \left\{ \mathcal{F}(u) + \mathcal{G}(\Lambda(u)) \right\}$

where

•
$$E = C^1_{\sharp}([0, T] \times \mathbb{R}^d)$$
,
• $F = C^0_{\sharp}([0, T] \times \mathbb{R}^d, \mathbb{R}) \times C^0_{\sharp}([0, T] \times \mathbb{R}^d, \mathbb{R}^d)$,
• $\mathcal{F}(u) = -\int_Q m_0(x)u(0, x)dx$ if $u(T, \cdot) = u_T$ (+ ∞ otherwise).
• $\mathcal{G}(a, b) = \int_0^T \int_Q F^*(x, -a(t, x) + H(x, b(t, x))) dxdt$.
• $\Lambda(u) = (\partial_t u, Du)$.

Then \mathcal{F} is convex and lower semi-continuous on E while \mathcal{G} is convex and continuous on F. Moreover Λ is bounded and linear.

The qualification condition is satisfied by $u(t, x) = u_T(x)$.

By Fenchel-Rockafellar duality theorem we have

$$\inf_{u \in \mathcal{E}} \left\{ \mathcal{F}(u) + \mathcal{G}(\Lambda(u)) \right\} = \max_{(m,w) \in F'} \left\{ -\mathcal{F}^*(\Lambda^*(m,w)) - \mathcal{G}^*(-(m,w)) \right\}$$

where F' is the set of Radon measures $(m, w) \in M_{\sharp}([0, T] \times \mathbb{R}^d, \mathbb{R} \times \mathbb{R}^d)$ and \mathcal{F}^* and \mathcal{G}^* are the convex conjugates of \mathcal{F} and \mathcal{G} .

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Then \mathcal{F} is convex and lower semi-continuous on E while \mathcal{G} is convex and continuous on F. Moreover Λ is bounded and linear.

The qualification condition is satisfied by $u(t, x) = u_T(x)$.

By Fenchel-Rockafellar duality theorem we have

$$\inf_{u \in \mathcal{E}} \left\{ \mathcal{F}(u) + \mathcal{G}(\Lambda(u)) \right\} = \max_{(m,w) \in F'} \left\{ -\mathcal{F}^*(\Lambda^*(m,w)) - \mathcal{G}^*(-(m,w)) \right\}$$

where F' is the set of Radon measures $(m, w) \in M_{\sharp}([0, T] \times \mathbb{R}^d, \mathbb{R} \times \mathbb{R}^d)$ and \mathcal{F}^* and \mathcal{G}^* are the convex conjugates of \mathcal{F} and \mathcal{G} .

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Then \mathcal{F} is convex and lower semi-continuous on E while \mathcal{G} is convex and continuous on F. Moreover Λ is bounded and linear.

The qualification condition is satisfied by $u(t, x) = u_T(x)$.

By Fenchel-Rockafellar duality theorem we have

$$\inf_{u \in \mathcal{E}} \left\{ \mathcal{F}(u) + \mathcal{G}(\Lambda(u)) \right\} = \max_{(m,w) \in F'} \left\{ -\mathcal{F}^*(\Lambda^*(m,w)) - \mathcal{G}^*(-(m,w)) \right\}$$

where F' is the set of Radon measures $(m, w) \in M_{\sharp}([0, T] \times \mathbb{R}^d, \mathbb{R} \times \mathbb{R}^d)$ and \mathcal{F}^* and \mathcal{G}^* are the convex conjugates of \mathcal{F} and \mathcal{G} .

l

Recall that

$$\mathcal{F}(u) = -\int_{Q} m_0(x)u(0,x)dx$$
 if $u(T,\cdot) = u_T$ (+ ∞ otherwise)

and

$$\mathcal{G}(a,b) = \int_0^T \int_Q F^*(x, -a(t,x) + H(x,b(t,x))) dxdt$$

Lemma

$$\mathcal{F}^*(\Lambda^*(m,w)) = \begin{cases} \int_Q u_T(x) dm(T,x) & \text{if } \partial_t m + \operatorname{div}(w) = 0, \ m(0) = m_0 \\ +\infty & \text{otherwise} \end{cases}$$

and

$$\mathcal{G}^*(m,w) = \begin{cases} \int_0^T \int_Q -F(x,m) - mH^*(x,-\frac{w}{m}) dt dx & \text{if } (m,w) \in L^1_{\sharp} \\ +\infty & \text{otherwise} \end{cases}$$

