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Aim of the lectures

√ Describe the model and its interpretations
(Part 1)

√ Existence of the MFG system by fixed point arguments
(Non local MFG - Part 2)

→ The MFG system as optimality condition for an optimal control problem
of HJ equations
(Local MFG - Part 3)
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Part 3

The MFG system and optimal control problems for PDE equations
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The Mean Field Game system

We are interested in the MFG system

(MFG)

 (i) −∂tu + H(x ,Du) = f (x ,m(x , t))
(ii) ∂tm − div(mDpH(x ,Du)) = 0
(iii) m(0) = m0, u(x ,T ) = uT (x)

where f : Rd × [0,+∞)→ [0,+∞) is a local coupling term.

Problem : Existence/uniqueness of a solutions - smoothness properties.
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Similar systems

The Monge-Kantorovitch optimal transport problems : minimize the cost
to transport a probability density m̄0 onto a probability density m̄1. The
dual problem reads

max
{∫

Rd
u(x)d(m̄1 − m̄0)(x), u : Rd → R 1−Lipschitz continuous

}
.

If u is optimal, the system of necessary conditions reads{
|Du| ≤ 1 in Rd , |Du| = 1 in {m > 0}
−div(mDu) = m̄1 − m̄0 in Rd

where m is the transport density.
−→ Existence of solutions, uniqueness of m and uniqueness (up to
additive constants) of u on each connected component of {m > 0}.
(Evans-Gangbo 1999, Feldman-Mc Cann 2002, Ambrosio 2003)
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Sandpile model : Introduced by Hadeler, Kuttler (1999). Ω ⊂ R2 is a
bounded table, on which one pours sand with a rate f = f (x). In the
stationary regime, the heap of sand consists in a standing layer u and a
rolling layer m. |Du| ≤ 1 in Ω, |Du| = 1 in {m > 0}

−div(mDu) = f in Ω
u = 0 on ∂Ω

−→ existence and representation of solutions, uniqueness of m and
uniqueness of u in {m > 0}.
(Feldman (1999), Carnarsa-C. (2004), Crasta-Finzi Vita (2008),
Cannarsa-C.-Sinestrari (2009)).
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Adjoint methods for Hamilton-Jacobi PDE : analysis of the vanishing
viscosity limit : 

∂tuε + H(Duε) = ε∆uε,
−∂tmε − div

(
DH(Duε)

)
= ε∆mε,

uε(0, x) = u0(x), mε(1, .) = m1.

−→ better understand the convergence of the vanishing viscosity
method when H is nonconvex.
(Evans (2010))
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A congestion model : An optimal transport problem related to congestion
yields to the following system of PDEs : for α ∈ (0,1),

∂tu +
α

4
mα−1|Du|2 = 0,

∂tm + div
(1

2
mαDu

)
= 0,

m(0, .) = m0, m(1, .) = m1.

(Benamou-Brenier formulation of Wasserstein distance : α = 1 -
Dolbeault-Nazaret-Savaré, 2009)
−→ analysis of the system : Existence and uniqueness of a weak
solution
(C.-Carlier-Nazaret 2012.)
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Back to the MFG system

(MFG)

 (i) −∂tu + H(x ,Du) = f (x ,m(x , t))
(ii) ∂tm − div(mDpH(x ,Du)) = 0
(iii) m(0) = m0, u(x ,T ) = uT (x)

under the assumptions that

f : Rd × [0,+∞)→ [0,+∞) is a local coupling term.

all the data are Zd−periodic in space : denoted by ].
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Difficulties for the MFG with local coupling

For nonlocal coupling, existence/regularity of the MFG system come
from

semi-concavity estimates for HJ equations with C2 RHS,
preservation of the absolute continuity of m0 by Kolmogorov
equation for gradient flows of semi-concave functions.

For local equations,

the RHS is a priori only measurable (or integrable),
the HJ with discontinuous RHS is poorly understood,
the Kolmogorov equation with Du ∈ L∞ is ill-posed as well.

