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Aim of the lectures

Describe the model and its interpretations
(Part 1)

Existence of the MFG system by fixed point arguments
(Non local MFG - Part 2)

— The MFG system as optimality condition for an optimal control problem
of HJ equations
(Local MFG - Part 3)
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Part 3

The MFG system and optimal control problems for PDE equations

P. Cardaliaguet (Paris-Dauphine) MFG 3/63



The Mean Field Game system

We are interested in the MFG system
(i) =0+ H(x,Du) = f(x,m(x, 1))
(MFG) (i) 0ym — div(mDyH(x, Du)) =0
(i) m(0) = mo, u(x, T) = ur(x)

where f : R? x [0, +o00) — [0, 4+00) is a local coupling term.

Problem : Existence/uniqueness of a solutions - smoothness properties.
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Similar systems

@ The Monge-Kantorovitch optimal transport problems : minimize the cost
to transport a probability density mg onto a probability density m;. The
dual problem reads

max {/ u(x)d(my — mo)(x), u:R?Y — R 1—Lipschitz continuous} .
Rd

If u is optimal, the system of necessary conditions reads
|Du| < 1inRY, |Du| =1 in {m > 0}
—div(mDu) = my — Mg in RY

where m is the transport density.

— Existence of solutions, uniqueness of m and uniqueness (up to
additive constants) of u on each connected component of {m > 0}.
(Evans-Gangbo 1999, Feldman-Mc Cann 2002, Ambrosio 2003)
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@ Sandpile model : Introduced by Hadeler, Kuttler (1999). Q c R?is a

bounded table, on which one pours sand with a rate f = f(x). In the
stationary regime, the heap of sand consists in a standing layer u and a
rolling layer m.

|[Dul < 1in Q, |Dul =1in {m > 0}
—div(mDu) = fin Q
u=0o0n 90
— existence and representation of solutions, uniqueness of m and
uniqueness of uin {m > 0}.
(Feldman (1999), Carnarsa-C. (2004), Crasta-Finzi Vita (2008),
Cannarsa-C.-Sinestrari (2009)).
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@ Adjoint methods for Hamilton-Jacobi PDE : analysis of the vanishing
viscosity limit :

Ot + H(Du#) = eAw®,
— O — div(DH(DuE)) N
(0, x) = up(x), me(1,.) = my.
— better understand the convergence of the vanishing viscosity

method when H is nonconvex.
(Evans (2010))
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@ A congestion model : An optimal transport problem related to congestion
yields to the following system of PDEs : for « € (0, 1),

U + %m‘*“ |Duf® =0,

8,m+div(%maDu) -0,
m(0> ) = My, m(1’) =m.

(Benamou-Brenier formulation of Wasserstein distance : o« =1 -
Dolbeault-Nazaret-Savaré, 2009)

— analysis of the system : Existence and uniqueness of a weak
solution

(C.-Carlier-Nazaret 2012.)
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Back to the MFG system

(f) —owu+ H(x,Du) = f(x,m(x, 1))
(MFG) { (i)  0ym — div(mDpH(x, Du)) =0
(iii) -~ m(0) = mo, u(x, T) = ur(x)

under the assumptions that

@ f:RY x [0,4+00) — [0, +00) is a local coupling term.

@ all the data are Z?—periodic in space : denoted by t.

P. Cardaliaguet (Paris-Dauphine) MFG 9/63



Difficulties for the MFG with local coupling

@ For nonlocal coupling, existence/regularity of the MFG system come
from

e semi-concavity estimates for HJ equations with C? RHS,
e preservation of the absolute continuity of my by Kolmogorov
equation for gradient flows of semi-concave functions.
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equation for gradient flows of semi-concave functions.

@ For local equations,

e the RHS is a priori only measurable (or integrable),
o the HJ with discontinuous RHS is poorly understood,
o the Kolmogorov equation with Du € L* is ill-posed as well.
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Difficulties for the MFG with local coupling

@ For nonlocal coupling, existence/regularity of the MFG system come
from

e semi-concavity estimates for HJ equations with C? RHS,
e preservation of the absolute continuity of my by Kolmogorov
equation for gradient flows of semi-concave functions.

@ For local equations,

e the RHS is a priori only measurable (or integrable),
o the HJ with discontinuous RHS is poorly understood,
o the Kolmogorov equation with Du € L* is ill-posed as well.

