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Lecture 1 Introduction and basic concepts
Quantum technology, quantum control, postulates of
quantum mechanics, quantum probability.

Lecture 2 Measurement feedback quantum control
Open quantum systems, quantum stochastic models,
quantum filtering, optimal measurement feedback control,
risk-sensitive quantum control, linear quantum systems.

Lecture 3 Coherent feedback quantum control
Quantum feedback networks, quantum dissipative systems,
control by interconnection, linear quantum systems.
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‘Technology seems to advance in waves. Small advances in
science and technology accumulate slowly ... until a critical
level...

‘Woven into the rich fabric of technological history is an invisible
thread that has a profound effect on each of these waves...

‘This thread is the idea of feedback control.

Dennis Bernstein, History of Control, 2002
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Lecture 1 - Outline

1 Quantum Technology

2 Quantum Control

3 Quantum Mechanics

4 Quantum Probability

Matt James (ANU) Quantum Feedback Control - Lecture 1 5 / 39



Quantum Technology

Quantum Technology

Quantum technology is the application of quantum science to develop new
technologies. This was foreshadowed in a famous lecture:

1959: Richard Feynman, Plenty of Room at the Bottom

“What I want to talk about is the problem of manipulating and
controlling things on a small scale.”
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Quantum Technology

Key drivers for quantum technology:

Miniaturization - quantum effects can dominate

Microelectronics - feature sizes of 10s nm (Moore’s Law)
Nanotechnology - nano electromechanical devices have been made
sizing 10s nm

Exploitation of quantum resources

Quantum Information - (ideally) perfectly secure communications
Quantum Computing - algorithms with exponential speed-ups
Metrology - ultra-high precision measurements

[Dowling-Milburn, 2003]
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Quantum Technology

Quantum technology revolutions
[Dowling-Milburn, 2003]

First: [QM used to understand what exists]

wave-particle duality
semiconductors
information age

Second: [QM used to engineer new things]

artificial atoms
man-made quantum states
quantum engineering
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Quantum Control

Quantum Control

Quantum control

Now we want to control 
things at the quantum level
- e.g. atoms

Watt used a governor to 
control steam engines 
- very macroscopic.

[ANU atom laser, 
2007, Canberra]

[Boulton and Watt, 1788, 
London Science Museum]

6
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Quantum Control

Types of Quantum Control:
Open loop - control actions are predetermined, no feedback is involved.

• Open loop - control actions are predetermined, no 
feedback is involved. 

controller quantum system

control
actions

Types of Quantum Control:
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Quantum Control

Closed loop - control actions depend on information gained as the system
is operating.

• Closed loop - control actions depend on information 
gained as the system is operating. 

controller

quantum system

control
actions

information

(feedback loop)

9
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Quantum Control

Types of Quantum Feedback:
Using measurement

The classical measurement results are used by the controller (e.g.
classical electronics) to provide a classical control signal.

Types of Quantum Feedback:

The classical measurement results are used by the controller (e.g. classical electronics) to provide a 
classical control signal.

classical
controller

quantum system

classical 
control
actions

classical
information

• Using measurement

measurement
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Quantum Control

Not using measurement

The controller is also a quantum system, and feedback may involve a
flow of quantum information, as well as direct couplings.

The controller is also a quantum system, and feedback may involve a flow of 
quantum information, as well as direct couplings.

quantum
controller

quantum system

quantum 
control
actions

quantum
information

direct couplings

[coherent feedback]

• Not using measurement

12
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Quantum Control

Iterative learning control

Same scheme for estimation from repeated identical experiments.
Fresh quantum system in each iteration.

• Iterative learning control
Same scheme for estimation from repeated 
identical experiments.
Fresh quantum system in each iteration.