−→ requires a completely different approach.
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Idea for the MFG system

Inspired with similar problems in optimal transport, we look for optimization
problems with the MFG system as necessary condition.

This is the case

For an optimal control problem for an Hamilton-Jacobi equation

For an optimal control problem for a Kolmogorov equation

The second one is the dual of the first one.
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Outline

1 Preliminary estimates on HJ equations

2 Optimal control of the HJ equation

3 Optimal control of the Kolmogorov equation

4 Existence/uniqueness of solutions for the (MFG) system

5 Conclusion
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Preliminary estimates on HJ equations
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Preliminary estimates on HJ equations

Aim

We study the optimal control of Hamilton-Jacobi equations :

(HJ)

{
−∂tu + H(x ,Du) = α in (0,T )× Rd

u(T , x) = uT (x) in Rd

by the control α = α(t , x).

−→ Find estimates for the solution u in terms of integral norms of α.

L∞ estimates

Hölder estimates
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Preliminary estimates on HJ equations

Discussion

The viscosity solution of

(HJ)

{
−∂tu + H(x ,Du) = α in (0,T )× Rd

u(T , x) = uT (x) in Rd

is represented by the optimal control problem

u(t , x) = inf
ξ(·), ξ(t)=x

{∫ T

t
(L(ξ(s), ξ′(s)) + α(s, ξ(s))) ds + uT (ξ(T ))

}

where L(x , y) := supz〈z, y〉 − H(x ,−z) is as smooth as H.

The optimal control avoids places where α is large...

but if α << −1 even at some small places, then u << −1. So smallness
of α leads to instabilities.
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Preliminary estimates on HJ equations

Assumptions

The Hamiltonian H : Rd × Rd → R is of class C1 and has a superlinear
growth in the gradient variable : there is r > 1 such that

1
C̄
|ξ|r − C̄ ≤ H(x , ξ) ≤ C̄(|ξ|r + 1) ∀(x , ξ) ∈ Rd × Rd .

x → H(x , z) is Zd periodic for any z.

α ∈ Lp
] ([0,T ]× Rd ) where p > 1 + d/r .
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Preliminary estimates on HJ equations

Upper bounds

Let α ∈ C1
] ([0,T ]× Rd ) and u be a viscosity subsolution to

−∂tu + H(x ,Du) ≤ α in (0,T )× Rd

Lemma (Cannarsa, C.)
There is a universal constant C such that

u(t1, x) ≤ u(t2, x) + C(t2 − t1)
p−1−d/r

p+d/r ‖(α)+‖p

for any 0 ≤ t1 < t2 ≤ T (where p − 1− d/r > 0 by assumption).

Remark : the result actually holds if u ∈ BV], Du ∈ Lr and α ∈ Lp
] , where the

inequality holds in the sense of distribution.
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Preliminary estimates on HJ equations

Proof : We assume that u and α are of class C1.
Fix β ∈ (1/r , 1

d(q−1) ). For σ ∈ Rd with |σ| ≤ 1, we define the arc

xσ(s) =

{
x + σ(s − t1)β if s ∈ [t1, t1+t2

2 ]
x + σ(t2 − s)β if s ∈ [ t1+t2

2 , t2]

Let L be the convex conjugate of p → H(x ,−p), i.e., L(x , ξ) = H∗(x ,−ξ).
Then

d
dt

[
u(s, xσ(s))−

∫ t2

s
L(xσ(τ), x ′σ(τ))dτ

]
= ∂tu(s, xσ(s)) + 〈Du(s, xσ(s)), x ′σ(s)〉+ L(xσ(s), x ′σ(s))
≥ ∂tu(s, xσ(s))− H(xσ(s),Du(s, xσ(s))) ≥ −α(s, xσ(s))
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Preliminary estimates on HJ equations

So
d
dt

[
u(s, xσ(s))−

∫ t2

s
L(xσ(τ), x ′σ(τ))dτ

]
≥ −α(s, xσ(s))

We integrate in time on [t1, t2] :

u(t2, x)− u(t1, x) +

∫ t2

s
L(xσ(τ), x ′σ(τ))dτ ≥ −

∫ t2

s
α(τ, xσ(τ))dτ

Then we integrate on σ ∈ B1 :

u(t1, x) ≤ u(t2, x) +
1
|B1|

∫
B1

∫ t2

t1
[L(xσ(s), x ′σ(s)) + α(s, xσ(s))] dsdσ .