— requires a completely different approach.
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Idea for the MFG system

Inspired with similar problems in optimal transport, we look for optimization
problems with the MFG system as necessary condition.
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Idea for the MFG system

Inspired with similar problems in optimal transport, we look for optimization
problems with the MFG system as necessary condition.

This is the case

@ For an optimal control problem for an Hamilton-Jacobi equation
@ For an optimal control problem for a Kolmogorov equation

@ The second one is the dual of the first one.
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Outline

° Preliminary estimates on HJ equations
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Outline

° Preliminary estimates on HJ equations
e Optimal control of the HJ equation
e Optimal control of the Kolmogorov equation

e Existence/uniqueness of solutions for the (MFG) system

e Conclusion
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Preliminary estimates on HJ equations

Outline

Q Preliminary estimates on HJ equations
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Preliminary estimates on HJ equations

We study the optimal control of Hamilton-Jacobi equations :

_9u+H(x,Du)=a  in(0,T)xRY
(FJ) { u(Tt', x)=ur(x) inRY

by the control a = a(t, x).

— Find estimates for the solution u in terms of integral norms of a.

@ [°° estimates

@ Holder estimates
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Preliminary estimates on HJ equations
Discussion

The viscosity solution of

—Ow+H(x,Du)=a  in(0,T) x RY
(FJ) { u( ';', x) =ur(x) inRY

is represented by the optimal control problem
T
u(t,x) = inf / (L(&(s),€'(5)) + a(s,&(s))) ds + ur(§(T))
£0), &=x | J¢
where L(x,y) :=sup,(z,y) — H(x, —z) is as smooth as H.

@ The optimal control avoids places where « is large...

@ butif « << —1 even at some small places, then u << —1. So smallness
of o leads to instabilities.
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Preliminary estimates on HJ equations
Assumptions

@ The Hamiltonian H : R x RY — R is of class C' and has a superlinear
growth in the gradient variable : there is r > 1 such that

lélifl’ —~C<HMX&)<Cef +1)  Y(x,€) eRYxRY.

@ x — H(x, z) is Z periodic for any z.
@ a e LY([0, T] x RY) where p > 1+ d/r.
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Preliminary estimates on HJ equations
Upper bounds

Let o € C}([0, T] x R?) and u be a viscosity subsolution to

—0w+ H(x,Du) <o  in(0,T) x R?

Lemma (Cannarsa, C.)
There is a universal constant C such that

u(ti, X) < ute, x) + Clte — 1) 777 || ()4 lo

forany0 <ty <t < T (wherep—1—d/r > 0 by assumption).

Remark : the result actually holds if u € BV, Du e L" and a € L?. where the
inequality holds in the sense of distribution.
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Preliminary estimates on HJ equations

Proof : We assume that u and « are of class C'.

Fix 8.€ (1/r, 55— 1)) For o € RY with |o| < 1, we define the arc
X(S)* X+U(S—t1)6 ifSG[h,%]
VT x+o(—s)f ifse [tk b

Let L be the convex conjugate of p — H(x,—p), i.e., L(x, &) = H*(x, —¢&).
Then

o

g [u(s, x(s) - [ L(xa(r),x;(f))dT]
= Dyu(s.x,(5)) + (Du(s, x,(5)). %,(8)) + Lo (). x,(s)
> duu(s.x,(5)) — Hxo (). Du(s. %:()) > —a(s.%(5)
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Preliminary estimates on HJ equations
So

b

z [u(s, %) - [ L(xg(T),x;(T))dT] > —a(s.%(9))
We integrate in time on [t1, ] :
t [}
u(tz, x) — u(ty, x) + L(x,(7),x.(7))dT > —/ a7, X, (7))dr

Then we integrate on o € B; :

b

u(ty, x) < u(ta, x) + Bl /s [L(X,(S), X.(S)) + a(s, X,(S))] dsdo .

By the growth assumption on L (=coercivity assumption on H), we have

“;1 /B /t " L(x,(s), x.()) dsdo

IN

—_ tz /

C [/ Ix.(8))|" dsdo + (- — t )]
By Jt

< Clt— t1)1—f'(1—ﬁ)

where 1 —r'(1 —3) > 0since 8 > 1/r.
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Preliminary estimates on HJ equations

Using Hélder’s inequality, we get, on another hand,

b
/ / (5, %,(s))dsdo < C(t, — 1)1 =9F@DV/q|4,
B1 [1

where 1 — dj(g—1) > 0 since § < ﬁ.