QS1

QS2

QS3
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Quantum Control

Examples of quantum feedback control

Adaptive phase measurement [Wiseman 1995]

Examples of quantum feedback control

Adaptive phase measurement [Wiseman 1995]

- the first quantum measurement 
feedback control experiment (a 
very important experimental test)

15

[Armen, Au, Stockton, Doherty, Mabuchi 2002]
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Quantum Control

Laser-cavity locking

[Huntington, James, Petersen, 
Sayed Hassen, Heurs, 2009]- quantum LQG measurement 

feedback control experiment

Laser-cavity locking

16

[Huntington Lab, ADFA@UNSW]
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Quantum Control

Coherent quantum feedback control

Coherent-feedback quantum control with a dynamic compensator

Hideo Mabuchi∗

Physical Measurement and Control, Edward L. Ginzton Laboratory, Stanford University
(Dated: March 12, 2008)

I present an experimental realization of a coherent-feedback control system that was recently
proposed for testing basic principles of linear quantum stochastic control theory [M. R. James,
H. I. Nurdin and I. R. Petersen, to appear in IEEE Transactions on Automatic Control (2008),
arXiv:quant-ph/0703150v2]. For a dynamical plant consisting of an optical ring-resonator, I demon-
strate ∼ 7 dB broadband disturbance rejection of injected laser signals via all-optical feedback with
a tailored dynamic compensator. Comparison of the results with a transfer function model pinpoints
critical parameters that determine the coherent-feedback control system’s performance.

PACS numbers: 02.30.Yy,42.50.-p,07.07.Tw

The need for versatile methodology to control quantum
dynamics arises in many areas of science and technol-
ogy [1]. For example, quantum dynamical phenomena
are central to quantum information processing, mag-
netic resonance imaging and protein structure determina-
tion, atomic clocks, SQUID sensors, and many important
chemical reactions. Substantial progress has been made
over the past two decades in the development of intuitive
approaches within specific application areas [2–9] but the
formulation of an integrated, first-principles discipline of
quantum control—as a proper extension of classical con-
trol theory—remains a broad priority.

In our contemporary view it is natural to distinguish
among three basic modes of quantum control: open-loop,
in which a quantum system is driven via some time-
dependent control Hamiltonian in a pre-determined way;
measurement-feedback, in which discrete or continuous
measurements of some output channel of an open quan-
tum system are used to adjust the control actions in real
time; and coherent-feedback, in which a quantized field
scattered by the quantum system of interest is processed
coherently (without measurement) and then redirected
into the system in order to effect control. The first two
modes are entirely analogous with classical open-loop and
real-time feedback control, and their relation to exist-
ing engineering theory is now well understood [1]. The
possibility of coherent feedback, however, gives rise to a
genuinely new category of control-theoretic problems as
it encompasses non-commutative signals and quantum-
dynamical transformations thereof [14]. While some in-
triguing proposals can be found in the physics literature
[15, 16], relatively little is yet known about the system-
atic control theory of coherent feedback [18].

This article describes an experimental implementation
of coherent-feedback quantum control with optical res-
onators as the dynamical systems and laser beams as
the coherent disturbance and feedback signals. It is
presented in the context of recent developments in con-
trol theory [19–21], which have shown that optimal and
robust design of quantum coherent-feedback loops can
be accomplished (in certain settings) using sophisticated
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FIG. 1: Schematic diagram of the experimental apparatus
showing the coupled plant and controller resonators, vari-
able optical attenuators (PBS/HWP), piezoelectric transduc-
ers (PZT) and photodetector (PD).

methods of systems engineering (the setup parallels the
quantum-optical system analyzed in [19]). From the per-
spective of quantum information science, the results pre-
sented here represent a first step towards the goal of de-
veloping embedded, autonomous controllers that can im-
plement feedback protocols for error correction without
ever bringing signals up to a classical, macroscopic level.

Fig. 1 presents a schematic overview of the appara-
tus and the coherent feedback loop. Two optical ring-
resonators represent the “plant” and “controller” dynam-
ical systems; the control-theoretic design goal is to tailor
the properties of the controller so as to minimize the
optical power detected at output z when a “noise” sig-
nal (optical coherent state with arbitrary time-dependent
complex amplitude) is injected at the input w. The com-
ponent y of the noise beam that reflects from the plant
input coupler is treated as the error signal, which is coher-

[Mabuchi, 2008]

[James, Nurdin, Petersen, 2008]

Coherent quantum feedback control

- quantum coherent feedback 
control experiment

17

[Mabuchi Lab, Stanford]
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Quantum Control

Closed-loop QED experiment

C. Sayrin et al., Nature, 1-September 2011
[Image courtesy of Hadis Amini, Igor Dotsenko]
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Quantum Mechanics