By the growth assumption on L (=coercivity assumption on H), we have

1
|B1|

∫
B1

∫ t2

t1
L(xσ(s), x ′σ(s)) dsdσ ≤ C̄

[∫
B1

∫ t2

t1
|x ′σ(s))|r

′
dsdσ + (t2 − t1)

]
≤ C(t2 − t1)1−r ′(1−β)

where 1− r ′(1− β) > 0 since β > 1/r .
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Preliminary estimates on HJ equations

Using Hölder’s inequality, we get, on another hand,∫
B1

∫ t2

t1
α(s, xσ(s))dsdσ ≤ C(t2 − t1)(1−dβ(q−1))/q‖α‖p

where 1− dβ(q − 1) > 0 since β < 1
d(q−1) .

For a suitable choice of β ∈ (
1
r
,

1
d(q − 1)

), we obtain finally that

u(t1, x) ≤ u(t2, x) + C(t2 − t1)
p−1−d/r

d+d/r ‖α‖p .

�
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Preliminary estimates on HJ equations

Regularity

Theorem (C.-Silvestre, 2012)
Let u be a bounded viscosity solution of{

−∂tu + H(x ,Du) = α in (0,T )× Rd

u(T , x) = uT (x) in Rd

where α ≥ 0, α ∈ Lp with p > 1 + d/r .

Then, for any δ > 0, u is Hölder continuous in [0,T − δ]× Rd :

|u(t , x)− u(s, y)| ≤ C|(t , x)− (s, y)|γ

where
γ = γ(‖u‖∞, ‖α‖p,d , r), C = C(‖u‖∞, ‖α‖m,d , r , δ).
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Preliminary estimates on HJ equations

Related results

Capuzzo Dolcetta-Leoni-Porretta (2010), Barles (2010) : stationary
equations, bounded RHS,

C. (2009), Cannarsa-C. (2010), C. Rainer (2011) : evolution equations,
bounded RHS,

Dall’Aglio-Porretta (preprint) : stationary setting, unbounded RHS,

C.-Silvestre (2012) : evolution equations, unbounded RHS.
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Preliminary estimates on HJ equations

Idea of proofs :

For the stationary setting, by comparison with suitable test functions.
(Capuzzo Dolcetta-Leoni-Porretta, Barles, Dall’Aglio-Porretta)

For evolution equations, two techniques

By representation formula and reverse Hölder inequalities,
(C., Cannarsa-C., C. Rainer)
Comparison + improvement of oscillations techniques
(C.-Silvestre)
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Preliminary estimates on HJ equations

Summary

Let (u, α) solve {
−∂tu + H(x ,Du) = α in (0,T )× Rd

u(T , ·) = uT in Rd

with α = α(t , x) ≥ 0. Then

(Upper bound)

u(t1, ·) ≤ u(t2, ·) + C(t2 − t1)
p−1−d/r

d+d/r ‖α‖p a.e.

for any 0 ≤ t1 < t2 ≤ T (where r − d(q − 1) > 0 by assumption (H3)).

(Lower bound) u(t , x) ≥ uT (x)− C(T − t).

