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Lecture 1 Introduction and basic concepts
Quantum technology, quantum control, postulates of
quantum mechanics, quantum probability.

Lecture 2 Measurement feedback quantum control

Open quantum systems, quantum stochastic models,
quantum filtering, optimal measurement feedback control,
risk-sensitive quantum control, linear quantum systems.

Lecture 3 Coherent feedback quantum control
Quantum feedback networks, quantum dissipative systems,
control by interconnection, linear quantum systems.
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‘Technology seems to advance in waves. Small advances in

science and technology accumulate slowly ... until a critical
level...

‘Woven into the rich fabric of technological history is an invisible
thread that has a profound effect on each of these waves...

‘This thread is the idea of feedback control.

Dennis Bernstein, History of Control, 2002
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Lecture 1 - Outline

© Quantum Technology
© Quantum Control
© Quantum Mechanics

@ Quantum Probability
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Quantum Technology

Quantum Technology

Quantum technology is the application of quantum science to develop new
technologies. This was foreshadowed in a famous lecture:

1959: Richard Feynman, Plenty of Room at the Bottom

“What | want to talk about is the problem of manipulating and
controlling things on a small scale.”
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Quantum Technology

Key drivers for quantum technology:

@ Miniaturization - quantum effects can dominate

o Microelectronics - feature sizes of 10s nm (Moore's Law)
e Nanotechnology - nano electromechanical devices have been made
sizing 10s nm

@ Exploitation of quantum resources

o Quantum Information - (ideally) perfectly secure communications
e Quantum Computing - algorithms with exponential speed-ups
o Metrology - ultra-high precision measurements

[Dowling-Milburn, 2003]
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Quantum Technology

Quantum technology revolutions
[Dowling-Milburn, 2003]

o First: [QM used to understand what exists]

e wave-particle duality
e semiconductors
e information age

@ Second: [QM used to engineer new things]

e artificial atoms
e man-made quantum states
e quantum engineering
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Quantum Control

Quantum Control

Watt used a governor to
control steam engines
- very macroscopic.

[Boulton and Watt, 1788,
London Science Museum]

Now we want to control
things at the quantum level

- e.g. atoms [ANU atom laser,
2007, Canberra]
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Quantum Control

Types of Quantum Control:
Open loop - control actions are predetermined, no feedback is involved.

control
actions

controller quantum system
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Quantum Control

Closed loop - control actions depend on information gained as the system
is operating.

quantum system

\ 4

con.trol information
actions
—
feedback |
controller (feedback loop)
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Quantum Control

Types of Quantum Feedback:
Using measurement

The classical measurement results are used by the controller (e.g.
classical electronics) to provide a classical control signal.

quantum system

]
o
> °. @ /
£ | measurement
classical
control
actions
classical
information
classical
controller
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Quantum Control

Not using measurement

The controller is also a quantum system, and feedback may involve a
flow of quantum information, as well as direct couplings.

quantum
control
actions

\ 4
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quantum system

- A\.
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quantum
controller
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Quantum Control

[terative learning control

Same scheme for estimation from repeated identical experiments.
Fresh quantum system in each iteration.
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Quantum Control

Examples of quantum feedback control

Adaptive phase measurement [Wiseman 1995]

- the first quantum measurement [Armen, Au, Stockton, Doherty, Mabuchi 2002]
feedback control experiment (a

very important experimental test)

System

Local Oscillator
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Quantum Control

Laser-cavity locking

[Huntington, James, Petersen,
- quantum LQG measurement Sayed Hassen, Heurs, 2009]

feedback control experiment
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Quantum Control

Coherent quantum feedback control

- quantum coherent feedback
control experiment

[Mabuchi, 2008]

[James, Nurdin, Petersen, 2008]
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Quantum Control

Closed-loop QED experiment

C. Sayrin et al., Nature, 1-September 2011

[Image courtesy of Hadis Amini, Igor Dotsenko]
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Quantum Mechanics

Quantum Mechanics

A little history
@ Black body radiation (Plank)

@ Photoelectric effect (Einstein)
e Atomic quantization (Bohr)
@ Quantum probability (Born)
@ Spontaneous and stimulated emission of light (Einstein)
e Matter waves (De Broglie)
e Matrix mechanics, uncertainty relation (Heisenberg)
@ Wave functions (Schrodinger)
e Entanglement (EPR)
@ Axiomatization, quantum probability (von Neumann)
X(1)
B() o “if Boutt

atom
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Quantum Mechanics

Non-commuting observables
[Q,P]= QP — PQ = ihl
Expectation
(@ = [ dlita. 0 dg

Heisenberg uncertainty

QAP = 3|16, PI)| = 5

Schrodinger equation

L O0Y(q,t) W 9%(q,t)
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Quantum Mechanics