1
For a suitable choice of 5 € (=

1 -
= m), we obtain finally that

—1—d/r
u(ty, X) < u(te, x) + Clta — 1) 77 ol -
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Preliminary estimates on HJ equations
Regularity

Theorem (C.-Silvestre, 2012)

Let u be a bounded viscosity solution of

—0w+ H(x,Du)=a  in(0,T) xR
u(T,x) =ur(x) inRY

where o > 0, a € LP withp > 1+ d/r.
Then, for any § > 0, u is Hélder continuous in [0, T — 6] x RY :

lu(t, x) — u(s, y)| < CI(t,x) — (s, ¥)|”

where

7=l llellp, @, 1), € = C(l|Ullco; llllms @, 1, ).
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Preliminary estimates on HJ equations

Related results

@ Capuzzo Dolcetta-Leoni-Porretta (2010), Barles (2010) : stationary
equations, bounded RHS,

@ C. (2009), Cannarsa-C. (2010), C. Rainer (2011) : evolution equations,
bounded RHS,

@ Dall’Aglio-Porretta (preprint) : stationary setting, unbounded RHS,
@ C.-Silvestre (2012) : evolution equations, unbounded RHS.
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Preliminary estimates on HJ equations

Idea of proofs :

@ For the stationary setting, by comparison with suitable test functions.
(Capuzzo Dolcetta-Leoni-Porretta, Barles, Dall’Aglio-Porretta)

@ For evolution equations, two techniques

@ By representation formula and reverse Holder inequalities,
(C., Cannarsa-C., C. Rainer)

o Comparison + improvement of oscillations techniques
(C.-Silvestre)
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Preliminary estimates on HJ equations
Summary

Let (u, @) solve

—0w+ H(x,Du)=a  in(0,T)xRY
u(T,)=ur inRY

with a = a(t, x) > 0. Then
@ (Upper bound)
p—1—d/r
U(t1,~) < U(tg, ) + C(tz — t1) a+d/r Ha”P a.e.

forany 0 < t; < b < T (where r — d(g — 1) > 0 by assumption (H3)).
@ (Lower bound) u(t, x) > ur(x) — C(T —t).

@ (Regularity) u is locally Holder continuous in [0, T) x R? with a modulus
depending only on ||a|l, and ||u7||co-
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Optimal control of the HJ equation

Outline
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Optimal control of the HJ equation

Back to the MFG system

(f) —owu+ H(x,Du) = f(x,m(x, 1))
(MFG) { (i)  0ym — div(mDpH(x, Du)) =0
(iii) -~ m(0) = mo, u(x, T) = ur(x)

under the assumptions that

@ f:RY x [0,4+00) — [0, +00) is a local coupling term.

@ all the data are Z?—periodic in space : denoted by t.
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We study the optimal control of the HJ equation :
T
(HI—Pb) inf {/ / F*(x, a(t, X)) dxdt — / u(O,x)dmo(x)}
o Ja Q
where u is the solution to the HJ equation

—wu+ H(x,Du)=a  in(0,T) x RY
u(T,)=ur  inRY
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Optimal control of the HJ equation

We study the optimal control of the HJ equation :

(HJ — Pb) inf{/T/ F*(x, a(t, X)) dxdt—/ u(O,x)dmo(x)}
0 Q Q

where u is the solution to the HJ equation

—wu+ H(x,Du)=a  in(0,T) x RY
u(T,)=ur  inRY

and F*(x, a) = sup(am — F(x, m)) where
meR

m
/ / .
F(x,m):{/o f(x,m)dm" ifm>0

400 otherwise

Note that F*(x,a) = 0fora <O.
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Optimal control of the HJ equation

Heuristics :

-
@ « must be small in order to minimize/ / F*(x, a(t, x)) dxdt.
o Ja

@ However, if « is small, then u is also small (by comparison).