(Regularity) u is locally Hölder continuous in [0,T )× Rd with a modulus
depending only on ‖α‖p and ‖uT‖∞.
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Optimal control of the HJ equation

Outline

1 Preliminary estimates on HJ equations

2 Optimal control of the HJ equation

3 Optimal control of the Kolmogorov equation

4 Existence/uniqueness of solutions for the (MFG) system

5 Conclusion
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Optimal control of the HJ equation

Back to the MFG system

(MFG)

 (i) −∂tu + H(x ,Du) = f (x ,m(x , t))
(ii) ∂tm − div(mDpH(x ,Du)) = 0
(iii) m(0) = m0, u(x ,T ) = uT (x)

under the assumptions that

f : Rd × [0,+∞)→ [0,+∞) is a local coupling term.

all the data are Zd−periodic in space : denoted by ].
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Optimal control of the HJ equation

We study the optimal control of the HJ equation :

(HJ− Pb) inf

{∫ T

0

∫
Q

F ∗(x , α(t , x)) dxdt −
∫

Q
u(0, x)dm0(x)

}

where u is the solution to the HJ equation{
−∂tu + H(x ,Du) = α in (0,T )× Rd

u(T , ·) = uT in Rd

and F ∗(x ,a) = sup
m∈R

(am − F (x ,m)) where

F (x ,m) =


∫ m

0
f (x ,m′)dm′ if m ≥ 0

+∞ otherwise

Note that F ∗(x ,a) = 0 for a ≤ 0.

P. Cardaliaguet (Paris-Dauphine) MFG 27 / 63



Optimal control of the HJ equation

We study the optimal control of the HJ equation :

(HJ− Pb) inf

{∫ T

0

∫
Q

F ∗(x , α(t , x)) dxdt −
∫

Q
u(0, x)dm0(x)

}

where u is the solution to the HJ equation{
−∂tu + H(x ,Du) = α in (0,T )× Rd

u(T , ·) = uT in Rd

and F ∗(x ,a) = sup
m∈R

(am − F (x ,m)) where

F (x ,m) =


∫ m

0
f (x ,m′)dm′ if m ≥ 0

+∞ otherwise

Note that F ∗(x ,a) = 0 for a ≤ 0.

P. Cardaliaguet (Paris-Dauphine) MFG 27 / 63



Optimal control of the HJ equation

Heuristics :

α must be small in order to minimize
∫ T

0

∫
Q

F ∗(x , α(t , x)) dxdt .

However, if α is small, then u is also small (by comparison).

This contradicts the smallness of the term −
∫

Q u(0, x)dm0(x) (because
m0 ≥ 0).
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Optimal control of the HJ equation

In order to prove existence of optimal solutions

We look for estimates on minimizing sequences,

and derive from them a relaxed problem.
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Optimal control of the HJ equation

Assumptions

(H1) f : Rd × [0,+∞)→ R is smooth and increasing with respect to the
second variable m with f (x ,0) = 0,

(H2) There exists q > 1 and a constant C̄ such that

−C̄ +
1
C̄
|m|q−1 ≤ f (x ,m) ≤ C̄(1 + |m|q−1) ∀m .

(H3) The Hamiltonian H : Rd × Rd → R is of class C1 and has a superlinear
growth in the gradient variable : there is r > d(q − 1) such that

1
C̄
|ξ|r − C̄ ≤ H(x , ξ) ≤ C̄(|ξ|r + 1) ∀(x , ξ) ∈ Rd × Rd .
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Optimal control of the HJ equation

(H4) We also assume that there is θ ∈ [0, r
d+1 ) such that

|H(x , ξ)− H(y , ξ)| ≤ C̄|x − y | (|ξ| ∨ 1)θ ∀x , y , ξ ∈ Rd

(H5) uT : Rd → R is a smooth, periodic map, while m0 : Rd → R is a smooth,
periodic map, with m0 ≥ 0 and

∫
Q m0dx = 1.

Remark : Recall that F ∗(x ,a) = sup
m∈R

F (x ,m) where

F (x ,m) =


∫ m

0
f (x ,m′)dm′ if m ≥ 0

+∞ otherwise

With our assumptions, F ∗ is C1, nondecreasing, with F ∗(x ,a) = 0 for a ≤ 0.
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Optimal control of the HJ equation

Estimates on the minimizing sequence

Let (un, αn) be a minimizing sequence for the optimal control of HJ equation :{∫ T

0

∫
Q

F ∗(x , αn) dxdt −
∫

Q
un(0, x)dm0(x)