Quantum Mechanics

A little history

Black body radiation (Plank)
Photoelectric effect (Einstein)
Atomic quantization (Bohr)
Quantum probability (Born)
Spontaneous and stimulated emission of light (Einstein)
Matter waves (De Broglie)
Matrix mechanics, uncertainty relation (Heisenberg)
Wave functions (Schrodinger)
Entanglement (EPR)
Axiomatization, quantum probability (von Neumann)

vacuum emitted photon

atom
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Quantum Mechanics

Non-commuting observables

[Q,P] = QP − PQ = i~ I

Expectation

〈Q〉 =

∫
q|ψ(q, t)|2dq

Heisenberg uncertainty

∆Q∆P ≥ 1

2
|〈i [Q,P]〉| =

~
2

Schrodinger equation

i~
∂ψ(q, t)

∂t
= − ~2

2m

∂2ψ(q, t)

∂q2
+ V (q)ψ(q, t)
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Quantum Mechanics

Some mathematical preliminaries
Hilbert space with inner product 〈·, ·〉
We take H = Cn, n-dimensional complex vectors, 〈ψ, φ〉 =

∑n
k=1 ψ

∗
kφk .

Vectors are written (Dirac’s kets)

φ = |φ〉 ∈ H

Dual vectors are called bras, ψ = 〈ψ| ∈ H∗ ≡ H, so that

〈ψ, φ〉 = 〈ψ||φ〉 = 〈ψ|φ〉

Let B(H) be the Banach space of bounded operators A : H→ H.
For any A ∈ B(H) its adjoint A∗ ∈ B(H) is an operator defined by

〈A∗ψ, φ〉 = 〈ψ,Aφ〉 for all ψ, φ ∈ H.

Also define
〈A,B〉 = Tr[A∗B], A,B ∈ B(H)
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Quantum Mechanics

An operator A ∈ B(H) is called normal if AA∗ = A∗A. Two important
types of normal operators are self-adjoint (A = A∗), and unitary
(A∗ = A−1).

The spectral theorem for a self-adjoint operator A says that (finite
dimensional case) it has a finite number of real eigenvalues and that A can
be written as

A =
∑

a∈spec(A)
aPa

where Pa is the projection onto the eigenspace corresponding to the
eigenvalue a (diagonal representation).
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Quantum Mechanics

The Postulates of Quantum Mechanics
The basic quantum mechanical model is specified in terms of the following:
Observables
Physical quantities like position, momentum, spin, etc., are represented by
self-adjoint operators on the Hilbert space H and are called observables.
These are the noncommutative counterparts of random variables.
States
A state is meant to provide a summary of the status of a physical system
that enables the calculation of statistical quantities associated with
observables. A generic state is specified by a density matrix ρ, which is a
self-adjoint operator on H that is positive ρ ≥ 0 and normalized Tr[ρ] = 1.
This is the noncommutative counterpart of a probability density.
The expectation of an observable A is given by

〈A〉 = 〈ρ,A〉 = Tr[ρA]

Pure states: ρ = |ψ〉〈ψ|, ψ ∈ H so that

〈A〉 = Tr [|ψ〉〈ψ|A] = 〈ψ,Aψ〉 = 〈ψ|A|ψ〉
Matt James (ANU) Quantum Feedback Control - Lecture 1 23 / 39



Quantum Mechanics

Measurement
A measurement is a physical procedure or experiment that produces
numerical results related to observables. In any given measurement, the
allowable results take values in the spectrum spec(A) of a chosen
observable A.
Given the state ρ, the value a ∈ spec(A) is observed with probability
Tr[ρPa].

Conditioning
Suppose that a measurement of A gives rise to the observation
a ∈ spec(A). Then we must condition the state in order to predict the
outcomes of subsequent measurements, by updating the density matrix ρ
using

ρ 7→ ρ′[a] =
PaρPa

Tr[ρPa]
.