@ This contradicts the smallness of the term — [, u(0, x)dmo(x) (because
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Optimal control of the HJ equation

In order to prove existence of optimal solutions

@ We look for estimates on minimizing sequences,

@ and derive from them a relaxed problem.
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Optimal control of the HJ equation

Assumptions

(H1) f:RY x [0, +00) — R is smooth and increasing with respect to the
second variable m with f(x,0) =0,

(H2) There exists g > 1 and a constant C such that

-C+ %|m|‘7_1 <f(x,my<C(+|m9 "  vm.
(H3) The Hamiltonian H: RY x RY — R is of class C' and has a superlinear
growth in the gradient variable : there is r > d(g — 1) such that

1 €] = C < H(x,6) < C(J¢]" +1)  V(x,€) e RY xRY .

ol
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Optimal control of the HJ equation

(H4) We also assume that there is 6 < [0, z4) such that
[H(x, &) = H(y, &)l < Clx =y (I v1)" WX, y,6 € RY

(H5) ur: RY — R is a smooth, periodic map, while mg : RY — R is a smooth,
periodic map, with mo > 0 and [, modx = 1.
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(H4) We also assume that there is 6 < [0, z4) such that
[H(x, &) = H(y, &)l < Clx =y (I v1)" WX, y,6 € RY

(H5) ur: RY — R is a smooth, periodic map, while mg : RY — R is a smooth,
periodic map, with mo > 0 and [, modx = 1.

Remark : Recall that F*(x, a) = sup F(x, m) where
meR

m
/ / .
F(x,m)—{/o f(x,mdm' ifm>0

400 otherwise

With our assumptions, F* is C', nondecreasing, with F*(x, a) = 0 for a < 0.

P. Cardaliaguet (Paris-Dauphine) MFG 31/63



Optimal control of the HJ equation

Estimates on the minimizing sequence

Let (un, an) be a minimizing sequence for the optimal control of HJ equation :

;
{/ /F*(X,an) dxdt—/ u,,(07x)dmo(x)} — inf
0 Q Q

where (up, o) is the solution to the HJ equation

—OtlUn + H(x,Dup) = oy, in (0, T) x RY
un(T.)=ur  inR
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Optimal control of the HJ equation

Let &, = an, vV 0 and U, solve

—8tEIn + H(X, Dan) = ap in (Ov T) x RY
E’n( T? ) =4ur in Rd

Then :
@ by comparison, u, < ip,
@ F*(x,an(t,x)) > F*(x,an(t, x)) because F*(x,0) < F*(x, a) for all a.

Therefore

/OT/OF*(x,dn)/O&n(o)mog/OT/QF*(x,an)/Oun(o)mo

and (Uy, &p) is still 2 minimizing sequence.
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Optimal control of the HJ equation

So we now assume that (u,, «;) be a minimizing sequence for the optimal
control of HJ equation with o, > 0.

P. Cardaliaguet (Paris-Dauphine) MFG 34 /63



Optimal control of the HJ equation

We use the results of the first part :

@ (Upper bound)

Un(tr.") < Un(ta, ") + Clto — 1) T [

forany0 <t <t < T (where r —d(q — 1) > 0 by assumption (H3)).
@ (Lower bound) un(t, x) > ur(x) — C(T — t).

@ (Regularity) uj is locally Hélder continuous in [0, T) x RY with a modulus
depending only on [|as|lp and ||ur||co-
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Optimal control of the HJ equation

In particular
Uun(0,-) < ur + Cllanllp

By assumption on F, we have
1 - _
E|a\p—C§ F*(x,a)< C(1+1af) Vva>0,

(where 1/p+ 1/ = 1). Therefore

. T
Cc> / / F*(x, an) _/ Un(0)mo = / / lan|? = Cllanllp - C
o Ja Q o Ja

This shows that («,) is bounded in LP.
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Optimal control of the HJ equation

Estimates on the minimizing sequence

Proposition

If (un, @) is @ minimizing sequence, then
@ (ap)is bounded in LP.
@ (uniform bounds on the up)

ur(x) — O(T — 1) < un(t, x) < ur(x) + C(T — t) a7

@ (Regularity) the uj, are uniformly locally Hélder continuous in [0, T) x RY.

@ (Integral bounds) Duj, is bounded in Lg and (0:up) is bounded in L;.

Remark : In particular, (Duy,) is bounded in BV;.
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Optimal control of the HJ equation

Explanation of the integral bound
From the equation satisfied by the (u,) we have

/OT/OH(X, Dup) = /OT/Q(an—i—ﬁtun)

lanle + [ (un(T) - un(0)) < ©

IN

As H is coercive, (Dup) is bounded in L.