}
→ inf

where (un, αn) is the solution to the HJ equation{
−∂tun + H(x ,Dun) = αn in (0,T )× Rd

un(T , ·) = uT in Rd
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Optimal control of the HJ equation

Let α̃n = αn ∨ 0 and ũn solve{
−∂t ũn + H(x ,Dũn) = α̃n in (0,T )× Rd

ũn(T , ·) = uT in Rd

Then :

by comparison, un ≤ ũn,

F ∗(x , αn(t , x)) ≥ F ∗(x , α̃n(t , x)) because F ∗(x ,0) ≤ F ∗(x ,a) for all a.

Therefore∫ T

0

∫
Q

F ∗(x , α̃n)−
∫

Q
ũn(0)m0 ≤

∫ T

0

∫
Q

F ∗(x , αn)−
∫

Q
un(0)m0

and (ũn, α̃n) is still a minimizing sequence.
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Optimal control of the HJ equation

So we now assume that (un, αn) be a minimizing sequence for the optimal
control of HJ equation with αn ≥ 0.
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Optimal control of the HJ equation

We use the results of the first part :

(Upper bound)

un(t1, ·) ≤ un(t2, ·) + C(t2 − t1)
p−1−d/r

d+d/r ‖αn‖p

for any 0 ≤ t1 < t2 ≤ T (where r − d(q − 1) > 0 by assumption (H3)).

(Lower bound) un(t , x) ≥ uT (x)− C(T − t).

(Regularity) un is locally Hölder continuous in [0,T )× Rd with a modulus
depending only on ‖αn‖p and ‖uT‖∞.
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Optimal control of the HJ equation

In particular
un(0, ·) ≤ uT + C‖αn‖p

By assumption on F , we have

1
C̄
|a|p − C̄ ≤ F ∗(x ,a) ≤ C̄(1 + |a|p) ∀a ≥ 0 ,

(where 1/p + 1/q = 1). Therefore

C ≥
∫ T

0

∫
Q

F ∗(x , αn)−
∫

Q
un(0)m0 ≥

∫ T

0

∫
Q
|αn|p − C‖αn‖p − C

This shows that (αn) is bounded in Lp.
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Optimal control of the HJ equation

Estimates on the minimizing sequence

Proposition
If (un, αn) is a minimizing sequence, then

(αn) is bounded in Lp.

(uniform bounds on the un)

uT (x)− C(T − t) ≤ un(t , x) ≤ uT (x) + C(T − t)
p−1−d/r

d+d/r

(Regularity) the un are uniformly locally Hölder continuous in [0,T )× Rd .

(Integral bounds) Dun is bounded in Lr
] and (∂tun) is bounded in L1

] .

Remark : In particular, (Dun) is bounded in BV].
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Optimal control of the HJ equation

Explanation of the integral bound
From the equation satisfied by the (un) we have∫ T

0

∫
Q

H(x ,Dun) =

∫ T

0

∫
Q

(αn + ∂tun)

≤ ‖αn‖p +

∫
Q

(un(T )− un(0)) ≤ C

As H is coercive, (Dun) is bounded in Lr
].

Now
∂tun = H(x ,Dun)− αn

where (H(x ,Dun)) is bounded in L1
] while (αn) is bounded in Lp

] . So (∂tun) is
bounded in L1

] . �
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Optimal control of the HJ equation

The relaxed problem

Let K be the set (u, α) ∈ BV]((0,T )× Rd )× Lp
] ((0,T )× Rd ) such that

Du ∈ Lr
]((0,T )× Rd )

α ≥ 0 a.e.

u(T , x) = uT (x) and

−∂tu + H(x ,Du) ≤ α in (0,T )× Rd .

holds in the sense of distribution.

Note that K is a convex set.