Some mathematical preliminaries

Hilbert space with inner product (-, -)

We take $) = C”, n-dimensional complex vectors, (1, ) = >} _; idk.
Vectors are written (Dirac's kets)

¢=|¢) €N
Dual vectors are called bras, ¥ = (| € H* = 9, so that

(¥, 0) = (Wllo) = (d]9)

Let A($)) be the Banach space of bounded operators A : § — $.
For any A € B(9) its adjoint A* € Z($) is an operator defined by

(A%, ) = (1, Ag) forall ¥, ¢ € .

Also define
(A,B) =Tr[A*B], A,Be %B(%)
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Quantum Mechanics

An operator A € A($) is called normal if AA* = A*A. Two important
types of normal operators are self-adjoint (A = A*), and unitary
(A* = A71).

The spectral theorem for a self-adjoint operator A says that (finite
dimensional case) it has a finite number of real eigenvalues and that A can

be written as
A= > aP,
a€spec(A)

where P; is the projection onto the eigenspace corresponding to the
eigenvalue a (diagonal representation).
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The Postulates of Quantum Mechanics

The basic quantum mechanical model is specified in terms of the following:
Observables

Physical quantities like position, momentum, spin, etc., are represented by
self-adjoint operators on the Hilbert space §) and are called observables.
These are the noncommutative counterparts of random variables.

States

A state is meant to provide a summary of the status of a physical system
that enables the calculation of statistical quantities associated with
observables. A generic state is specified by a density matrix p, which is a
self-adjoint operator on §) that is positive p > 0 and normalized Tr[p] = 1.
This is the noncommutative counterpart of a probability density.

The expectation of an observable A is given by

(A) = (p, A) = Tr[pA]
Pure states: p = |[¢){(¢|, 1 € H so that
(A) = Tr[[)(Y]A] = (¥, AY) = (Y| Aly)
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Quantum Mechanics

Measurement

A measurement is a physical procedure or experiment that produces
numerical results related to observables. In any given measurement, the
allowable results take values in the spectrum spec(A) of a chosen
observable A.

Given the state p, the value a € spec(A) is observed with probability
Tr[pP,].

Conditioning

Suppose that a measurement of A gives rise to the observation

a € spec(A). Then we must condition the state in order to predict the
outcomes of subsequent measurements, by updating the density matrix p
using

PapPs

Tr[pPa]’

This is known as the “projection postulate”.

p plla] =
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Quantum Mechanics

Evolution

A closed (i.e. isolated) quantum system evolves in a unitary fashion: a

physical quantity that is described at time t = 0 by an observable A is

described at time t > 0 by [Heisenburg picture]
A(t) = U(t)"AU(t),

where U(t) is a unitary operator for each time t. The unitary is generated
by the Schrédinger equation

. d
lhEU(t) = H(t)U(t),

where the (time dependent) Hamiltonian H(t) is a self-adjoint operator for
each t.
States evolve according to [Schrodinger picture]

p(t) = U(t)pU*(t)

The two pictures are equivalent (dual): ((A, By = T[A"B] )

(p(t), A) = (p, A(t))
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Quantum Mechanics

The two-level system (qubit).

excited

ground

H = C?, ground |g) and excited |e) states.
Raising o and lowering o_ operators:

orlg) =le), o-le)=lg).

Pauli matrices:
(01 (0 =i o — 1 0
>=\10) " \i o) %"\ 0o —1)
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Quantum Mechanics

The quantum harmonic oscillator.
H = L*(R),
(Qu)(@ = au(a). (Pu)(@) =~ v(a)

Annihilation and creation operators (up to constants)
a=Q+iP, a=Q—iP

Commutation relations
[a,a"] =1

-
A
-
-
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Quantum Mechanics

Example - Stern-Gerlach experiment

Classical

prediction What was

Silver atom:
actually observed  ©' o 2O

% Furnace

Inhomogeneous
magnetic field

Let $ = C2, and consider the observable

/1 0
2=\ 0o -1

representing spin in the z-direction.
Measurements of this quantity take values in

spec(o;) = {-1,1}

which correspond to spin down and spin up, respectively.
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Quantum Mechanics