х Ш

Consequence of the Lemma :

$$\max_{\substack{(m,w)\in F'}} \{-\mathcal{F}^*(\Lambda^*(m,w)) - \mathcal{G}(m,w)\} \\ = \max\left\{\int_0^T \int_Q -F(x,m) - mH^*(x,-\frac{w}{m}) dt dx - \int_Q u_T(x)m(T,x) dx\right\}$$

where the maximum is taken over the L^1_{\sharp} maps (m, w) such that $m \ge 0$ a.e. and

$$\partial_t m + \operatorname{div}(w) = 0, \ m(0) = m_0$$

A B b 4 B b

Idea of proof :

$$\mathcal{F}^{*}(\Lambda^{*}(m, w)) = \sup_{u(T)=u_{T}} \langle \Lambda^{*}(m, w), u \rangle - \mathcal{F}(u)$$

$$= \sup_{u(T)=u_{T}} \langle (m, w), \Lambda(u) \rangle + \int_{Q} m_{0}(x)u(0, x)dx$$

$$= \sup_{u(T)=u_{T}} \int_{0}^{T} \int_{Q} (m\partial_{t}u + \langle w, Du \rangle) + \int_{Q} m_{0}(x)u(0, x)dx$$

$$``= \sup_{u(T)=u_{T}} \int_{0}^{T} \int_{Q} -u(-\partial_{t}m + \operatorname{div}(w))$$

$$+ \int_{Q} m(T)u_{T} + \int_{Q} (m_{0} - m(0))u(0)dx''$$

$$= \begin{cases} \int_{Q} u_{T}(x)dm(T, x) & \text{if } \partial_{t}m + \operatorname{div}(w) = 0, \ m(0) = m_{0} \\ +\infty & \text{otherwise} \end{cases}$$

Э.

イロト イヨト イヨト イヨト

The dual of the optimal control of HJ eqs

Theorem

The dual of the optimal control of HJ (HJ-Pb) equation is given by

$$(\mathbf{K} - \mathbf{Pb}) \qquad \inf\left\{\int_0^T \int_Q mH^*(x, -\frac{w}{m}) + F(x, m) \, dx dt + \int_Q u_T(x)m(T, x) dx\right\}$$

where the infimum is taken over the pairs $(m, w) \in L^1_{\sharp}((0, T) \times \mathbb{R}^d) \times L^1_{\sharp}((0, T) \times \mathbb{R}^d, \mathbb{R}^d)$ such that

$$\partial_t m + \operatorname{div}(w) = 0, \ m(0) = m_0$$

in the sense of distributions. Moreover this dual problem has a unique minimum.

4 A N

$(\ensuremath{\textbf{K-Pb}})$ as an optimal control problem for Kolmogorov equation :

Set v = w/m. Then (**K-Pb**) becomes

$$\inf\left\{\int_0^T\int_Q mH^*(x,-v)+F(x,m)\,dxdt+\int_Q u_T(x)m(T,x)dx\right\}$$

where the infimum is taken over the pairs (m, v) such that

$$\partial_t m + \operatorname{div}(mv) = 0, \ m(0) = m_0$$

in the sense of distributions.
$(\ensuremath{\textbf{K-Pb}})$ as an optimal control problem for Kolmogorov equation :

Set v = w/m. Then (**K-Pb**) becomes

$$\inf\left\{\int_0^T\int_Q mH^*(x,-v)+F(x,m)\,dxdt+\int_Q u_T(x)m(T,x)dx\right\}$$

where the infimum is taken over the pairs (m, v) such that

$$\partial_t m + \operatorname{div}(mv) = 0, \ m(0) = m_0$$

in the sense of distributions.

イロト イポト イヨト イヨト

52/63

Outline

- Preliminary estimates on HJ equations
- 2 Optimal control of the HJ equation
- 3 Optimal control of the Kolmogorov equation
- Existence/uniqueness of solutions for the (MFG) system

5 Conclusion

4 A N

Back to the (MFG) system

We now study the weak solutions of the (MFG) system

$$(MFG) \qquad \begin{cases} (i) & -\partial_t u + H(x, Du) = f(x, m(x, t)) \\ (ii) & \partial_t m - \operatorname{div}(mD_p H(x, Du)) = 0 \\ (iii) & m(0) = m_0, \ u(x, T) = u_T(x) \end{cases}$$

and explain the relation with the two optimal control problems

- for the HJ equation (problem (HJ-Pb))
- for the Kolmogorov equation (problem (K-Pb))

- E 🕨

A pair $(m, u) \in L^1((0, T) \times \mathbb{R}^d) \times BV((0, T) \times \mathbb{R}^d)$ is a weak solution of (*MFG*) if