The relaxed problem is

(HJ− Rpb) inf
(u,α)∈K

{∫ T

0

∫
Q

F ∗(x , α(t , x)) dxdt −
∫

Q
u(0, x)dm0(x)

}
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Optimal control of the HJ equation

Theorem

The relaxed problem has (HJ-Rpb) at least one minimum (u, α), where
u is continuous and satisfies in the viscosity sense

−∂tu + H(x ,Du) ≥ 0 in (0,T )× Rd

The value of the relaxed problem (HJ-Rpb) is equal to the value of the
optimal control of the HJ equation (HJ-Pb) .
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Optimal control of the Kolmogorov equation

Outline
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Optimal control of the Kolmogorov equation

The optimal control problem of HJ equation (HJ-Pb) can be rewritten as

inf

{∫ T

0

∫
Q

F ∗(x ,−∂tu + H(x ,Du)) dxdt −
∫

Q
u(0, x)dm0(x)

}

with constraint u(T , ·) = uT .

This is a convex problem.

−→ Suggests a duality approach.
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Optimal control of the Kolmogorov equation

The Fenchel-Rockafellar duality Theorem

Let

E and F be two normed spaces,

Λ ∈ Lc(E ,F ) and

F : E → R ∪ {+∞} and G : F → R ∪ {+∞} be two lsc proper convex
maps.

Theorem
Under the qualification condition : there is x0 such that F(x0) < +∞ and G
continuous at Λ(x0), we have

inf
x∈E
{F(x) + G(Λ(x))} = max

y∗∈F ′
{−F∗(Λ∗(y∗))− G∗(−y∗)}

as soon as the LHS is finite.
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Optimal control of the Kolmogorov equation

Proof of one inequality : for any x ∈ E and y∗ ∈ F ′ we have

F(x) + F∗(Λ∗(y∗)) ≥ 〈Λ∗(y∗), x〉

and
G(Λ(x)) + G∗(−y∗) ≥ 〈−y∗,Λ(x)〉 = −〈Λ∗(y∗), x〉

Adding both inequalities gives

F(x) + F∗(Λ∗(y∗)) + G(Λ(x)) + G∗(−y∗) ≥ 0 .

Rearranging

F(x) + G(Λ(x)) ≥ −{F∗(Λ∗(y∗)) + G∗(−y∗)}

Therefore

inf
x∈E
{F(x) + G(Λ(x))} ≥ sup

y∗∈F ′
{−F∗(Λ∗(y∗))− G∗(−y∗)}

�
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Optimal control of the Kolmogorov equation

Remark : If x̄ and ȳ∗ are respectively optimal in

inf
x∈E
{F(x) + G(Λ(x))} and sup

y∗∈F ′
{−F∗(Λ∗(y∗))− G∗(−y∗)}

then
F(x̄) + F∗(Λ∗(ȳ∗)) = 〈Λ∗(ȳ∗), x̄〉

and
G(Λ(x̄)) + G∗(−ȳ∗) = 〈−ȳ∗,Λ(x̄)〉

i.e.,
Λ∗(ȳ∗) ∈ ∂F(x̄)

and
Λ(x̄) ∈ ∂G∗(−ȳ∗)
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Optimal control of the Kolmogorov equation

The optimal control problem of HJ equation (HJ-Pb)

inf

{∫ T

0

∫
Q

F ∗(x ,−∂tu + H(x ,Du)) dxdt −
∫

Q
u(0, x)dm0(x)

}

(with constraint u(T , ·) = uT ) can be rewritten as

inf
u∈E
{F(u) + G(Λ(u))}

where

E = C1
] ([0,T ]× Rd ) ,

F = C0
] ([0,T ]× Rd ,R)× C0

] ([0,T ]× Rd ,Rd ) ,

F(u) = −
∫

Q
m0(x)u(0, x)dx if u(T , ·) = uT (+∞ otherwise).

G(a,b) =

∫ T

0

∫
Q

F ∗(x ,−a(t , x) + H(x ,b(t , x))) dxdt .

Λ(u) = (∂tu,Du).
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Optimal control of the Kolmogorov equation

Then F is convex and lower semi-continuous on E while G is convex and
continuous on F . Moreover Λ is bounded and linear.

The qualification condition is satisfied by u(t , x) = uT (x).