We can write
0z = Pz,l - Pz,—l

10 00
PZ,]._(O 0)7 PZ,—1_<O 1>7

Consider a pure state, given by the vector

(2)

[spectral representation]

where

with |Cl|2 + |C_1|2 =1

If we observe o,, we obtain
e the outcome 1 (spin up) with probability (v, P, 1) = |c1]?, or
e the outcome —1 with probability (1, P, _19) = |c_1|2.
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Quantum Mechanics

Compatible and incompatible observables

One of the key differences between classical and quantum mechanics
concerns the ability or otherwise to simultaneously measure several
physical quantities. In general it is not possible to exactly measure two or
more physical quantities with perfect precision if the corresponding
observables do not commute, and hence they are incompatible.

A consequence of this is lack of commutativity is the famous Heisenberg
uncertainty principle.
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Quantum Probability

Quantum Probability

Classical probability

Classical physics is built on foundations of classical logic, which is closely
related to classical probability.

(Q,F,P)
sample / T probability
Space events distribution
w A P(A) =prob.ofevent A

E(X) =expected value
of random variable X

®)
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Quantum Probability

Quantum probability
We may think of quantum mechanics as the description of physical
systems using a non-commutative probability theory.

(A,P)
events P state
(projections) P(P) = prob. of event P
random variables E(X) = expected value
(operators) X of random variable X

States may be defined using pure states |t)) or density operators p:
E[X] = (¢|X]¢), or E[X] = Tr[pX].

Algebras A of events describe information in both classical and quantum
probability.
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Quantum Probability

The spectral theorem tells us that a commutative quantum probability
space is equivalent to a classical probability space.

(¢,P) ——> (2,.7,P)

commutative

This is the mathematics corresponding to the measurement postulate.
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Example (spin)
Set ) = C? and choose &/ = M, (2 x 2 complex matrices).

The pure state is defined by P(A) = (¢|A|y)
(recall that ) = (c1 c_1)7 with |c1]? + |c_1|> = 1).

The observable o,, used to represent spin measurement in the z direction,
generates a commutative x-subalgebra

€, C .

Now % is the linear span of the events (projections) P, 1 and P, _;.
Spectral theorem: gives the probability space (2., F,, P,) where

Q, ={1,2},

F,={2,{1},{2},9Q,}.
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Quantum Probability

The observables
(01 - 0 i
>“=\10) T\ i o0

correspond to spin in the x and y directions, and they do not commute
with o,, and so are incompatible with o.

Their joint statistics are undefined; hence they cannot both be observed in
the same realization.

This leads to distinct commutative subspaces:

QIa-FI?PI
( N

N
~
~

a4
(QZ7~FZ7PZ)

¥
(Qy, Fy, Py)
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Quantum Probability

Quantum conditional expectation
Let X commute with a commutative subspace C. The conditional
expectation

X = 7(X) = E[X|C]

is the orthogonal projection of X € A onto C.

X is the minimum mean square estimate of X given C.

By the spectral theorem, X is equivalent to a classical random variable.
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Quantum Probability

Example
Consider § = C3, & = M3 (3 x 3 matrices), and E(X) = (1| X|v) with
b=(111)T/V3

1 00 1 00
C=<¢a|l 010 ]|+bf 010 ca,beC
0 0O 0 01

and
010
X = 1 0 0].
0 0 2
Then X commutes with C and
1 00 1 00 0 0O
E(XIC)=( 0 1 0 |=1({ 01 0 ]+2( 000 eC.
0 0 2 0 0O 0 01

[orthogonal projection]
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Quantum Probability

Probe model for quantum measurement

X M

system probe  ——> 1

[interaction] measurement |—

The conditional expectation (least squares best estimate)
(X)) =E[U"(X @ NU|U* (I @ M)U]

is well defined because X ® I commutes with | @ M.

This allows statistical estimation for system observables given
measurement data.

The von Neumann “projection postulate” is a special case.

In continuous time, this leads to quantum filtering (Lecture 3).
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Quantum Probability

Entanglement is a resource unique to the quantum world.

Particle A Particle B
Q=+=1 EPR pair S ==+1
R=+1 T==1

Classical correlations:
For all joint classical probability distributions P on
Q={-1,41} x {—1,+1} we have Bell inequality

E[QRS+ RS+ RT —QT] <2

Quantum correlations:
There exists a quantum state E on My ® M, and choice of Q, R, S, T such
that

E[QS+ RS+ RT — QT] > 2
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