- (i) *u* is continuous in $[0, T] \times \mathbb{R}^d$ with $Du \in L^r((0, T) \times \mathbb{R}^d, m)$ and $mD_pH(x, Du) \in L^1_{\sharp}$
- (ii) Inequality $-\partial_t u + H(x, Du) \le f(x, m)$ holds in the sense of distribution, with $u(T, x) = u_T(x)$ in the sense of trace,
- (iii) Equality $\partial_t m \operatorname{div}(mD_p H(x, Du)) = 0$ holds in the sense of distribution in $(0, T) \times \mathbb{R}^d$ and $m(0) = m_0$,

(iv) Equality $\int_0^T \int_Q m(\partial_t u^{ac} - \langle Du, D_\rho H(x, Du) \rangle) = \int_Q m(T)u_T - m_0 u(0)$ holds.

(where $\partial_t u^{ac}$ is the a.c. part of the measure $\partial_t u$).

A pair $(m, u) \in L^1((0, T) \times \mathbb{R}^d) \times BV((0, T) \times \mathbb{R}^d)$ is a weak solution of *(MFG)* if

- (i) *u* is continuous in $[0, T] \times \mathbb{R}^d$ with $Du \in L^r((0, T) \times \mathbb{R}^d, m)$ and $mD_pH(x, Du) \in L^1_{\sharp}$
- (ii) Inequality $-\partial_t u + H(x, Du) \le f(x, m)$ holds in the sense of distribution, with $u(T, x) = u_T(x)$ in the sense of trace,
- (iii) Equality $\partial_t m \operatorname{div}(mD_p H(x, Du)) = 0$ holds in the sense of distribution in $(0, T) \times \mathbb{R}^d$ and $m(0) = m_0$,

(iv) Equality $\int_0^T \int_Q m(\partial_t u^{ac} - \langle Du, D_\rho H(x, Du) \rangle) = \int_Q m(T)u_T - m_0 u(0)$ holds.

(where $\partial_t u^{ac}$ is the a.c. part of the measure $\partial_t u$).

A pair $(m, u) \in L^1((0, T) \times \mathbb{R}^d) \times BV((0, T) \times \mathbb{R}^d)$ is a weak solution of *(MFG)* if

- (i) *u* is continuous in $[0, T] \times \mathbb{R}^d$ with $Du \in L^r((0, T) \times \mathbb{R}^d, m)$ and $mD_pH(x, Du) \in L^1_{\sharp}$
- (ii) Inequality $-\partial_t u + H(x, Du) \le f(x, m)$ holds in the sense of distribution, with $u(T, x) = u_T(x)$ in the sense of trace,

(iii) Equality $\partial_t m - \operatorname{div}(mD_p H(x, Du)) = 0$ holds in the sense of distribution in $(0, T) \times \mathbb{R}^d$ and $m(0) = m_0$,

(iv) Equality $\int_0^T \int_Q m(\partial_t u^{ac} - \langle Du, D_p H(x, Du) \rangle) = \int_Q m(T)u_T - m_0 u(0)$ holds.

(where $\partial_t u^{ac}$ is the a.c. part of the measure $\partial_t u$).

A pair $(m, u) \in L^1((0, T) \times \mathbb{R}^d) \times BV((0, T) \times \mathbb{R}^d)$ is a weak solution of *(MFG)* if

- (i) *u* is continuous in $[0, T] \times \mathbb{R}^d$ with $Du \in L^r((0, T) \times \mathbb{R}^d, m)$ and $mD_pH(x, Du) \in L^1_{\sharp}$
- (ii) Inequality $-\partial_t u + H(x, Du) \le f(x, m)$ holds in the sense of distribution, with $u(T, x) = u_T(x)$ in the sense of trace,
- (iii) Equality $\partial_t m \operatorname{div}(mD_p H(x, Du)) = 0$ holds in the sense of distribution in $(0, T) \times \mathbb{R}^d$ and $m(0) = m_0$,

(iv) Equality $\int_0^T \int_Q m(\partial_t u^{ac} - \langle Du, D_p H(x, Du) \rangle) = \int_Q m(T)u_T - m_0 u(0)$ holds.

(where $\partial_t u^{ac}$ is the a.c. part of the measure $\partial_t u$).