Now
Otup = H(x, Dup) — ap

where (H(x, Dup)) is bounded in L} while () is bounded in L. So (d:up) is
bounded in L]. O
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Optimal control of the HJ equation

The relaxed problem

Let K be the set (u, ) € BV;((0, T) x R?) x L{((0, T) x R¥) such that
@ Du e Li((0,T) xRY)
@ a>0ae.
@ u(T,x)=ur(x)and
—Qw+H(x,Du)<a in(0,T)xR?.
holds in the sense of distribution.

Note that K is a convex set.
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Optimal control of the HJ equation

The relaxed problem

Let K be the set (u, ) € BV;((0, T) x R?) x L{((0, T) x R¥) such that
@ Du e Li((0,T) xRY)
@ a>0ae.
@ u(T,x)=ur(x)and
—Qw+H(x,Du)<a in(0,T)xR?.
holds in the sense of distribution.

Note that K is a convex set.

The relaxed problem is
;
(HJ — Rpb) inf {/ /F*(x,a(t,x)) dxdt—/ u(O,x)dmo(x)}
o Ja Q

(u,a)eK
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Optimal control of the HJ equation

@ The relaxed problem has (HJ-Rpb) at least one minimum (u, ), where
u is continuous and satisfies in the viscosity sense

—0w+ H(x,Du)>0  in(0,T) x RY

@ The value of the relaxed problem (HJ-Rpb) is equal to the value of the
optimal control of the HJ equation (HJ-Pb) .
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Optimal control of the Kolmogorov equation

Outline

e Optimal control of the Kolmogorov equation
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Optimal control of the Kolmogorov equation

The optimal control problem of HJ equation (HJ-Pb) can be rewritten as

inf{/OT/OF*(x, —0iu + H(x, Du)) dxdt/ou(O,x)dmo(x)}

with constraint u(T,-) = ur.
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Optimal control of the Kolmogorov equation

The optimal control problem of HJ equation (HJ-Pb) can be rewritten as

inf{/OT/OF*(x, —0iu + H(x, Du)) dxdt/ou(O,x)dmo(x)}

with constraint u(T,-) = ur.
This is a convex problem.

— Suggests a duality approach.
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Optimal control of the Kolmogorov equation

The Fenchel-Rockafellar duality Theorem

Let
@ E and F be two normed spaces,
@ ANe L (E,F)and

@ F.E—-RU{+o00}and G: F - RU {+oc} be two Isc proper convex
maps.

Under the qualification condition : there is xo such that F(xo) < +oco and G
continuous at \(xp), we have

ML) 2= Gl = mew (= 7 ) =& (=7

as soon as the LHS is finite. )
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Optimal control of the Kolmogorov equation

Proof of one inequality : for any x € E and y* € F’ we have
Fx)+F(N(y) = (N(y), x)

and
GINX)) + G (—y") = (=¥, A(x)) = (A" (¥y7), )
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Optimal control of the Kolmogorov equation

Proof of one inequality : for any x € E and y* € F’ we have
Fx)+F(N(y) = (N(y), x)

and
GA(X)) + G (=y") = (=y",Nx)) = = (A" (y"), )
Adding both inequalities gives

F(x)+F (N (y*)) +G(Ax)) +G"(=y*)>0.
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Optimal control of the Kolmogorov equation

Proof of one inequality : for any x € E and y* € F’ we have
Fx)+F(N(y) = (N(y), x)

and
GINX)) + G (—y") = (=¥, A(x)) = (A" (¥y7), )

Adding both inequalities gives
FX)+F (N () +G(Ax) +G°(=y") =2 0.
Rearranging

FxX)+G(Ax) = —{F (N (y") + G (=y")}
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Optimal control of the Kolmogorov equation

Proof of one inequality : for any x € E and y* € F’ we have
Fx)+F(N(y) = (N(y), x)
and
GAM)) + G (=y") = (=¥ A(x)) = =(A(¥*), x)

Adding both inequalities gives

F(x)+F (N (y*)) + G(Ax))+G"(-y") > 0.
Rearranging

FX)+GAX) = —{F(N"(y*) +G"(=y")}

Therefore

Jnf {F(x) +G(A(X))} = sup {=F"(A"(y")) = G"(-y")}

y*eF/
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Optimal control of the Kolmogorov equation

Remark : If x and y* are respectively optimal in
inf {F(x) +G(A(x))} and sup {—F"(A"(y*)) —G*(-y")}
xeE y*eF’

then

FX)+ F (V) = N (), X)

and
GIAX)) + G (=y") = (=¥, (X))
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Optimal control of the Kolmogorov equation