This is known as the “projection postulate”.
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Quantum Mechanics

Evolution
A closed (i.e. isolated) quantum system evolves in a unitary fashion: a
physical quantity that is described at time t = 0 by an observable A is
described at time t > 0 by [Heisenburg picture]

A(t) = U(t)∗AU(t),

where U(t) is a unitary operator for each time t. The unitary is generated
by the Schrödinger equation

i~
d

dt
U(t) = H(t)U(t),

where the (time dependent) Hamiltonian H(t) is a self-adjoint operator for
each t.
States evolve according to [Schrodinger picture]

ρ(t) = U(t)ρU∗(t)

The two pictures are equivalent (dual): ( 〈A, B〉 = Tr[A∗B] )

〈ρ(t),A〉 = 〈ρ,A(t)〉
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Quantum Mechanics

The two-level system (qubit).

excited

ground

H = C2, ground |g〉 and excited |e〉 states.
Raising σ+ and lowering σ− operators:

σ+|g〉 = |e〉, σ−|e〉 = |g〉.

Pauli matrices:

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
.
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Quantum Mechanics

The quantum harmonic oscillator.
H = L2(R),

(Qψ)(q) = qψ(q), (Pψ)(q) = −i
d

dq
ψ(q)

Annihilation and creation operators (up to constants)

a = Q + iP, a∗ = Q − iP

Commutation relations
[a, a∗] = 1

30

The simplest quantum system has two energy levels and is often used to model ground and excited states of atoms.

Since the advent of quantum computing, this system is also known as the qubit, the unit of quantum information.

The two level atom is illustrated in Figure 13 (a), showing the action of the raising ⇥+ and lowering ⇥� operators.

The Hilbert space for this system is H = C2, the two-dimensional complex vector space. The physical variable

space A for this system is spanned by the Pauli matrices [22, sec. 2.1.3], [10, sec. 9.1.1]:

⇥0 = I =

�
⇤ 1 0

0 1

⇥
⌅ , ⇥x = I =

�
⇤ 0 1

1 0

⇥
⌅ , ⇥y = I =

�
⇤ 0 �i

i 0

⇥
⌅ ,⇥z = I =

�
⇤ 1 0

0 �1

⇥
⌅ .

The raising and lowering operators are defined by ⇥± = 1
2 (⇥x±i⇥y). The basic commutation relations are [⇥x,⇥y] =

2i⇥z , [⇥y,⇥z] = 2i⇥x, and [⇥z,⇥x] = 2i⇥y . The energy levels correspond to the eigenvalues of ⇥z .

n = 3

⇥ ⇥

⇥

⇥

�

�

�

�⇥

���

excited

ground

(a)

vacuum

a

a⇥

a⇥

a⇥

a a⇥

a

a�+

(b)

...

n = 0

n = 1

n = 2

Fig. 13. Energy level diagrams. (a) Two-level atom (qbit). (b) Harmonic oscillator.

B. Quantum Harmonic Oscillator

The quantum harmonic oscillator is one of the most important examples because of its tractability and application

to modeling, [22, Box 7.2], [20, sec. 10.6], [10, sec. 4.1]. Models for the optical cavity and boson fields are based

on the quantum harmonic oscillator. The quantum harmonic oscillator is illustrated in Figure 13 (b), which shows

infinite ladder of energy levels and the action of the creation a⇥ and annihilation a operators. The Hilbert space for

the quantum harmonic oscillator is H = L2(R,C), the vector space of square integrable functions defined on the

real line. The physical variable space A for this system is defined in terms of the annihilation operator a, with a⇥

the adjoint of a, and the canonical commutation relations [a, a⇥] = 1. The action of the annihilation operator may

be expressed as

(a⇤)(x) = x⇤(x) � i
d⇤

dx
(x)

on a domain of functions (vectors) ⇤ in H. The eigenvalues of a⇥a are the numbers 0, 1, 2, . . . (number of quanta),

with corresponding eigenvectors denoted ⇤n (n = 0, 1, 2, . . .) called number states. We have a⇤n =
⇤

n⇤n�1 and

a⇥⇤n =
⇤

n + 1⇤n+1. For a complex number �, a coherent state is defined by

|�⇥ = exp(�1

2
|�|2)

⇤⇧

n=0

�n

⇤
n!
⇤n

February 25, 2009 DRAFT
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Quantum Mechanics

Example - Stern-Gerlach experiment

Let H = C2, and consider the observable

σz =

(
1 0
0 −1

)

representing spin in the z-direction.
Measurements of this quantity take values in

spec(σz) = {−1, 1}
which correspond to spin down and spin up, respectively.
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Quantum Mechanics