A pair $(m, u) \in L^1((0, T) \times \mathbb{R}^d) \times BV((0, T) \times \mathbb{R}^d)$ is a weak solution of *(MFG)* if

- (i) u is continuous in $[0, T] \times \mathbb{R}^d$ with $Du \in L^r((0, T) \times \mathbb{R}^d, m)$ and $mD_pH(x, Du) \in L^1_{\sharp}$
- (ii) Inequality $-\partial_t u + H(x, Du) \le f(x, m)$ holds in the sense of distribution, with $u(T, x) = u_T(x)$ in the sense of trace,
- (iii) Equality $\partial_t m \operatorname{div}(mD_p H(x, Du)) = 0$ holds in the sense of distribution in $(0, T) \times \mathbb{R}^d$ and $m(0) = m_0$,

(iv) Equality
$$\int_0^T \int_Q m(\partial_t u^{ac} - \langle Du, D_p H(x, Du) \rangle) = \int_Q m(T) u_T - m_0 u(0)$$
 holds.

(where $\partial_t u^{ac}$ is the a.c. part of the measure $\partial_t u$).

< ロ > < 同 > < 回 > < 回 >

A pair $(m, u) \in L^1((0, T) \times \mathbb{R}^d) \times BV((0, T) \times \mathbb{R}^d)$ is a weak solution of *(MFG)* if

- (i) *u* is continuous in $[0, T] \times \mathbb{R}^d$ with $Du \in L^r((0, T) \times \mathbb{R}^d, m)$ and $mD_pH(x, Du) \in L^1_{\sharp}$
- (ii) Inequality $-\partial_t u + H(x, Du) \le f(x, m)$ holds in the sense of distribution, with $u(T, x) = u_T(x)$ in the sense of trace,
- (iii) Equality $\partial_t m \operatorname{div}(mD_p H(x, Du)) = 0$ holds in the sense of distribution in $(0, T) \times \mathbb{R}^d$ and $m(0) = m_0$,

(iv) Equality
$$\int_0^T \int_Q m(\partial_t u^{ac} - \langle Du, D_p H(x, Du) \rangle) = \int_Q m(T) u_T - m_0 u(0)$$
 holds.

(where $\partial_t u^{ac}$ is the a.c. part of the measure $\partial_t u$).

< ロ > < 同 > < 回 > < 回 >

Remarks

- If (ii) holds with an equality and if u is in $W^{1,1}$, then (iii) implies (iv).
- Conditions (ii) and (iv) imply that $-\partial_t u^{ac}(t,x) + H(x, Du(t,x)) = f(x, m(t,x))$ holds a.e. in $\{m > 0\}$.

Existence for the (*MFG*) system

Theorem

There is a weak solution (m, u) of (MFG) such that u is locally Hölder continuous in $[0, T) \times \mathbb{R}^d$ and which satisfies in the viscosity sense

 $-\partial_t u + H(x, Du) \ge 0$ in $(0, T) \times \mathbb{R}^d$.

Idea of proof :

- Let (m, w) is a minimizer of (K-Pb) and (u, α) is a minimizer of (HJ-Rpb) such that u is continuous. Then one can show that (m, u) is a solution of mean field game system (MFG) and w = -mD_pH(·, Du) while α = f(·, m) a.e..
- Conversely, any solution of (*MFG*) such that *u* is continuous is such that the pair (*m*, −*mD_pH*(·, *Du*)) is the minimizer of (**K-Pb**) while (*u*, *f*(·, *m*)) is a minimizer of (**HJ-Rpb**).

・ロト ・ 四ト ・ ヨト ・ ヨト

Existence for the (*MFG*) system

Theorem

There is a weak solution (m, u) of (MFG) such that u is locally Hölder continuous in $[0, T) \times \mathbb{R}^d$ and which satisfies in the viscosity sense

 $-\partial_t u + H(x, Du) \ge 0$ in $(0, T) \times \mathbb{R}^d$.

Idea of proof :

- Let (m, w) is a minimizer of (**K-Pb**) and (u, α) is a minimizer of (**HJ-Rpb**) such that *u* is continuous. Then one can show that (m, u) is a solution of mean field game system (*MFG*) and $w = -mD_pH(\cdot, Du)$ while $\alpha = f(\cdot, m)$ a.e..
- Conversely, any solution of (*MFG*) such that *u* is continuous is such that the pair $(m, -mD_pH(\cdot, Du))$ is the minimizer of (**K-Pb**) while $(u, f(\cdot, m))$ is a minimizer of (**HJ-Rpb**).