Remark : If x and y* are respectively optimal in

Jnf {F(X) +G(A(x))} and Sup, (=N -9 (=y)}

then
F(X)+ F (N (7)) = (M), X)
and
GIAX)) +G7(=y") = (=¥, M(X))
ie.,
N(y7) € 0F(X)
and

N(X) € 99" (=¥")
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The optimal control problem of HJ equation (HJ-Pb)

inf{/OT/QF*(x, —0iu + H(x, Du)) dxdt—/Qu(O,x)dmo(x)}

(with constraint u(T,-) = ur) can be rewritten as
inf {F(u)+ G(Au))}
ueE

where
@ E=C{([0,T] xRY),
oF:QWTWRw@uﬂmnxwﬁﬁ,

/ mo(x dx  ifu(T,)=ur (400 otherwise).

e g(a,b) = /‘/F* a(t, x) + H(x, b(t, x))) dxdt

@ A(u) = (8:u, Du).
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Optimal control of the Kolmogorov equation

Then F is convex and lower semi-continuous on E while G is convex and
continuous on F. Moreover A is bounded and linear.
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Optimal control of the Kolmogorov equation

Then F is convex and lower semi-continuous on E while G is convex and
continuous on F. Moreover A is bounded and linear.

The qualification condition is satisfied by u(t, x) = ur(x).
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Optimal control of the Kolmogorov equation

Then F is convex and lower semi-continuous on E while G is convex and
continuous on F. Moreover A is bounded and linear.

The qualification condition is satisfied by u(t, x) = ur(x).
By Fenchel-Rockafellar duality theorem we have

Jnf {F(u) +G(Mu))} = max_{=F"(A(m w)) —G"(=(m w))}

(m,w)eF’

where F’ is the set of Radon measures (m, w) € M,([0, T] x R, R x R?) and
F* and G* are the convex conjugates of 7 and G.
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Optimal control of the Kolmogorov equation
Recall that

F(u) = / mo(x)u(0,x)dx  ifu(T, )= ur (400 otherwise)

G(a,b) = / /F* X, —a(t, x) + H(x, b(t, ))) dxdt .

Lemma

/ ur(x)dm(T, x) if 9:m + div(w) =0, m(0) = my
Q

+00 otherwise

FH (N (m, w)) = {

and

;
Q*(m,w):{ /0 /Q—F(X,m)—mH*(x,—r";)dtdx if (m, w) € L]

+00 otherwise
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Optimal control of the Kolmogorov equation

Consequence of the Lemma :

Jmax (~F (N (m. w)) - G(m.w))

= max {/OT/Q—F(X, m) — mH*(x, —%) didx — /o ur(x)m(T, x) dx}

where the maximum is taken over the L,} maps (m, w) such that m > 0 a.e.
and
orm +div(w) =0, m(0) = mg
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Optimal control of the Kolmogorov equation

Idea of proof :

Fr (N (mw)) = sup (A"(m,w),u) - F(u)
u(T)=ur
= sup ((m,w),A(u)) /mo(x u(0, x)dx
T) ur

= sup / / (moiu + {w, Du)) /mo dx
T) ur
Y= sup / / (—0rm + div(w))

/ m(T)ur + / (Mo — m(0))u(0)dx"
Q Q
B { / ur(x)dm(T,x) if 9ym+ div(w) =0, m(0) = mg
= Q
+00

otherwise
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Optimal control of the Kolmogorov equation

The dual of the optimal control of HJ eqgs

The dual of the optimal control of HJ (HJ-Pb) equation is given by

(K — Pb) inf{/oT/QmH*(x,—%H—F(x,m) dxdt+/our(x)m(T,x)dx}

where the infimum is taken over the pairs
(m,w) € L}((0, T) x RY) x L}((0, T) x R?,RY) such that

orm + div(w) = 0, m(0) = mg

in the sense of distributions. Moreover this dual problem has a unique
minimum.
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Optimal control of the Kolmogorov equation

(K-Pb) as an optimal control problem for Kolmogorov equation :
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Optimal control of the Kolmogorov equation

(K-Pb) as an optimal control problem for Kolmogorov equation :