We can write
σz = Pz,1 − Pz,−1

[spectral representation]

where

Pz,1 =

(
1 0
0 0

)
, Pz,−1 =

(
0 0
0 1

)
,

Consider a pure state, given by the vector

ψ =

(
c1

c−1

)

with |c1|2 + |c−1|2 = 1
If we observe σz , we obtain

the outcome 1 (spin up) with probability 〈ψ,Pz,1ψ〉 = |c1|2, or

the outcome −1 with probability 〈ψ,Pz,−1ψ〉 = |c−1|2.
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Quantum Mechanics

Compatible and incompatible observables
One of the key differences between classical and quantum mechanics
concerns the ability or otherwise to simultaneously measure several
physical quantities. In general it is not possible to exactly measure two or
more physical quantities with perfect precision if the corresponding
observables do not commute, and hence they are incompatible.

A consequence of this is lack of commutativity is the famous Heisenberg
uncertainty principle.
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Quantum Probability

Quantum Probability

Classical probability
Classical physics is built on foundations of classical logic, which is closely
related to classical probability.

sample

space events

probability

distribution

= prob. of event 

= expected value

    of random variable
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Quantum Probability

Quantum probability
We may think of quantum mechanics as the description of physical
systems using a non-commutative probability theory.

events

(projections)

random variables

(operators)

state

= prob. of event 

= expected value

    of random variable

States may be defined using pure states |ψ〉 or density operators ρ:

E[X ] = 〈ψ|X |ψ〉, or E[X ] = Tr[ρX ].

Algebras A of events describe information in both classical and quantum
probability.
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Quantum Probability

The spectral theorem tells us that a commutative quantum probability
space is equivalent to a classical probability space.

The spectral theorem tells us that a commutative quantum probability space

is equivalent to a classical probability space.

The conditional expectation

E[X|C ]

is well defined if

• C is commutative

• X is affilliated to the commutant C � of C

11

We may think of quantum mechanics as the description of physical systems

using a non-commutative probability theory.

(A , P)

There is a theory of quantum stochastic processes, Ito calculus, filtering

theory, and the beginnings of quantum optimal feedback control theory.

∗-algebra

state

(Ω, F ,P)

(C , P)

10

We may think of quantum mechanics as the description of physical systems

using a non-commutative probability theory.

(A , P)

There is a theory of quantum stochastic processes, Ito calculus, filtering

theory, and the beginnings of quantum optimal feedback control theory.

∗-algebra

state

(Ω, F ,P)

(C , P)

10

We may think of quantum mechanics as the description of physical systems

using a non-commutative probability theory.

(A , P)

There is a theory of quantum stochastic processes, Ito calculus, filtering

theory, and the beginnings of quantum optimal feedback control theory.

∗-algebra

state

(Ω, F ,P)

(C , P)

commutative

10

The spectral theorem tells us that a commutative quantum probability space

is equivalent to a classical probability space.

The conditional expectation

E[X|C ]

is well defined if

• C is commutative

• X is affilliated to the commutant C � of C

This provides the mathematical basis for quantum measurement theory and

quantum filtering.

11

21

Sunday, 3 October 2010

This is the mathematics corresponding to the measurement postulate.
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Quantum Probability

Example (spin)
Set H = C2 and choose A = M2 (2× 2 complex matrices).

The pure state is defined by P(A) = 〈ψ|A|ψ〉
(recall that |ψ〉 = (c1 c−1)T with |c1|2 + |c−1|2 = 1).

The observable σz , used to represent spin measurement in the z direction,
generates a commutative ∗-subalgebra

Cz ⊂ A .

Now Cz is the linear span of the events (projections) Pz,1 and Pz,−1.
Spectral theorem: gives the probability space (Ωz ,Fz ,Pz) where

Ωz = {1, 2},

Fz = {∅, {1}, {2},Ωz}.
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Quantum Probability

The observables

σx =

(
0 1
1 0

)
, σy =

(
0 i
−i 0

)

correspond to spin in the x and y directions, and they do not commute
with σz , and so are incompatible with σz .
Their joint statistics are undefined; hence they cannot both be observed in
the same realization.
This leads to distinct commutative subspaces:
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Quantum Probability

Quantum conditional expectation
Let X commute with a commutative subspace C. The conditional
expectation

X̂ = π(X ) = E[X |C]

is the orthogonal projection of X ∈ A onto C.