・ロト ・ 四ト ・ ヨト ・ ヨト

Existence for the (*MFG*) system

Theorem

There is a weak solution (m, u) of (MFG) such that u is locally Hölder continuous in $[0, T) \times \mathbb{R}^d$ and which satisfies in the viscosity sense

 $-\partial_t u + H(x, Du) \ge 0$ in $(0, T) \times \mathbb{R}^d$.

Idea of proof :

- Let (m, w) is a minimizer of (**K-Pb**) and (u, α) is a minimizer of (**HJ-Rpb**) such that *u* is continuous. Then one can show that (m, u) is a solution of mean field game system (*MFG*) and $w = -mD_{p}H(\cdot, Du)$ while $\alpha = f(\cdot, m)$ a.e..
- Conversely, any solution of (MFG) such that u is continuous is such that the pair $(m, -mD_{p}H(\cdot, Du))$ is the minimizer of $(\mathbf{K-Pb})$ while $(u, f(\cdot, m))$ is a minimizer of $(\mathbf{HJ-Rpb})$.

・ロト ・ 四ト ・ ヨト ・ ヨト

Uniqueness for the (*MFG*) system

Theorem

Let (m, u) and (m', u') be two weak solutions of (MFG). Then m = m' and u = u' in $\{m > 0\}$.

Moreover, if u satisfies the additional condition

$$(*) \qquad -\partial_t u + H(x, Du) \geq 0 \qquad \text{in } (0, T) \times \mathbb{R}^d ,$$

in the viscosity sense, then $u \ge u'$.

Remark : In particular, if we add condition (*) to the definition of weak solution of (*MFG*), then the weak solution exists and is unique.

イロト イ団ト イヨト イヨト

Uniqueness for the (*MFG*) system

Theorem

Let (m, u) and (m', u') be two weak solutions of (MFG). Then m = m' and u = u' in $\{m > 0\}$.

Moreover, if u satisfies the additional condition

$$(*) \qquad -\partial_t u + H(x, Du) \geq 0 \qquad \text{in } (0, T) \times \mathbb{R}^d ,$$

in the viscosity sense, then $u \ge u'$.

Remark : In particular, if we add condition (*) to the definition of weak solution of (*MFG*), then the weak solution exists and is unique.

イロト イ団ト イヨト イヨト

Uniqueness for the (*MFG*) system

Theorem

Let (m, u) and (m', u') be two weak solutions of (MFG). Then m = m' and u = u' in $\{m > 0\}$.

Moreover, if u satisfies the additional condition

(*)
$$-\partial_t u + H(x, Du) \ge 0$$
 in $(0, T) \times \mathbb{R}^d$,

in the viscosity sense, then $u \ge u'$.

Remark : In particular, if we add condition (*) to the definition of weak solution of (MFG), then the weak solution exists and is unique.

< ロ > < 同 > < 回 > < 回 >

Idea of proof :

In a suitable sense,

$$u(t,x) = \inf_{\xi(\cdot), \ \xi(t)=x} \left\{ \int_t^T \left(L(\xi(s),\xi'(s)) + \alpha(s,\xi(s)) \right) ds + u_T(\xi(T)) \right\}$$

where $L(x, y) := \sup_{z} \langle z, y \rangle - H(x, -z)$ is as smooth as H.

 the optimal solutions of the above problems can be built by the pair (m, w) where w = −mD_pH(·, Du).

Outline

- Preliminary estimates on HJ equations
- 2 Optimal control of the HJ equation
- 3 Optimal control of the Kolmogorov equation
- Existence/uniqueness of solutions for the (MFG) system

5 Conclusion

4 A N

Summary : Throughout these lectures, we have seen

- how the MFG system is a natural formulation for Nash equilibria for differential games with infinitely many players,
- that existence/uniqueness of MFG systems are well understood for second order problems,
- the relation between the 1rst order, nonlocal MFG systems and semiconcavity,
- the relation between the 1rst order, local MFG systems and optimal control of PDEs

Open problems

- Regularity of solutions for 1rst order, local MFG systems.
- Existence/uniqueness for the MFG system of congestion type (α ∈ (0, 2))

$$\begin{cases} (i) \quad -\partial_t u + \frac{|Du|^2}{2m^{\alpha}} = f(x, m(x, t)) \\ (ii) \quad \partial_t m - \operatorname{div}(m^{1-\alpha}Du)) = 0 \\ (iii) \quad m(0) = m_0, \ u(x, T) = u_T(x) \end{cases}$$

- Application to *N*-player games,
- Long-time behavior as $T \to +\infty$,
- Periodic solutions...

.

62 / 63

Thank you !

æ

イロト イヨト イヨト イヨト