By Fenchel-Rockafellar duality theorem we have

inf
u∈E
{F(u) + G(Λ(u))} = max

(m,w)∈F ′
{−F∗(Λ∗(m,w))− G∗(−(m,w))}

where F ′ is the set of Radon measures (m,w) ∈ M]([0,T ]× Rd ,R× Rd ) and
F∗ and G∗ are the convex conjugates of F and G.
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Optimal control of the Kolmogorov equation

Recall that

F(u) = −
∫

Q
m0(x)u(0, x)dx if u(T , ·) = uT (+∞ otherwise)

and

G(a,b) =

∫ T

0

∫
Q

F ∗(x ,−a(t , x) + H(x ,b(t , x))) dxdt .

Lemma

F∗(Λ∗(m,w)) =


∫

Q
uT (x)dm(T , x) if ∂tm + div(w) = 0, m(0) = m0

+∞ otherwise

and

G∗(m,w) =


∫ T

0

∫
Q
−F (x ,m)−mH∗(x ,−w

m
) dtdx if (m,w) ∈ L1

]

+∞ otherwise
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Optimal control of the Kolmogorov equation

Consequence of the Lemma :

max
(m,w)∈F ′

{−F∗(Λ∗(m,w))− G(m,w)}

= max

{∫ T

0

∫
Q
−F (x ,m)−mH∗(x ,−w

m
) dtdx −

∫
Q

uT (x)m(T , x) dx

}

where the maximum is taken over the L1
] maps (m,w) such that m ≥ 0 a.e.

and
∂tm + div(w) = 0, m(0) = m0
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Optimal control of the Kolmogorov equation

Idea of proof :

F∗(Λ∗(m,w)) = sup
u(T )=uT

〈Λ∗(m,w),u〉 − F(u)

= sup
u(T )=uT

〈(m,w),Λ(u)〉+

∫
Q

m0(x)u(0, x)dx

= sup
u(T )=uT

∫ T

0

∫
Q

(m∂tu + 〈w ,Du〉) +

∫
Q

m0(x)u(0, x)dx

“ = sup
u(T )=uT

∫ T

0

∫
Q
−u(−∂tm + div(w))

+

∫
Q

m(T )uT +

∫
Q

(m0 −m(0))u(0)dx”

=


∫

Q
uT (x)dm(T , x) if ∂tm + div(w) = 0, m(0) = m0

+∞ otherwise

�
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Optimal control of the Kolmogorov equation

The dual of the optimal control of HJ eqs

Theorem
The dual of the optimal control of HJ (HJ-Pb) equation is given by

(K− Pb) inf

{∫ T

0

∫
Q

mH∗(x ,−w
m

) + F (x ,m) dxdt +

∫
Q

uT (x)m(T , x)dx

}

where the infimum is taken over the pairs
(m,w) ∈ L1

]((0,T )× Rd )× L1
]((0,T )× Rd ,Rd ) such that

∂tm + div(w) = 0, m(0) = m0

in the sense of distributions. Moreover this dual problem has a unique
minimum.
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Optimal control of the Kolmogorov equation

(K-Pb) as an optimal control problem for Kolmogorov equation :

Set v = w/m. Then (K-Pb) becomes

inf

{∫ T

0

∫
Q

mH∗(x ,−v) + F (x ,m) dxdt +

∫
Q

uT (x)m(T , x)dx

}

where the infimum is taken over the pairs (m, v) such that

∂tm + div(mv) = 0, m(0) = m0

in the sense of distributions.
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Existence/uniqueness of solutions for the (MFG) system

Back to the (MFG) system

We now study the weak solutions of the (MFG) system

(MFG)

 (i) −∂tu + H(x ,Du) = f (x ,m(x , t))
(ii) ∂tm − div(mDpH(x ,Du)) = 0
(iii) m(0) = m0, u(x ,T ) = uT (x)

and explain the relation with the two optimal control problems

for the HJ equation (problem (HJ-Pb))

for the Kolmogorov equation (problem (K-Pb))
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Existence/uniqueness of solutions for the (MFG) system