Set v = w/m. Then (K-Pb) becomes

;
mf{/o /QmH (x,—v)+ F(x,m) dxdt+/our(x)m(T,x)dx}

where the infimum is taken over the pairs (m, v) such that
orm + div(mv) =0, m(0) = mg

in the sense of distributions.
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Existence/uniqueness of solutions for the (MFG) system

Outline

e Existence/uniqueness of solutions for the (MFG) system
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Existence/uniqueness of solutions for the (MFG) system

Back to the (MFG) system

We now study the weak solutions of the (MFG) system

(i) =0+ H(x,Du) = f(x,m(x, 1))
(MFG) (i) 9ym — div(mDyH(x, Du)) =0
(fi) m(0) = mo, u(x, T) = ur(x)
and explain the relation with the two optimal control problems
@ for the HJ equation (problem (HJ-Pb))

@ for the Kolmogorov equation (problem (K-Pb))
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Existence/uniqueness of solutions for the (MFG) system

A pair (m,u) € L'((0, T) x R?) x BV((0, T) x R?) is a weak solution of
(MFG) if
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Existence/uniqueness of solutions for the (MFG) system

A pair (m,u) € L'((0, T) x R?) x BV((0, T) x R?) is a weak solution of
(MFG) if

(i) uis continuous in [0, T] x R? with Du € L"((0, T) x R?, m) and
mDpH(x, Du) € L}
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Existence/uniqueness of solutions for the (MFG) system
Definition

A pair (m,u) € L'((0, T) x R?) x BV((0, T) x R?) is a weak solution of
(MFG) if
(i) uis continuous in [0, T] x RY with Du € L"((0, T) x R?, m) and
mDpH(x, Du) € L}
(i) Inequality —0:u+ H(x,Du) < f(x, m) holds in the sense of
distribution, with u(T, x) = ur(x) in the sense of trace,
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Existence/uniqueness of solutions for the (MFG) system
Definition

A pair (m,u) € L'((0, T) x R?) x BV((0, T) x R?) is a weak solution of
(MFG) if
(i) uis continuous in [0, T] x R? with Du € L"((0, T) x R?, m) and
mDpH(x, Du) € L}
(i) Inequality —0:u+ H(x,Du) < f(x, m) holds in the sense of
distribution, with u(T, x) = ur(x) in the sense of trace,
(i) Equality 9:m — div(mD,H(x,Du)) =0 holds in the sense of
distribution in (0, T) x R? and m(0) = my,
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Existence/uniqueness of solutions for the (MFG) system
Definition

A pair (m,u) € L'((0, T) x R?) x BV((0, T) x R?) is a weak solution of
(MFG) if
(i) uis continuous in [0, T] x R? with Du € L"((0, T) x R?, m) and
mDpH(x, Du) € L}

(i) Inequality —0:u+ H(x,Du) < f(x, m) holds in the sense of
distribution, with u(T, x) = ur(x) in the sense of trace,

(i) Equality 9:m — div(mD,H(x,Du)) =0 holds in the sense of
distribution in (0, T) x R? and m(0) = my,

(iv) Equallty/ /m (0:u?® — (Du, D,H(x, Du)) /m Yur — mou(0)
holds.
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Existence/uniqueness of solutions for the (MFG) system
Definition

A pair (m,u) € L'((0, T) x R?) x BV((0, T) x R?) is a weak solution of
(MFG) if
(i) uis continuous in [0, T] x R? with Du € L"((0, T) x R?, m) and
mDpH(x, Du) € L}

(i) Inequality —0:u+ H(x,Du) < f(x, m) holds in the sense of
distribution, with u(T, x) = ur(x) in the sense of trace,

(i) Equality 9:m — div(mD,H(x,Du)) =0 holds in the sense of
distribution in (0, T) x R? and m(0) = my,

(iv) Equality / / m(0:u® — (Du, DpH(x, Du)) / m(T)ur — mou(0)
holds.

(where 0;u?° is the a.c. part of the measure o;u).

P. Cardaliaguet (Paris-Dauphine) MFG 55/63



Existence/uniqueness of solutions for the (MFG) system

Remarks
@ If (i) holds with an equality and if u is in W', then (iii) implies (iv).