X̂ is the minimum mean square estimate of X given C.

By the spectral theorem, X̂ is equivalent to a classical random variable.
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Quantum Probability

Example
Consider H = C3, A = M3 (3× 3 matrices), and E(X ) = 〈ψ|X |ψ〉 with
ψ = (1 1 1)T/

√
3.

Let

C =



a




1 0 0
0 1 0
0 0 0


+ b




1 0 0
0 1 0
0 0 1


 : a, b ∈ C





and

X =




0 1 0
1 0 0
0 0 2


 .

Then X commutes with C and

E(X |C) =




1 0 0
0 1 0
0 0 2


 = 1




1 0 0
0 1 0
0 0 0


+ 2




0 0 0
0 0 0
0 0 1


 ∈ C.

[orthogonal projection]
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Quantum Probability

Probe model for quantum measurement

system probe
[interaction]

y

measurement

Probe model for measurement

X M

Probe model for quantum measurement

System observables X commute with probe observables:

[X ⊗ I, I ⊗ M ] = 0

The same is true after an interaction:

[U∗(X ⊗ I)U,U∗(I ⊗ M)U ] = 0

In this way information about the system is transfered to the probe.

Probe measurement generates a commutative algebra

C = alg{I ⊗ M}

System observables belong to commutant:

X ⊗ I ∈ C �

Therefore the conditional expectations

P[X ⊗ I|C ]

are well defined.

This allows statistical estimation for system observables given measurement data.

17

40

The conditional expectation (least squares best estimate)

π(X ) = E[U∗(X ⊗ I )U|U∗(I ⊗M)U]

is well defined because X ⊗ I commutes with I ⊗M.

This allows statistical estimation for system observables given
measurement data.

The von Neumann “projection postulate” is a special case.

In continuous time, this leads to quantum filtering (Lecture 3).
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Quantum Probability

Entanglement is a resource unique to the quantum world.

Particle A

Entanglement 
- a resource unique to the quantum world

Particle B

N = F ((BS � A � B) � T ))

Q = ±1

R = ±1

S = ±1

T = ±1

For all joint classical probability distributions P on Ω = {−1,+1} × {−1,+1} we have

EP [QS + RS + RT − QT ] ≤ 2

There exists a quantum state P on M2 ⊗ M2 and choice of Q, R, S, T such that

P[QS + RS + RT − QT ] > 2

0-0

N = F ((BS � A � B) � T ))

Q = ±1

R = ±1

S = ±1

T = ±1

For all joint classical probability distributions P on Ω = {−1,+1} × {−1,+1} we have

EP [QS + RS + RT − QT ] ≤ 2

There exists a quantum state P on M2 ⊗ M2 and choice of Q, R, S, T such that

P[QS + RS + RT − QT ] > 2

0-0

Classical correlations:

N = F ((BS � A � B) � T ))

Q = ±1

R = ±1

S = ±1

T = ±1

For all joint classical probability distributions P on Ω = {−1,+1} × {−1,+1} we have

EP [QS + RS + RT − QT ] ≤ 2

There exists a quantum state P on M2 ⊗ M2 and choice of Q, R, S, T such that

P[QS + RS + RT − QT ] > 2

0-0

Quantum correlations:

N = F ((BS � A � B) � T ))

Q = ±1

R = ±1

S = ±1

T = ±1

For all joint classical probability distributions P on Ω = {−1,+1} × {−1,+1} we have

EP [QS + RS + RT − QT ] ≤ 2

There exists a quantum state P on M2 ⊗ M2 and choice of Q, R, S, T such that

P[QS + RS + RT − QT ] > 2

0-0

EPR pair

Bell inequality

Classical correlations:
For all joint classical probability distributions P on
Ω = {−1,+1} × {−1,+1} we have Bell inequality

E[QS + RS + RT − QT ] ≤ 2

Quantum correlations:
There exists a quantum state E on M2⊗M2 and choice of Q,R,S ,T such
that

E[QS + RS + RT − QT ] > 2
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