Definition
A pair (m,u) ∈ L1((0,T )× Rd )× BV ((0,T )× Rd ) is a weak solution of
(MFG) if

(i) u is continuous in [0,T ]× Rd with Du ∈ Lr ((0,T )× Rd ,m) and
mDpH(x ,Du) ∈ L1

]

(ii) Inequality −∂tu + H(x ,Du) ≤ f (x ,m) holds in the sense of
distribution, with u(T , x) = uT (x) in the sense of trace,

(iii) Equality ∂tm − div(mDpH(x ,Du)) = 0 holds in the sense of
distribution in (0,T )× Rd and m(0) = m0,

(iv) Equality
∫ T

0

∫
Q

m (∂tuac − 〈Du,DpH(x ,Du)〉) =

∫
Q

m(T )uT −m0u(0)

holds.

(where ∂tuac is the a.c. part of the measure ∂tu).
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Existence/uniqueness of solutions for the (MFG) system

Remarks

If (ii) holds with an equality and if u is in W 1,1, then (iii) implies (iv).

Conditions (ii) and (iv) imply that
−∂tuac(t , x) + H(x ,Du(t , x)) = f (x ,m(t , x)) holds a.e. in {m > 0}.
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Existence/uniqueness of solutions for the (MFG) system

Existence for the (MFG) system

Theorem
There is a weak solution (m,u) of (MFG) such that u is locally Hölder
continuous in [0,T )× Rd and which satisfies in the viscosity sense

−∂tu + H(x ,Du) ≥ 0 in (0,T )× Rd .

Idea of proof :

Let (m,w) is a minimizer of (K-Pb) and (u, α) is a minimizer of (HJ-Rpb)
such that u is continuous. Then one can show that (m,u) is a solution of
mean field game system (MFG) and w = −mDpH(·,Du) while
α = f (·,m) a.e..

Conversely, any solution of (MFG) such that u is continuous is such that
the pair (m,−mDpH(·,Du)) is the minimizer of (K-Pb) while (u, f (·,m)) is
a minimizer of (HJ-Rpb).
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Existence/uniqueness of solutions for the (MFG) system

Uniqueness for the (MFG) system

Theorem

Let (m,u) and (m′,u′) be two weak solutions of (MFG). Then m = m′ and
u = u′ in {m > 0}.

Moreover, if u satisfies the additional condition

(∗) − ∂tu + H(x ,Du) ≥ 0 in (0,T )× Rd ,

in the viscosity sense, then u ≥ u′.

Remark : In particular, if we add condition (*) to the definition of weak
solution of (MFG), then the weak solution exists and is unique.
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Existence/uniqueness of solutions for the (MFG) system

Idea of proof :

In a suitable sense,

u(t , x) = inf
ξ(·), ξ(t)=x

{∫ T

t
(L(ξ(s), ξ′(s)) + α(s, ξ(s))) ds + uT (ξ(T ))

}

where L(x , y) := supz〈z, y〉 − H(x ,−z) is as smooth as H.

the optimal solutions of the above problems can be built by the pair
(m,w) where w = −mDpH(·,Du).
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Conclusion

Summary : Throughout these lectures, we have seen

how the MFG system is a natural formulation for Nash equilibria for
differential games with infinitely many players,

that existence/uniqueness of MFG systems are well understood for
second order problems,

the relation between the 1rst order, nonlocal MFG systems and
semiconcavity,

the relation between the 1rst order, local MFG systems and optimal
control of PDEs
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Conclusion

Open problems

Regularity of solutions for 1rst order, local MFG systems.

Existence/uniqueness for the MFG system of congestion type
(α ∈ (0,2)) 

(i) −∂tu +
|Du|2

2mα
= f (x ,m(x , t))

(ii) ∂tm − div(m1−αDu)) = 0
(iii) m(0) = m0, u(x ,T ) = uT (x)

Application to N−player games,

Long-time behavior as T → +∞,

Periodic solutions...
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Conclusion

Thank you !
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