@ Conditions (ii) and (iv) imply that
—0iu?(t, x) + H(x, Du(t, x)) = f(x,m(t,x)) holds a.e.in {m > 0}.
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Existence/uniqueness of solutions for the (MFG) system

Existence for the (MFG) system

There is a weak solution (m, u) of (MFG) such that u is locally Hélder
continuous in [0, T) x RY and which satisfies in the viscosity sense

—Ow+H(x,Du)>0  in(0,T)xR?.
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Existence/uniqueness of solutions for the (MFG) system

Existence for the (MFG) system

There is a weak solution (m, u) of (MFG) such that u is locally Hélder
continuous in [0, T) x RY and which satisfies in the viscosity sense

—Ow+H(x,Du)>0  in(0,T)xR?.

Idea of proof :

@ Let (m,w) is a minimizer of (K-Pb) and (u, «) is a minimizer of (HJ-Rpb)
such that u is continuous. Then one can show that (m, u) is a solution of
mean field game system (MFG) and w = —mD,H(-, Du) while
a=f(-,m)ae.
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Existence/uniqueness of solutions for the (MFG) system

Existence for the (MFG) system

There is a weak solution (m, u) of (MFG) such that u is locally Hélder
continuous in [0, T) x RY and which satisfies in the viscosity sense

—Ow+H(x,Du)>0  in(0,T)xR?.

Idea of proof :

@ Let (m,w) is a minimizer of (K-Pb) and (u, «) is a minimizer of (HJ-Rpb)
such that u is continuous. Then one can show that (m, u) is a solution of
mean field game system (MFG) and w = —mDyH(-, Du) while
a=f(-,m)ae.

@ Conversely, any solution of (MFG) such that u is continuous is such that
the pair (m, —mD,H(-, Du)) is the minimizer of (K-Pb) while (u, f(-,m)) is
a minimizer of (HJ-Rpb).
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Existence/uniqueness of solutions for the (MFG) system

Uniqueness for the (MFG) system

Theorem

Let (m,u) and (m', u") be two weak solutions of (MFG). Then m = m’ and
u=uin{m> 0}.
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Existence/uniqueness of solutions for the (MFG) system

Uniqueness for the (MFG) system

Let (m,u) and (m', u") be two weak solutions of (MFG). Then m = m’ and
u=uin{m> 0}.

Moreover, if u satisfies the additional condition

(%) — O+ H(x,Du)>0 in(0,T)xR?,

in the viscosity sense, then u > u'.
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Existence/uniqueness of solutions for the (MFG) system

Uniqueness for the (MFG) system

Let (m,u) and (m', u") be two weak solutions of (MFG). Then m = m’ and
u=uin{m> 0}.

Moreover, if u satisfies the additional condition

(%) — O+ H(x,Du)>0 in(0,T)xR?,

in the viscosity sense, then u > u'.

Remark : In particular, if we add condition (*) to the definition of weak
solution of (MFG), then the weak solution exists and is unique.
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Existence/uniqueness of solutions for the (MFG) system

Idea of proof :
@ In a suitable sense,

u(t, x)

= in
(), g(=x

-
f {/ (L(£(s),£'(s)) + (s, £(s))) ds + uT(é‘(T))}
where L(x,y) :=sup,(z,y) — H(x, —Zz) is as smooth as H.

@ the optimal solutions of the above problems can be built by the pair
(m,w) where w = —mDpH(-, Du).
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Conclusion

Outline

e Conclusion
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Conclusion

Summary : Throughout these lectures, we have seen

@ how the MFG system is a natural formulation for Nash equilibria for
differential games with infinitely many players,

@ that existence/uniqueness of MFG systems are well understood for
second order problems,

@ the relation between the 1rst order, nonlocal MFG systems and
semiconcavity,

@ the relation between the 1rst order, local MFG systems and optimal
control of PDEs
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Conclusion

Open problems
@ Regularity of solutions for 1rst order, local MFG systems.

@ Existence/uniqueness for the MFG system of congestion type
(a€(0,2)
2
() —dwu+ fm“L — f(x, m(x, 1))
(i)  9ym — div(m'~*Du)) =0
(iify -~ m(0) = mo, u(x, T) = ur(x)

@ Application to N—player games,
@ Long-time behavior as T — +o0,

@ Periodic solutions...
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Conclusion

Thank you'!

P. Cardaliaguet (Paris-Dauphine) MFG 63 /63



	Preliminary estimates on HJ equations
	Optimal control of the HJ equation
	Optimal control of the Kolmogorov equation
	Existence/uniqueness of solutions for the (MFG) system
	Conclusion

